Age-Based Packet Arbitration in Large-Radix k-ary n-cubes

Dennis Abts
dabts @cray.com

Cray Inc.
1050 Lowater Road
Chippewa Falls, Wisconsin 54729

Abstract

As applications scale to increasingly large processor counts,
the interconnection network is frequently the limiting factor
in application performance. In order to achieve application
scalability, the interconnect must maintain high bandwidth while
minimizing variation in packet latency. As the offered load in
the network increases with growing problem sizes and processor
counts, so does the expected maximum packet latency in the
network, directly impacting performance of applications with
any synchronized communication. Age-based packet arbitration
reduces the variance in packet latency as well as average latency.
This paper describes the Cray XT router packet aging algorithm
which allows globally fair arbitration by incorporating “age”
in the packet output arbitration. We describe the parameters of
the aging algorithm and how to arrive at appropriate settings.
We show that an efficient aging algorithm reduces both the
average packet latency and the variance in packet latency on
communication-intensive benchmarks.

General terms: design; architecture; performance

Keywords: multiprocessor; MPP; torus; interconnection network;
arbitration; routing; packet-switching

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage, and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.

SCO07 November 10-16, 2007, Reno, Nevada, USA
(c) 2007 ACM 978-1-59593-764-3/07/0011$5.00

T This work was performed while Deborah Weisser was a research staff
member at Pittsburgh Supercomputing Center, Pittsburgh, Pennsylvania.

Deborah Weisser!
dweisser@google.com

Google Inc.
1600 Amphitheatre Parkway
Mountain View, California 94043

1 Introduction

The interconnection network plays a central role in the perfor-
mance of a parallel computer, often acting as a limiting factor in
application performance and scalability. The point-to-point and
global bandwidth of the network are critical to large-scale appli-
cation performance. The latency of the network determines the
access time for remote memory references. In addition to the av-
erage packet latency, the variance and maximum latency strongly
affect performance of applications with synchronized communica-
tion, where the maximum latency is the limiting factor. Because of
the increase in overall communication volume, the expected max-
imum length of time for one packet to be delivered increases. For
this reason, reducing the variance in communication time is pivotal
to performance.

We describe the Cray XT [1] interconnection network in terms
of its topology, flow control, virtual channels, and router switch
allocation. This paper gives an overview of the system-on-chip
(SoC) called “Seastar” that includes the network interface con-
troller (NIC) functionality and an embedded 3-D torus router with
six full-duplex network ports and one processor interface port. We
provide an overview of the router microarchitecture and a detailed
description of the packet age-based arbitration policy for the Cray
XT network'. We discuss optimal settings of packet routing pa-
rameters and demonstrate the effects of these settings on various
SeaStar performance register statistics and several benchmarks.

1.1 Topology, routing, and flow control

The Cray XT network is a k-ary 3-cube that scales up to 32K
nodes. The flexible routing mechanism of the XT allows a mesh
or torus in any of the three dimensions. In practice, packaging
constraints make it difficult for the radix (k) of the network to be
the same for all three dimensions. So, we use the notation k.,
ky, and k. to refer to the radix of the x, y, and z dimension in a
mixed-radix network. For example, the physical layout of a 2112
node XT system can be organized as an 11x12x 16 torus (k,=11,
ky=12, and k.=16, or more concisely an 11,12,16-ary 3-cube). To

The Cray XT network supports both k-ary n-mesh (mesh) and k-ary
n-cube (forus) [2] configurations. Each dimension can be independently
configured as a mesh or torus.

B e m AN NN e s I Y R R NN MOmA AN ANNANN AN SN Y S S S o wrnonsma—o
t| vc destination[14:0] | dt|k|V| Length|S| TransactionID[11:0] | source[14:7] |R| source[6:0] |u| Age[10:0]
t| vc Data[63:0]
... up to 8 data flits (64 bytes) of payload ...
[t] ve | Data[63:0] |

Figure 1. Seastar packet format.

keep the wrap around cable lengths short, the physical layout of
the torus is folded.

