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ABSTRACT

Online search systems that display ads continually offer new
features that advertisers can use to fine-tune and enhance
their ad campaigns. An important question is whether a
new feature actually helps advertisers. In an ideal world for
statisticians, we would answer this question by running a
statistically designed experiment. But that would require
randomly choosing a set of advertisers and forcing them to
use the feature, which is not realistic. Accordingly, in the
real world, new features for advertisers are seldom evaluated
with a traditional experimental protocol. Instead, customer
service representatives select advertisers who are invited to
be among the first to test a new feature (i.e., white-listed),
and then each white-listed advertiser chooses whether or
not to use the new feature. Neither the customer service
representative nor the advertiser chooses at random.

This paper addresses the problem of drawing valid infer-
ences from whitelist trials about the effects of new features
on advertiser happiness. We are guided by three principles.
First, statistical procedures for whitelist trials are likely to
be applied in an automated way, so they should be robust to
violations of modeling assumptions. Second, standard anal-
ysis tools should be preferred over custom-built ones, both
for clarity and for robustness. Standard tools have with-
stood the test of time and have been thoroughly debugged.
Finally, it should be easy to compute reliable confidence
intervals for the estimator. We review an estimator that
has all these attributes, allowing us to make valid inferences
about the effects of a new feature on advertiser happiness.
In the example in this paper, the new feature was intro-
duced during the holiday shopping season, thereby further
complicating the analysis.
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1. INTRODUCTION

Randomized experiments are commonplace in the search
engine (SE) industry. They are used to evaluate new ranking
functions, changes to the user interface, and new algorithms
for ad placement. These changes are typically tested on a
sample of users that are chosen by randomly directing each
query or cookie (depending on the study design) to the new
conditions or the standard operating conditions.

Advertisers provide the revenue that allows search engines
to provide free services to their users. SEs do their best to
ensure that advertisers, like users, are happy by providing
tools to manage and tune ads campaigns. These tools are
continually improved and expanded according to changing
business needs and advertiser feedback. When a new feature
is introduced in the ads system front-end, it is often tested
on a selected (i.e., white-listed) subset of advertisers before
it is introduced to the entire advertiser base. Developers
have limited control over which advertisers are white-listed,
as this largely depends on customer service representatives
(CSRs). CSRs whitelist advertisers for a variety of reasons,
including the need to test functionality for both large and
small advertisers and the desire to target advertisers that
have requested the feature in the past. Indeed, these lat-
ter advertisers are especially important as they are likely to
exercise the new feature because they are interested in it.
The purpose of the whitelist trial is largely to ensure that
the feature is bug-free and meets the desired performance
criteria. But it is also of interest to learn if the feature in-
creases customer satisfaction. Will advertisers be happier if
they use the feature than if not?

We could ask advertisers directly if they are happy with
the new feature, but self-reported satisfaction is often un-
reliable. Advertisers often tell you one thing, but their be-
havior indicates otherwise. Conventional thinking is that
advertiser happiness is better reflected by their retention
and spending. If advertisers feel that their return on in-
vestment is high, they will direct more money to their ad
campaigns. Otherwise they will continue to spend at their
current level, or, even worse, decrease their spending. We
propose to address advertiser happiness in whitelist stud-
ies through metrics like retention and comparisons of pre-
feature and post-feature spending behavior, correcting for
the biases introduced by the whitelist selection process.

This paper is organized as follows. Section 2 introduces



the application and some of the complexities due to its non-
random nature. Since the feature is not yet launched, we
are not able to identify its exact nature, but the details are
not germane to understanding the methodology. Section 3
then describes the basic statistical model for estimating ef-
fects in observational (non-randomized) studies. Section 4
reviews the notion of propensity scores, which measure selec-
tion bias. Incorporating propensity scores into the analysis
leads to unbiased estimates of the effects of a new feature. In
Section 5 we combine propensity scoring with outcome mod-
eling to obtain better, doubly robust, estimates, so-called be-
cause inferences are valid even if only the propensity model
or only the outcome model is correctly specified. (Lunce-
ford and Davidian [7] give an excellent introduction to dou-
bly robust estimators.) We argue that double robustness
is extremely important because the analysis of non-random
advertiser studies within a large SE company is likely to be
automated. In Section 6, we apply the doubly robust esti-
mator to our example, highlighting the data analysis steps
along the way. Section 7 gives a high-level view of the lit-
erature that guided our thinking. Finally, in Section 8 we
discuss other applications of the methods in the SE business.

2. WHITELIST TRIALS

The format of whitelist trials is similar across all new fea-
tures. The CSRs choose a set of advertisers who are first
offered the new feature in the ads front-end. Some adver-
tisers are chosen for their willingness to test new features,
some because they have asked for the new feature, some be-
cause the CSR believes that the new feature will benefit the
advertiser, some because the advertiser is not entirely happy
and the CSR is hoping to change that, and some for reasons
that are perhaps not so obvious. Accordingly, the first users
of a new feature are “selected” in two steps.

1. A CSR selects a whitelist of advertisers that will have
access to the feature.

2. White-listed advertisers choose to use the new feature.

New features can require significant engineering resources,
so whitelist testing is vital before a new feature is launched.
A new feature could both enlarge the advertiser base and
the spend of current advertisers, so any early indications
that bear on these questions are important to detect, despite
the complications that ensue from the nature of advertiser
selection.

The set of advertisers on the whitelist is not a random
subset of all advertisers, and the set of advertisers on the
whitelist that choose to use a new feature is not a random
subset of the white-listed advertisers. Advertisers who be-
lieve that they may benefit greatly from the new feature
may be more likely to participate, or those who would ben-
efit more may not want to be an early adopter, for example.
So, neither the CSR selection nor the decision of a white-
listed advertiser to use the feature can be considered to lead
to random sampling.

The two step selection process results in a 3-way partition
of advertisers.

1. Advertisers on the whitelist that use the feature.
2. Advertisers on the whitelist who do not use the feature.

3. Advertisers not on the whitelist.

To make the main ideas clearer, this paper considers only the
first group of white-listed advertisers, which we call users,
and a random sample of the third group of advertisers, which
we call controls. (Note that the third group is not the same
as a random sample of all advertisers, because all advertisers
in the first two groups are excluded from controls.) The
second group of advertisers would be needed to estimate
the adoption rate of the feature or to estimate the effect
of merely offering a new feature to advertisers, even if they
do not use it. Since we do not consider these estimation
problems in this paper, we ignore this group.

The challenge of assessing whether a new feature makes
advertisers happier is exacerbated by irregularities in ad-
vertiser behavior that largely depend on business conditions
outside an SEs control and occur whether or not a new fea-
ture is introduced. Figure 1 shows the variability in adver-
tiser spending over an 18 week period for a small sample ad-
vertisers. Each panel of the plot corresponds to a single ran-
domly chosen advertiser, and each point is the amount the
advertiser spent on that day relative to its maximum daily
spend over the 18 weeks. The curve is a smooth through
the points and the light grey vertical line delineates the in-
troduction of the new feature. The advertisers shown may
or may not have used the feature.

Figure 1 shows that there is no “canonical” advertiser, and
for many advertisers there is no canonical spending amount.
Advertisers have nearly constant spend (like H), increasing
spend (like J), decreasing spend (like G), and cyclical ups
and downs (like B). While seasonality is apparent (and ex-
pected for this time of year), each advertiser has its own
seasonal spending pattern. Teasing out effects in these data
would be challenging even with random samples!

We also note that a whitelist is often not one fixed list,
but a list that grows through time as more and more ad-
vertisers are included in the trial, perhaps growing over sev-
eral months. The trial we analyze spans the winter holi-
day shopping season with advertisers added to the whitelist
in waves, so that our methods of inferring advertiser hap-
piness have to accommodate unusual traffic patterns. We
entertained choosing a different ads front-end feature that
avoided the holiday season for this paper, but felt that ex-
ceptional WWW traffic is rather the rule than the exception.

Finally, we acknowledge possible confusion in the term
“feature” that has one interpretation in software engineer-
ing and another in machine learning. We try to avoid this
confusion in the sequel by using “module” in reference to
the new feature in the ads front-end system and “advertiser
characteristic” in reference to features of advertisers that are
related to usage and outcome.

3. THE GENERAL FRAMEWORK

We are interested in estimating the effect of a new ads
front-end module on an outcome Y (e.g., advertiser spend)
for a population of advertisers. We use the term wuser to
denote white-listed advertisers that used the module and
the term control for the comparison advertisers randomly
chosen from those not on the whitelist. It is convenient
to think of both users and controls as being part of the
trial, although the controls are unaware of the trial while
it is ongoing and unaffected by it. Usually there are also
variables X that consist of both static characteristics of the
advertiser, like tenure and country, and summaries of daily
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Figure 1: Daily spend as a fraction of maximum spend over the period for a random set of advertisers.

activity, like pre-trial spend. The only restriction on the
variables X is that they should depend only on information
that could be collected before the trial starts. It is also
convenient to introduce a binary variable Z that denotes
whether an advertiser was on the whitelist and used the
module (Z = 1) or an advertiser was not on the whitelist
(Z =0). Thus, for each advertiser in the trial, the observed
data consists of (Y, Z, X).