Packet routing is accomplished using a distributed lookup
mechanism where each input of the Seastar router has a dedi-
cated routing unit capable of routing a new packet every clock cy-
cle. Routing is performed using dimension-order routing (DOR)
for deterministic in-order packet delivery. Although DOR is
deadlock-free there are several turn rules [4] necessary to avoid
turn cycles when routing around faulty links. The network sup-
ports four virtual channels (VCs) that are segregated into re-
quest and response classes’. The VCs are denoted VCO/VCI
and VC2/VC3. Virtual channel dependencies around the torus
links are broken using VC datelines [3] by routing traffic on
VC0—VC1, or VC2—VC3 as it crosses a dateline node. Flow
control across the network link uses virtual cut-through (VCT)
rules [7].

1.2 Router microarchitecture

Network packets are comprised of one or more 68-bit flits (flow
control units). The first flit of the packet (Figure 1) is the header
flit and contains all the necessary routing fields (destination[14:0],
age[10:0], vc[2:0]) as well as a tail (t) bit to mark the end of a
packet. The link control block (LCB) implements a sliding win-
dow go-back-N link-layer protocol that provides reliable chip-to-
chip communication over the network links. The link control
block (LCB) implements a sliding window go-back-N link-layer
protocol that provides reliable chip-to-chip communication over
the network links. Each packet is divided into several micropackets
which are serialized and transmitted across the network link. Each
micropacket contains two flits (134 bits) and 34-bits of sideband
which carries the sequence number of the last successfully trans-
mitted packet and a 12-bit cyclic redundancy check (CRC) used
by the receiver to ensure error-free receipt of the micropacket.

Since most Cray XT networks are on the order of several thou-
sand nodes, the lookup table at each input port is not sized to cover
the maximum 32K node network. The Seastar router uses a hierar-
chical routing scheme where the node name space is divided into
global and local partitions. The upper three bits of the destina-
tion field (given by the destination[14:12] in the packet header)
of the incoming packet are compared to the global partition of
the current Seastar router. If the global partition does not match,
then the packet is routed to the output port specified in the global
lookup table (GLUT). The GLUT is indexed by destination[14:12]
to choose one of eight global partitions. Once the packet arrives
at the correct global partition, it will precisely route within a local

2Since the XT is a distributed memory machine it does not require strict
request/reply segregation like a typical shared memory multiprocessor.

partition of 4096 nodes given by the destination[11:0] field in the
packet header.

The router has six full-duplex network ports and one proces-
sor port that interfaces with the Tx/Rx DMA engine (Figure 2).
The network channels operate at 3.2 Gb/s x 12 lanes over electri-

HyperTransport
Links 618
|HT Cave | HT Cave
Receive Send
PowerPC
i1

= o~
A &
—> —E E —=>
= inputqueve S| BAI [atpat queues o
N output queues XBAR =1 input queue
S &
§ >
-
“ €

input queue

SeaStar Links

LCB LCB
12

(a) Seastar block diagram.

(b) Seastar die photo.

Figure 2. Block diagram of the Seastar system chip.

cal wires providing a peak of 4.8 GB/s per direction of network
bandwidth. The router switch is both input-queued and output-
queued. Each port has four 96-entry input buffers, one for each
virtual channel. The input buffer is sized to cover the round-trip
latency across the network link at 3.2 Gb/s signal rates. There are
24 staging buffers in front of each output port, one for each input
source (five network ports, and one processor port), each with four
VCs. The staging buffers are only 16 entries deep and are sized to
cover the crossbar arbitration round-trip latency”.

1.3 Contributions and paper organization

Although this paper describes a packet age-based arbitration
mechanism used by the Cray XT network, it can be applied to
all k-ary n-cubes. Our analysis applies to both mesh and torus
networks, both regular and mixed-radix k-ary n-cubes, making the
following contributions:

e We describe hardware-software interface of the aging algo-
rithm and the relevant performance counters for evaluation.

e We present pseudocode for the packet aging algorithm, de-
scribe its operation on incoming and outgoing packets and
manipulation of the age timestamp.

e We describe the features of the aging algorithm which sup-
port mixed-radix networks, where the radix of each dimen-
sion may differ, or networks in which each dimension is con-
figured either as a mesh or a torus.

e We describe how to derive initial settings for the aging al-
gorithm parameters and how to evaluate the resulting perfor-
mance.

e We present the impact of age-based packet arbitration on per-
formance of several communication-intensive benchmarks
from the HPC Challenge benchmark suite [5] and represen-
tative micro-benchmarks.