The problem with observational studies is that character-
istics of advertisers that might affect the outcome Y might
also affect whether the advertisers were on the whitelist and
used the module. For example, advertisers with long tenure
might be both more willing to experiment with new mod-
ules and have the financial resources to use them effectively.
Differences in outcome then capture not only the effect of
using the new model but also the uninteresting difference
in tenure between users and controls. Such confounding of
outcome and selection implies that the effects of using the
new module on advertiser spend and retention cannot be
estimated correctly (e.g., without bias) unless the sampling
bias is taken into account.

The methodology for removing selection bias is best un-
derstood through the concept of counterfactuals, which are
responses under conditions different from those used in the
experiment. Here each advertiser has a pair of potential
outcomes

Yi: the outcome (e.g. spend) we would observe if it used
the module

Yo: the outcome we would observe if it did not use the mod-
ule).

Of course, we cannot observe both outcomes for an adver-
tiser. We can observe Y; for an advertiser that used the
module, but we cannot observe Yy for a user, and we can
observe Yy (but not Y1) for a control. The unobservable
outcomes are termed counterfactuals because we did not in
fact observe them. (Holland [4] provides an insightful dis-
cussion of counterfactual reasoning in statistics.) Using the
binary indicator variable Z we introduced earlier allows us

to express our observed outcome as

Y =2V + (1 — 2)Yo. (1)

Equation (1) hints that there is a connection between mak-
ing inferences in observational studies (whitelist trials, in
our case) and missing data problems because Z indicates
which potential outcome is observed and 1 — Z indicates
which potential outcome is missing.

The difference Y1 —Yj for any advertiser is using that mod-
ule on that advertiser. Moreover, the distribution of Y1 — Yo
over all advertisers describes the distribution of the effect of
module usage across advertisers. The mean difference over
the population of advertisers

A =E(Yi - Yo) = E(W1) — E(Ye). (2)

is then the average effect of using the module. Note that
we cannot observe A for any advertiser because we can
never observe more than one of (Yo, Y1), yet the difference
in Y1 — YY) is an obvious way to describe the effect on an ad-
vertiser. The difficulty facing observational studies concerns
the extent to which the observed data can be used to esti-
mate A. We shall see that this depends on the relationship
between the variables (Y, Z, X).

The mean outcome for the whitelisted advertisers that
used the module is E(Y|Z = 1) = E(Y1|Z = 1), which is
not the same as F(Y1) in Equation (2) unless Y7 and Z are
independent. Similarly, the mean outcome of the controls
is E(Y|Z = 0) = E(Yo|Z = 0), which is not necessarily the
same as F(Yp) when the controls are chosen from the set of
advertisers that are not on the whitelist rather than from
the set of all advertisers. In general, we cannot estimate A
unless we make assumptions that allow E(Y1|Z = 1)=E(Y1)
and E(Yo|Z = 0) = E(Y)).

One case is simple. Random assignment of subjects to
user and control groups ensures that selection (Z) is inde-
pendent of potential outcome (Yp,Y1). This justifies com-
paring the observed average differences of user and control
groups, as is typically done in analyses of randomized exper-
iments. That is, if outcome is independent of usage, then
EY|Z =1) = E(Y1) and E(Y|Z = 0) = E(Yo) and the
average effect of using the module can be expressed by the



difference of the average of users and controls, so
A=EY|Z=1)—E(Y|Z=0). (3)

In non-randomized experiments like the whitelist trials of
interest to us, progress can be made by exploiting the ad-
vertiser characteristics X that are associated with both se-
lection Z and outcome Y. These characteristics are called
confounders. If all the relevant confounders are known, then
conditional on X we have the necessary independence of hy-
pothetical outcomes and selection into the user or control
group. Precisely, X includes all confounders if

YooY1) L Z| X (4)

where the notation L indicates independence, here condi-
tional on X.

The notions of potential outcomes and confounders are
powerful enough to provide consistent (i.e., asymptotically
unbiased) estimates of the effect A. We next review some
methods for removing confounding that build on these ideas.

4. PROPENSITY SCORE MATCHING

Knowledge of all the variables that affect both selection
and the outcome, as in Equation (4), is not quite enough to
get valid estimates of the average effect of using the module.
We must also assume that every advertiser has a non-zero
probability of being a user and a nonzero probability of being
a control. If so, we can obtain valid estimates of the effect of
using the module by partitioning X into level sets such that
the values of all characteristics in the set are fixed, and then
computing a difference A in the mean of user and control
groups within each partition k. The separate estimates Ay
can be combined to yield a consistent estimate of A.

In an important paper, Rosenbaum and Rubin [12] define
the propensity score p(z) as the conditional probability that
an advertiser is in the group of white-listed users given it has
characteristics z:

p(x) =P(Z=1X =z).
They prove that if (Yo, Y1, Z, X) satisfies equation (4) and if
0 < p(x) <1 for all z, (5)

so that every advertiser has a nonzero chance of being a
control or a user, then partitioning on p(z) is as good as
partitioning on x in the sense that

(Yo, Y1) L Z| p(X). (6)

Partitioning on p(X) instead of X itself can dramatically re-
duce the number of partitions in which separate estimates,
Ay, need to be computed, especially because p(X) is one
dimensional regardless of the dimension of X. Rosenbaum
and Rubin argue that the method can be applied using an
estimate of the propensity score and much of the follow-
ing work in the area has concerned diagnostics that suggest
whether the estimated propensity score model should be
trusted. Parenthetically, subsequent work, reviewed in [6],
concludes that estimators based on an estimated propensity
p(x) perform better than those based on the true (unknown)
p(x). The intuition is that p(x) captures some dependence
of the outcome Y on X that does not affect selection bias
and hence is not reflected in p(z) itself.

The work of Rosenbaum and Rubin has led to numer-
ous variations on the theme of matching. User and con-
trol advertisers can be paired by matching their propen-
sity scores, or subclasses of users and control advertisers
can be formed based on quantiles of estimated propensity
scores and an average computed for each subclass, or out-
come models that estimate Ay as a function of X can be
fit within each subclass to capture any residual dependence
that the propensity score model missed. Propensity score
matching is used extensively in medical and social science
applications, and until recently it was our preferred method
of analysis for whitelist trials. Our main reservation about
all variants of matching is the degree of care required in
building the propensity score model and the degree to which
the matched sets must balance the advertiser characteris-
tics. If analysis is automated, then the care needed may not
be taken. In our idealized view, we want our cake and we
want to eat it too; specifically, we require an estimator that
has good performance and that can be applied routinely by
non-statisticians.

5. ALTERNATIVE METHODS

The challenge of making causal inferences from observa-
tional data is well-studied in statistics and there are many
ways to proceed. The established methods all rely on as-
sumptions (like no confounders beyond X) that are diffi-
cult to validate with sample diagnostics. Instead of giving a
laundry list of methods for estimation for whitelist trials, we
discuss two of the most commonly used methods and then
a variant that combines both methods into a new method
that is more attractive than either of the basic two meth-
ods alone. The hybrid estimator, called the “doubly robust”
estimator, has certain advantages in our application, inas-
much as it protects against the constituent models being
incorrectly specified. Since the doubly robust estimator can
be built from simple logistic and ordinary regression models,
for example, it can be applied without specialized software.
Finally the doubly robust estimator has an estimated stan-
dard error that is both easy to compute and accurate [7].

5.1 Direct Outcome Models

Suppose that we knew the true relationship between the
outcome Y and the pre-experiment variables X, and that it
could be represented as E(Y|X) = f(X, ) for an unknown
[, and that the effect A is the same for all advertisers. We
can then estimate the average effect of using the module in
an asymptotically unbiased way by fitting the model

EY[Z,X) = f(X,8)+ ZA, (7)

where (3 represents the effects of advertiser characteristics
that are known before the start of the trial (including pre-
trial outcomes, like spend), A is the effect of using the mod-
ule, and € is zero mean random noise. We can relax the
condition of a constant effect A in equation (7) to also de-
pend on X, in which case the mean effect to be estimated is
E{A(X)|X}.

Note that A in the direct outcome model (7) is exactly



equal to the average effect E (Y1) — E(Yp). That is,

E(Y: - Yo) = E{E(Y1|X) — E(Y|X)}
=E{E(Y|Z=1,X)-E(Y|Z=0,X)}
= B{f(X.5) +1x A~ f(X,5) —0x A}
=A

where the outer expectation in the first line, for example,
averages over the distribution of X. Thus if A is constant
in X, an unbiased estimate of the regression coefficient A is
an unbiased estimate of the average effect. An hypothesis
test H : A = 0 captures whether using the module has
influenced advertiser spending.

Estimating A by the direct outcomes method is both sim-
ple and dangerous. If we misspecify the outcome model (7),
our estimate and test statistic do not capture the effect of
using the module.