The remainder of this paper is organized as follows. Section 2
describes the packet aging algorithm used for output arbitration.
Then, Section 3 describes how the key parameters — age clock
period and age bias are derived. Section 4 discusses the effects of
age-based arbitration on performance for several communication-
intensive benchmarks. Finally, we summarize our contributions
and results in Section 5.

2 Age-based Packet Arbitration

We divide the packet latency into two components: queueing
and router latency. The total delay (7") of a packet through the
network with H hops is the sum of the queueing and router delay.

T =HQ(\) + Ht, (1)

where ¢, is the per-hop router delay*. The queueing delay, Q()),
is a function of the offered load (\) and described by the latency-
bandwidth characteristics of the network. An approximation of

3We use virtual cut-through flow control into the staging buffers, which
must be at least 9 entries deep to cover the maximum packet size.
4For the Cray XT Seastar router ¢, ~ 50 ns.

Figure 3. Offered load versus latency for an ideal M/D/1

queue model.

100
90
80
70
60
50
40
30
20
10

0
0.00 0.20 0.40 0.60 0.80 1.00
offered load

latency

Q(X) is given by an M/D/1 queue model (Figure 3).

QW) =)

When there is very low offered load on the network, the Q(X)
delay is negligible. However, when the network is saturated the
queueing delay will dominate the total packet latency.

As traffic flows through the network it merges with newly in-
jected packets and traffic from other directions in the network (Fig-
ure 4). This merging of traffic from different sources causes pack-
ets that have further to travel (more hops) to receive geometrically
less bandwidth. For example, consider the 8-ary 1-mesh in Figure
4(a) where processors PO thru P6 are sending to P7. The switch al-
locates the output port by granting packets fairly among the input
ports. With a round-robin packet arbitration policy, the processor
closest to the destination (P6 is only one hop away) will get the
most bandwidth — 1/2 of the available bandwidth. The processor
two hops away, P5, will get half of the bandwidth into router node
6, for a total of 1/2x1/2 = 1/4 of the available bandwidth. That is,
every two cycles router node 7 will deliver a packet from source
P6, and every four cycles it will deliver a packet from source P5.
A packet will merge with traffic from at most 2n other ports since
each router has 2n network ports with 2n—1 from other directions
and one from the processor port. In the worst case, a packet trav-
eling H hops and merging with traffic from 2n other input ports
will have a worst-case latency of:

L
(2n)H

3

Tworst =

at the last hop, where L is the length of the message (number
of packets), and n is the number of dimensions. In the example
shown in Figure 4(a), PO and P1 each receive 1/64 of the available
bandwidth into node 7, a factor of 32 times less than that of P6.
Reducing the variation in bandwidth is critical for application per-
formance, particularly as applications are scaled to increasingly
higher processor counts. As the network diameter increases, so
does the impact of merging traffic and therefore the variance in
packet latency. A torus is less affected than a mesh of the same
radix (Figure 4a and 4b) since it has a lower diameter. Izu [6]
shows this effect on throughput and average packet latency in a

k-ary n-cube, but did not provide a solution for the global unfair-
ness.

With dimension-order routing (DOR), once a packet starts
flowing on a given dimension it stays on that dimension until it
reaches the ordinate of its destination. We route in z, then y, and
finally z and prohibit any turns that violate this ordering.

Assuming minimal routing, the average number of hops H is
expressed in terms of n and k as

Hiorus = T or (4)
= ZZ for mixed—radix network %)
i=1
Hppesn = @ or (6)
= Z% for mixed—radix network (7)
i=1

where k; is the radix of dimension % (corresponding to k;, k,, and
k2).

To determine the appropriate age bias setting we must consider
the channel load, .. The channel load is the ratio of demand
bandwidth to delivered bandwidth. Intuitively, it is a measure of
traffic for a particular traffic pattern that traverses channel ¢ when
each input injects one packet according to the traffic pattern. As
the radix (k) of the network grows, under a uniform traffic pattern
the average channel load, 7., is:

Yo = g for a torus ®)
k
Ye = 1 for a mesh)

We will use the channel load as a guide to set the packet aging
algorithm parameters.