5.2 Inverse Propensity Weighting

If X contains enough information to remove selection bias
(as assumption (6) requires), then the observed outcomes
ZY1 for the users on the whitelist satisfy

E{E(ZY1|X)} = E{EMW| X, Z = 1)P(Z = 1|X)}
= E{EM|X)p(X)}.
Similarly,
E{E((1 - 2)¥o|X)} = E{E(Yo|X)P(Z = 0|X)}.

Together, these last two equations lead to the inverse propen-
sity weighted estimator

Ajpw—”flz{sz) _(11:1>Z(:31;}

where n is the total number of users and control advertisers
in the whitelist study and p(z) is an estimate of the propen-
sity score P(Z = 1|X = z). Note that A;pw is asymp-
totically unbiased if p(x) is asymptotically unbiased; e.g.., if
the correct propensity model is fit by logistic regression. In
fact, [11] shows that any estimator of A that is asymptoti-
cally unbiased must involve inverse propensity weighting no
matter what the distribution of (Y, Z, X) is

5.3 Doubly Robust Estimation

Direct outcome estimates of A are valid (asymptotically
unbiased) if the fitted outcome model for Y is correct. In
practice this is often addressed by fitting separate outcome
models, mi(z), mo(x), to user (Z = 1) and control (Z =
0) advertisers. IPW estimates of A are valid if the fitted
propensity model is correct. Surprisingly, there is a sim-
ple combination of the two methods of estimation that is
asymptotically unbiased even if either the form of the as-
sumed outcome models or the form of the assumed propen-
sity model (but not both) is wrong. Because the estimate is
robust to misspecification of either the outcome models or
the propensity model, it is called doubly robust.

The doubly robust estimate A DR can be written in terms
of the estimated propensities p(z;) and the predictions 7 (z;)
and 1719(z;) under the direct outcome mean models for the
users and controls respectively. Note that there is a predic-
tion for each advertiser in the trial under both the model
m1 for the users and the model Mo for the controls.

There are two expressions for Apr that we find conve-
nient. First,

_ Z:Y; — (Z; — p(x:)) ma(xs)
Apr=n""!
; p(wi)
1N~ (L= Z0) Y+ (Zi = pla)) o (@:)
Z 1— ( 1) ’
which shows that Apg adjusts the inverse propensity weighted

estimate A[PW with residuals of the Z; from their fitted val-
ues p(x). Second,

—pt Z {mi(z;) — Mo(z:)}

,12
s (L= Z0)(Yi — g ()
i:ZI 1—p(x:) 7

Y m1 (z4))

which shows that ADR also adjusts the direct outcome es-
timates with their residuals. Robins, Rotnitzky and Zhao
[11] show that Apg has the smallest asymptotic variance
among all asymptotically unbiased estimates of A that are
based on Arpw .

Lunceford and Davidian [7] suggest a simple estimate of
the standard error of Apg that can be used to give confi-
dence intervals for A. We can rewrite the above equation
for A DR as

n

A —1

Apr=n Z(Si, where
i=1

di =i (xi) — mo(x;)
4 Zii —ma(zi) (= Zi)(Yi —rio(zi))
p1(zi) 1 —p(x:) '

Then the variance of ADR can be estimated by

var(Apr) = n"? Z((S — A
i=1

Using simulation studies, Lunceford and Davidian [7] show
that this variance estimate is remarkably accurate, yielding
confidence intervals of correct size.

6. APPLICATION TO WHITELIST TRIALS
IN ADS FRONT END SYSTEMS

6.1 Data Selection

The module we study was made available to 600 adver-
tisers over a period of 11 weeks. Advertisers were added to
the study in “waves” roughly every week. For each wave
we sampled advertisers not on the whitelist at a 6:1 ratio to
form a control group that shared the same wave start date.
Although there is no single start date, we use the term “pre-
trial” to mean the period before an advertiser was added to
the study.

The advertisers that the CSRs put on the whitelist are far
from a random sample of all advertisers. For example, each
advertiser has an assigned “tier” that governs the level of



Table 1: Advertiser characteristics considered in the propensity and outcome models.

Characteristic | Description

Tenure

Channel
Country
ConversionTrk
Reports
Impressions

AveDailySpend
SpendVariation
SpendPer1000

the length of time the advertiser has been a customer

Tier the (internally assigned) service level for the advertiser

the way by which the advertiser became a customer

the country associated with the advertiser’s billing address

a feature that advertisers can employ to track campaign performance
the average number of weekly reports requested by the advertiser
mean number of ad impressions shown per day

CTR the mean daily ratio of clicks to impressions (i.e., click through ratio)
the mean daily spend of the advertiser

the variance of local trend in smooth daily spend

mean of daily spend per 1000 impressions

customer service that it receives. The highest tier is over-
represented on the whitelist and the lowest tiers are under-
represented. Our allocation of controls to weekly cohorts
maintained the whitelist tier distribution, at least approxi-
mately. The main reason for doing this is to help ensure that
the overlap (in advertiser characteristics) between user and
control advertisers is adequate for propensity models to be
applied (as required by 4). In the analysis and conclusions
that follow, we sometimes distinguish between the top tier
and others.