2.1 Key parameters of age-based arbitration

The Seastar router provides a flexible age-based output arbi-
tration to mitigate the effect of traffic merging, thus reducing the
variation in packet delivery time. There are three key parameters
for controlling the aging algorithm.

e AGE_CLOCK_PERIOD - a chip-wide 32-bit countdown timer
that controls the rate at which packets age. If the age rate is
too slow, it will appear as though packets are not accruing
any queueing delay, their ages will not change, and all pack-
ets will appear to have the same age. On the other hand, if the
age rate is too fast, packets ages will saturate very quickly —
perhaps after only a few hops — at the maximum age of 255,
and packets will not generally be distinguishable by age. The
resolution of AGE_.CLOCK_PERIOD allows anywhere from 2
nanoseconds to more than 8 seconds of queueing delay to be
accrued before the age value is incremented.

e REQ_AGE BIAS and RSP_AGEBIAS - each hop that
a packet takes increments the packet age by the
REQ_AGE_BIAS if the packet arrived on VCO/VCI or
by RSP_AGE_BIAS if the packet arrived on VC2/VC3. The
age bias fields are configurable on a per-port basis, with the
default bias of 1.

o AGE_RR_SELECT —a 64-bit array specifying the output arbi-
tration policy. A value of all Os will select round-robin arbi-
tration, and a value of all 1s will select age-based arbitration.
A combination of Os and 1s will control the ratio of round-
robin to age-based. For example, a value of 0101---0101
will use half round-robin and half age-based.

When a packet arrives at the head of the input queue, it undergoes
routing by indexing into the LUT with destination[11:0] to choose
the target port and virtual channel. Since each input port and VC
has a dedicated buffer at the output staging buffer, there is no ar-
bitration necessary to allocate the staging buffer — only flow con-
trol. At the output port, arbitration is performed on a per-packet
basis (not per flit, as wormhole routing would). Each output port

T TR T

/ / /

/ / /

1/64 1/64 1/32

1/8 1/4 172

(a) 8-ary 1-dimensional mesh

|
-
!
|
s

112 >1/2

7

o
o~

/4 1/8 1/16 1/16

Ot
©
)
©

1/8 1/8 1/4

&‘\“

(b) 8-ary 1-dimensional torus

Figure 4. All nodes are sending to P7 and merging traffic at each hop.

Table 1. Definition of bits used by the 11-bit packet age.

Field Bits | Description

age [7:0] | Input packet age, bits [7:0] of the header flit

carry 8 Carry out bit produced by the sum (age - timestamp)
in_epoch 9 The epoch in which this packet was received at the input
unused 10 | Not used in the age calculation

is allocated by performing a 4-to-1 VC arbitration along with a 7-
to-1 arbitration to select among the input ports. Each output port
maintains two independent arbitration pointers — one for round-
robin and one for age-based. We use a 6-bit counter that is incre-
mented on each grant cycle and indexes into the AGE_RR_SELECT
bit array to choose the per-packet arbitration policy.

2.2 Ensuring forward progress

The packet age field of the header is an 11-bit field that is con-
structed as shown in Table 1. Although age occupies an 11-bit
field in the packet header (Figure 1), the age is restricted to val-
ues 0...255. The additional bits are required for bookkeeping in
the aging algorithm. We use the notion of an epoch to divide the
passage of time into two distinct regions corresponding to epoch
values, 0 and 1. When a packet arrives it is assigned to the epoch
that was in effect at the time the packet arrived. A set of chip-wide
counters, packet_count[0] and packet_count[1], are maintained to
keep track of the number of outstanding packets in each epoch.
We use the epoch numbers and counters to determine if the packet
has accumulated a substantial amount of time in the router and
if we incurred a timestamp rollover. With each roll of the 8-bit
timestamp, we switch epochs if and only if the next epoch has no
outstanding packets (i.e. packet_count[next_epoch] == 0). By fol-
lowing this simple rule, we ensure that all packets that arrived in
the previous epoch are drained before we accept packets in the new
epoch. To accomplish this, we inhibit age-based arbitration until
we have drained all the older packets using round-robin arbitra-
tion to fairly select the remaining old packets until all the packets
in the previous epoch have been sent. This is described in detail
by Procedure 3.