Of the 600 whitelisted advertisers, 284 used the new mod-
ule; in what follows they constitute the users. We omit
the 316 other white-listed advertisers who did not use the
module from the analysis in this paper. As stated in Sec-
tion 2, the white-listed non-users provide information about
the adoption rate of the module, but that is not the focus
of the present analyses.

We ran database queries to extract advertiser variables
for each advertiser. The variables can be broken into two
categories: static advertiser demographics and time-varying
metrics like daily click through rate that describe the per-
formance of advertisers’ ad campaigns. The demograph-
ics are pre-trial conditions and as such are suitable predic-
tors (and hence possible confounders) for our propensity and
outcome models. The time-varying metrics were limited to
eight weeks pre-trial and eight weeks post-trial. The pre-
experiment metrics are suitable predictors for the propen-
sity and outcome models, while the post-trial metrics can be
outcomes. For example, the daily spend before the trial cap-
tures how advertisers manage their campaigns before they
used the new module. Once the trial starts for an advertiser,
daily spend is an outcome that we want to track. It would
be possible to model the daily time series of performance
directly but rather define functions, fr(x:),k = 1,...K, that
capture salient features relevant to either the decision to use
the module or the value of the post-trial outcome.

Table 1 displays the advertiser characteristics that we use
in our models. The first five are static demographic charac-
teristics that are thought to influence use of the module and
associated spend. The remaining advertiser characteristics
are functions of time series that capture the daily perfor-
mance of an ad campaign.

6.2 Outcomes

We consider two outcomes, Retention and LogSpendRatio,
for each advertiser.

Retention is a binary variable that is one if an advertiser

that was active in the eight weeks prior to its trial start
remained active in the eight weeks following and zero oth-
erwise. By active we mean that an advertiser had at least
one ad impression shown in that period.

LogSpendRatio is based on the relative change in aver-
age daily spend (AveDailySpend) for an advertiser. Define
Spost as the average daily spend for an advertiser in the
eight weeks following trial start and Sy, as its average daily
spend in the prior eight weeks. LogSpendRatio is the loga-
rithm of the ratio of post-trial spend to pre-trial spend for
an advertiser:

LogSpendRatio =loga(Spost /Spre)
=l0g2(Spost) — log2(Spre)-

The doubly robust estimator estimates the mean (causal)
effect of using the new module. That is, it estimates the
mean change in the outcome if an advertiser previously not
using the new module starts to use it where the mean aver-
ages over all advertisers. Define Apr(Retention) to be the
doubly robust estimate of the mean change in Retention if
an advertiser starts using the new module. Similarly define
Apr(Spend) to be the doubly robust estimate of the mean
difference in LogSpendRatio when an advertiser starts using
the new module. Note that by construction the Spend out-
come compares the change pre-and post-trial for the users
to the controls.

The doubly robust method combines three separate mod-
els for each outcome under consideration. In our experience,
good performance is obtained by using the same large set of
advertiser characteristics as predictors in both the propen-
sity score and the outcome models and using variable se-
lection techniques (or Ll-regularization) to mitigate over-
fitting. We note that even though the theory of the doubly
robust estimator indicates that we need not get these mod-
els exactly right, it behooves us to make the best possible
attempt.

6.3 The Propensity Score Model

The propensity score model captures how advertiser char-
acteristics relate to the probability that an advertiser uses
the module. It is possible the propensity model changes over
waves but we found negligible evidence of this in our data.
[This is easily assessed by including wave as a variable in
the model.] All variables in Table 1 were included in a stan-
dard logistic regression model and Table 2 summarizes their
importance in the models. A centered dot indicates that
the advertiser characteristic was not important at the 1%



level. An * indicates statistical significance beyond the 1%
level. The column headed “Prop Score” indicates which of
these were important in distinguishing between white-listed
users of the module and the controls. The fact that so many
variables are statistically significant in the propensity score
model highlights the fact that there is much selection bias
in this study.

Table 2: Roles of advertiser characteristics in the
propensity and outcome models. Variables were
transformed as appropriate (e.g. log odds of CTR
rather than raw CTR were used). A * indicates
that the variable was statistically significant at the

1% level.

Advertiser Prop Retention | SpendRatio
Characteristic Score | User | Cntl | User | Cntl
Tenure * * * . *
Tier * *
Channel * *
Country * *
ConversionTrk *

Reports *

Impressions . . . * *
CTR . . . .
AveDailySpend * . * * *
SpendVariation * . - - .
SpendPer1000 * . . * *

Figure 2 describes the quality of the fitted propensity
models. The ROC curve on the left-hand side plot shows
the trade-off between true positive (a true user predicted to
be a user) and false positive probabilities. The area under
the curve (AUC) is a measure that captures the ability of
the model to rank users and non-users appropriately; for our
propensity score model we observe AUC=0.88.
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Figure 2: Plot illustrating the quality of the propen-
sity score model.

The right-hand side panel of Figure 2 shows the agreement
between the observed data and the fitted propensity model
by tabulating the fraction of users within bands defined by
the quantiles of fitted propensities. Perfect agreement would
be obtained if all points fell on the 45° line through the
origin. Our fitted propensity model is far from perfect, but
it fits reasonably well across the whole range of estimated
propensities.

6.4 The Direct Outcome Models

We base our outcome model for Retention on a logistic
regression of the observed fraction of retained advertisers
using the pre-trial advertiser characteristics listed in Table
1 as predictors. The columns in Table 2 headed by “Reten-
tion” indicate which of these characteristics demonstrated
significant association with retention in the user and control
groups. In contrast to self-selection, only a few variables af-
fect retention when controls and users are directly modeled.

The outcome model for LogSpendRatio is a linear regres-
sion on the logarithm of SpendRatio. Mean daily number of
impressions, mean daily spend, and mean daily spend per
1000 impressions are important in both the user and con-
trol models, but advertiser demographics are also important
in the controls model. This is not surprising; the controls
may be more heterogeneous than the users and the control
sample is much larger than the user sample.

To assess the quality of the models, recall that the expres-
sion for the doubly robust estimator requires an estimate of
the outcome for the user group of advertisers had they not
used the module, and an estimate of the outcome for the con-
trol group of advertisers had they used the module. Thus,
we need to use models fitted to one group of advertisers to
predict outcomes for the complementary group of advertis-
ers. Our trust in these models is guided by the extent to
which prediction is interpolation rather than extrapolation.

Figure 3 conveys the degree to which the Retention mod-
els fitted to users and controls are appropriate for prediction.
Each subpanel contains a kernel density estimate of the Ma-
halanobis distance (based on the in-model covariance) of the
out-of-model instances from the in-model mean. In the left
hand panel we show the distribution of distances for the
model fitted to the controls. The solid curve corresponds to
the controls (i.e., the in-model data) and the dashed curve
corresponds to the users (i.e., the out-of-model data). The
shapes of the distributions are quite different and we ob-
serve a bimodality in the distances for the in-model control
set. In the right hand panel we show the distribution of
distances for the model fitted to the users. The solid curve
corresponds to the users (i.e., the in-model data) and the
dashed curve corresponds to the controls (i.e., the out-of-
model data). Here we observe less pronounced bimodality
in the distances for the in-model (users) data and an ex-
cess of small distances for the out-of-model control data.
In both cases, it appears that there is sufficient overlap in
the distribution of distances to mitigate the concern with
extrapolation.

The associated plots for LogSpendRatio are shown in Fig-
ure 4. For the model fitted to the controls we see extraordi-
nary agreement in the distribution of distances. The model
fitted to the users is worrisome since we have a long tail of
distances for the out-of-model (controls) data. Most of the
mass in the long tail overlaps with the in-model data so we
are cautiously optimistic that the predicted LogSpendRa-
tio’s for the controls from the user model are valid at least
for the vast majority of advertisers.

6.5 Doubly Robust Application Estimates
Given our satisfaction with the components of the doubly
robust estimator, we are ready to compute ADR(Retention)
and Apg(Spend) from the component models p(x), 1 (z),
and 7o (z). The effect of tier is pronounced in the propensity
score model, so we compute a separate mean effect (and
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Figure 3: Plot illustrating the degree of extrapola-
tion of the Retention outcome model.