2.3 Pseudocode

The variables used to describe the aging algorithm are sum-
marized in Table 2. The timestamp variable is the free-running
counter that marks the passing of time, and is therefore the cen-
terpiece of the algorithm. The valid range of the packet age is
0...255, with newly injected packets starting with an age of zero.
The general properties of the aging algorithm are:

e Promotes global fairness in the network by allowing “older”
packets to get a higher priority. In some sense, age-based ar-
bitration is a practical tradeoff between local unfairness and
global fairness. This policy reduces the maximum packet
latency, which is important to performance of applications
with synchronized communication.

e Differentiates between per-hop router latency and queueing
latency using the age bias and age clock period parameters,
respectively, to control the age rate.

e Supports mixed-radix networks by allowing the age bias to
be set on a per port basis. For instance, a mixed-radix net-
work such as an 16,12,8 3-cube, the dimension will have
twice the channel load of the z dimension. So, it may be de-
sirable to set the age bias on the x links to be 2, and set the z
age bias to 1.

e Supports mesh-tori networks by allowing the mesh links to
have a higher priority over the torus links, since the mesh
links will have twice the channel load as the torus links for
the same size radix.

e Uses the notion of epochs to ensure forward progress by
avoiding starvation of “younger” packets.

SThere is no way to inject an urgent packet by assigning a starting age
>0 for the newly injected packets. We can, however, make the processor
age bias 0 instead of the default of 1.

Table 2. Definitions of variables used in describing the packet aging mechanism.

Variable Name

| Valid Values | Description

age 0..255 Packet age that corresponds to bits flit[7:0]

timestamp 0..255 Free running counter that serves to mark the passing of time
epoch {0,1} The current epoch number for which the timestamp refers
new._age 0..255 Intermediate age calculation

saturation {0,1} Flag which indicates if packet age saturates at max of 255
rollover {0,1} Flag which indicates the timestamp counter has rolled over
packet_count[epoch] 0..2047 A counter to represent the number of packets in a given epoch
age_clock_period_reg | 0.23% —1 | The internal copy of the AGE_CLK_PERIOD register

: if ve=0 OR vc=1 then {if the new packet is a request packet}
else

end if
. if age > 255 then {does the newly computed age overflow?}

R AN A A A e

. end if

—_ = =
N = O

: age < head_flit[7:0] ; {extract the current age from the input packet}
age «— age + REQ_AGE_BIAS {add the request age bias from the PORT_CONFIG[63:61] MMR}

age < age + RSP_AGE_BIAS {add the response age bias from the PORT_CONFIG[60:58] MMR}

age < 255 {saturate at 255, otherwise the packet will overflow its age range}

. increment(packet_count[epoch]) {increment the packet counter for this epoch}
: headflit[9] < epoch {save the epoch number in the header flit for bookkeeping }
: head_flit[8:0] « age - timestamp[7:0] {subtract the timestamp when packet arrived }

Procedure 1: Upon receipt of a new packet.

o Allows different classes of traffic (VCO/VCI1 versus
VC2/VC3) to age at different rates. This may be helpful if
one set of VCs are used to carry control-oriented packets that
are very latency sensitive. This is accomplished by setting
the REQ_AGE_BIAS # RSP_AGE _BIAS.

To best understand the aging algorithm we divide it’s function-
ality into three procedures and give pseudocode for each.

Procedure 1 Operations at the input port
Procedure 2 Calculate age and select output packet
Procedure 3 Age clock management to ensure fairness

The remainder of Section 2 provides a detailed walk-through of
the aging algorithm.

2.3.1 Aging algorithm at input ports

Procedure 1 describes the portion of the aging algorithm at the
input ports. When a new packet arrives at an input port, the router
must extract the age field from the network packet (line 1), which
is located at bits head_flit10:0]. Then lines 2 through 6 check
the type of packet, either request or response, and add the age
bias to the current packet age. The age must saturate at 255, so
line 7 checks to see if the age value plus the age bias has over-
flowed the age range. The counter which tracks the number of
outstanding packets in each epoch, packet_count, is incremented

in line 10. The epoch in which the packet arrived is saved in bit
head flit[9] (line 11). Finally, in line 12, the timestamp value is
subtracted from the current age, and the 9-bit result is saved in the
head flit[8:0]. Since the result of the subtraction may produce a
carry bit, it must be preserved (in bit head flit[8]) and accounted
for when the new age is computed at the output port. We will add
in the timestamp when the packet arrives at the output port and is
ready for arbitration.

2.3.2 Age calculation and output arbitration

The pseudocode in Procedure 2 describes the steps for pro-
cessing a packet when it arrives at the head of the output staging
buffers and is a candidate for output arbitration. The output ar-
bitration logic considers only non-blocked virtual channels (those
with send_credits > MAX_PACKET_SIZE). The arbiter inspects the
packet at the head of each output staging buffer and computes its
new age. The arbiter then does a comparison of the age values to
determine the winner, i.e. the packet with the largest computed age
value. Ties are broken using a round-robin priority scheme among
the candidates.

Lines 1 and 2 initialize the rollover and saturation flags to zero,
with the assumption that the age timestamp did not rollover and
the new age calculation does not overflow the 0. ..255 age range.
The epoch in which the packet arrived is extracted (line 3) from
bit head_flit[9] — where it was saved by processing done at the

: if in_epoch # epoch then {are we in a different epoch?}

end if

_
=4

new_age[7:0] < 255 {saturate at age = 255}
: end if

U
AW N =

: rollover «+ FALSE {begin with the initial assumption that we do NOT rollover the timestamp}
: saturation «— FALSE {begin with the initial assumption that we do NOT saturate the age value}
: in_epoch « head_flit[9] {extract the epoch number when this packet arrived}

rollover «<— TRUE {yes, then we have overflowed the timestamp and must account for this}

: new_age[9:0] < head_flit[8:0] + rollover, timestamp[7:0] {compute the new age}
: if (new_age[8] = 1) OR (new-age[9] = 1 AND head_flit[8] = 1) then {check if the new age value overflows}
saturation < TRUE {the age value overflowed the range 0..255, so we must account for it}

. arbitrate(age-based, new_age) {select the packet to send using age-based priority }
: head_flit[7:0] < new_age {stuff the new age into the outgoing packet}
: decrement(packet_count[in_epoch]) {decrement the number of packets in the arrival epoch}

Procedure 2: When a packet arrives at the head of the output staging buffer and is eligible for output arbitration.

1: if inhibit = TRUE then

2: inhibit + FALSE
3: if (epoch = 1 AND packet_count[0] > 0) OR (epoch = 0 AND packet_count[1] > 0) then
4 inhibit « TRUE
5. endif
6: else
7: decrement(age_clock_period_reg) {decrement the age countdown timer}
8: ifage_clock_period_reg = 0 then {countdown timer expired }
9: age_clock_period_reg < AGE_CLK_PERIOD {reload the counter}
10: if timestamp = 255 then {we are about to rollover the timestamp value to zero}
11: inhibit «+ FALSE {assume we are safe to switch epochs}
12: if (epoch = 1 AND packet_count[0] > 0) OR (epoch = 0 AND packet_count[1] > 0) then
13: inhibit < TRUE {dont allow the epoch to change!}
14: else
15: increment(timestamp) {adjust the timestamp}
16: epoch < invert(epoch) {switch to the other epoch}
17: end if
18: else
19: increment(timestamp) {timestamp < 255, okay to increment timestamp }
20: end if
21: endif
22: end if

Procedure 3: On every tick of the system clock, the router will adjust the age countdown timer as follows.

input port when the packet arrived. In line 4 a check is made
to determine if the current epoch is the same as the epoch in
which the packet arrived. If the current epoch does not match
the epoch in which the packet arrived, then the timestamp must
have rolled over from 255 to 0. Then, line 7 concatenates the
rollover bit to the timestamp and performs a 9-bit addition to the
age field, head flit[8:0], in the header flit. The 10-bit sum is stored
in new_age where it is checked against the maximum packet age,
lines 8-11. Finally, the arbiter chooses the packet with the old-
est age (line 12), and the adjusted age is stuffed into the packet
header head flit[7:0] (line 13) before transmitting the packet. As
the packet is handed off to the link control block for transmission,
the packet_count[in_epoch] is decremented, in line 14.

2.3.3 Age clock management

A certain amount of bookkeeping is necessary to manage the
aging algorithm. As we described in earlier sections, the rate at
which a packet will age is controlled by the AGE_.CLK_PERIOD
register. A write to AGE_CLK_PERIOD will cause the internal (not
software-visible) register age_clk_period_reg to be updated with
the contents of the software-visible AGE_.CLK_PERIOD register.
Once every clock tick, the router will decrement the value of the
internal age_clk_period_reg. When it reaches zero, the router will
increment the timestamp value, and reload the age_clk_period_reg
counter from the value of the software-visible AGE_.CLK_PERIOD
MMR. Procedure 3 describes the steps required on every tick of
the system clock to adjust the countdown timer and epoch.