Spend
in-model distances e
out-of-model distances - ----

01 02 03 04 05 06
| | | |

| | | | | |
Control Model User Model

density

T T T T T T
01 02 03 04 05 06

Mahalanobis distance

Figure 4: Plot illustrating the degree of extrapola-
tion of the LogSpendRatio outcome model.

associated standard error) for tier 1 for both Retention and
SpendRatio. For Retention, we obtain

0.044 (0.019), tier =1

Apr(Retention) = { 0.094 (0.043), tier # 1

In words this says that, on average, there is a +4.4% dif-
ference in retention for tier 1 advertisers who use the new
module, while for non-tier 1 advertisers who use the mod-
ule the difference in retention is +9.5%. Both estimated
differences are statistically significant at the 0.05 level.

For the log of SpendRatio, we find

0.50 (0.40), tier =1

Apn(Spend) = { 1.09 (0.39), tier #1

In words, the module does not have a statistically signifi-
cant effect on LogSpendRatio for tier 1 users. For non-tier 1
advertisers, the difference is 1.09 and it is statistically signif-
icant. Moving from the differences of log spend to the ratio
of spend, the estimated effect corresponds to an increase in
relative spend ratio of 2.13 (2%9) for users. Thus, users
have a post-trial to pre-trial spend ratio that is more than

doubled if they use the new module. Evidently, in addition
to the retention gain we saw earlier, the new module has an
upside in spend for non-tier 1 advertisers.

7. RELATION TO OTHER WORK

The field of statistics has long been associated with meth-
ods and models for the analysis of data from randomized
and biased experiments. The papers cited in this section
are meant as exemplars as each of these author has multiple
papers (even books) in the area thereby demonstrating their
longterm contributions to the area.

Fisher [3] is credited with the foundation of experimental
design and the central role of randomization. Rubin [13]
credits Fisher with the device of counterfactuals in develop-
ing the framework for causal inference for non-randomized
studies, though Holland [4] calls the counterfactual frame-
work “Rubin’s model.” Horvitz and Thompson [5] were pi-
oneers in the area of sample surveys where the notion of
correcting for non-representative samples first arose.

Our exposure to causal inference from observational data
is through the work of Rosenbaum and Rubin [12] who in-
troduced propensity score matching as a means of succinctly
capturing differences in the selected users group and the con-
trols. Robins and Rotnitzky [10] chart a more mathematical
course and are responsible for the theoretical basis that un-
derlies the doubly robust estimator. Imbens [6] provides a
review of the field up to roughly five years ago. He mentions
the doubly robust estimator in passing but concentrates on
propensity score and outcome modeling separately, largely
from the viewpoint of econometric studies. Our apprecia-
tion of the doubly robust estimator is due to the work of
Lunceford and Davidian [7]. They complement the theory
introduced by Robins and co-workers with empirical studies
that convincingly demonstrate that the asymptotic proper-
ties of the doubly robust method apply to samples that oc-
cur in practice. They also introduce the sandwich variance
estimator and demonstrate its accuracy.

Our analysis of the Spend outcome focused on the dif-
ference in log SpendRatios, or a difference-in-differences in
LogSpend. A related approach is the difference-in-differences
linear model (see Ashenfelter[1] and Ashenfelter and Card[2])
for LogSpendRatio that results in an estimate of A(Spend).
We prefer the double robustness properties of Ap r(Spend)
whereby we fit separate models for users and controls and ac-
commodate selection bias with the propensity score weight-
ing.

McCalffrey, Ridgeway, and Morral [8] provide a link be-
tween the statistics literature and machine learning as they
apply boosting to the estimation of the propensity score
model. Smith and Elkan [14] provide another bridge be-
tween machine learning and statistics focusing on Bayesian
networks as a means to formalize the conditional indepen-
dence relationships that occur when training a model on a
different population than the model will be applied to. Of
course, Pearl [9] is the father of the foundation of causal
inference in Al

8. OTHER APPLICATIONS

Advertisers are an important component of the eco-system
of modern search engines: advertisers come to a SE because
it has users, users come because the SE provides high-quality
search results, and publishers come because the SE has a



large inventory of ads that allows publishers to monetize
their content. Improving the “user-experience” for all three
of these groups is key to the viability and growth of a SE.

In this paper we introduced a new method for analyz-
ing a common form of advertiser trial and illustrated the
ideas on a specific study. Propensity score matching and
the doubly robust estimator are broadly applicable within
the enterprise, specifically to all three participants in the
eco-system. Consider the application to studying whether
a new self-selected service leads end-users to search more.
In this scenario we have exactly the same problem — are
there confounders that affect both the probability of self-
selection and search frequency? The methods we propose
can be applied once pre-experiment characteristics of users
are extracted from logs. Some likely candidates are browser
type, geo-location, use of other services, visit frequency, av-
erage number of searches per week, etc.

We are currently involved with exploring these new appli-
cations as well as productionalizing the application to our
ads front-end testing environment.
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