3 Finding the appropriate aging parameters

Now that we described the aging algorithm and its properties,
this section describes how to derive a set of parameters that will

yield good performance. We begin our analysis with the observa-
tion that we would like to avoid ties in ages that are presented to
the arbiter, since they must be broken using round-robin arbitra-
tion and will reduce the benefit of age-based arbitration. Toward
this end, we would like the distribution of packet ages to be cen-
tered around the middle of the age range, 128. Ideally, these ages
would be uniformly distributed (not normal or bi-modal) in such
a way as to give the most “diversity” in the packet ages that are
presented to the arbiter.

3.1 Agebias

Assuming a uniform traffic pattern, P, the probability that a
packet is ejected from the network from the x dimension is the
probability that, upon entering the network, it is not at its ordinate

Table 3. Input ports competing for each output port given
dimension-order routing.

Output port \ Possible input ports \ # inputs ‘
+x proc, —x 2
—x proc, +x 2
+y proc, +x, —x, —y 4
—y proc, +x, —x, +y 4
+z proc, +x, —x, +y, =Y, —2 6
—z proc, +x, —x, +vy, =y, —2 6
proc +x, —x, +y, =y, +2, —2 6

in the x dimension and is at its ordinate in the y and z dimensions:

()@@ o

The probablility that a packet is ejected from the network from
the y dimension, P, is the probability that the packet does not
originate at its ordinate in the y dimension and does originate at its
ordinate in the z dimension:

[k =1\ [L
pe (00 () b

The probablility that a packet is ejected from the network from the
z dimension, P., is the probability that it is not ejected from the x
or y dimension:

o op g (k=1 (k-1
P.=1-P,-P/=1 (k;ckykz) (k’ykz) (12)

Since the processor can accept packets from 6 ports, one per direc-
tion per dimension, the probability that a packet enters at a positive
or negative output port, for each dimension 7 the probability that a
packet exits the network via the positive port to the processor, P;
is the same as the probability that it exits via the negative port,
Pi_ :

Vdimensions i, Py = P = % (13)

We must first choose how we should bias the age at each hop.
For a dimension-order routed (DOR) torus (with routes asserted in
z, then y, and finally 2), the z dimension will have the best utiliza-
tion since it is the least constrained for packet egress. To simplify
the analysis we assume uniform traffic, and for large-radix k-ary
n-cubes, it is likely that a packet will have to traverse all dimen-
sions® so this analysis represent a bound, rather than the average
case. The ejection rate of packets from the z dimension is lim-
ited by either the bandwidth of the z dimension or the processor
ejection bandwidth’, E,.

U, = min {Bc (;) , Ep] (14)

The rate at which packets are ejected from the y dimension is con-
strained by either the rate at which the z dimension can accept the
packets, or the channel bandwidth of the y dimension.

U, = min {BC (E) , UZ] (15)
ky

Finally, the rate at which packets are ejected from the = dimension
is limited by either the rate at which the y dimension can accept
the packets, or the channel bandwidth of the x dimension.

» = min [BC (;) , Uy] (16)

©The exact probability that a packet traverses all dimensions of a 3-cube
is(l—i)x(l—%)x(l—é)

TFor Seastar the channel bandwidth, B, = 4.8 GB/s and ejection band-
width, £ ~ 2 GB/s.

Equations 14 - 16 assume uniform traffic®. With a mesh topology,
the average channel load will be % for the bisection links, and the
average load gets smaller toward the outside of the mesh. For a
mesh, substitute 4/k for the 8/k terms in Equations 14 - 16.

Intuitively, we want to minimize the variance in total traversal
time per packet. Toward that end, we want packets that have more
routing hops to get preference in the output port arbitration. For a
dimension ordered torus with packets routing in x, then y and then
z we would choose our age bias so that bias, > bias, > bias.,
since it is likely that a packet in the dimension has more hops
remaining than a packet in the y dimension, which in turn has
more hops remaining than a packet in the z dimension. For the
11,12,16-ary 3-D torus from our previous example. We choose
the age bias so that is satisfies the relation bias, > bias, > bias..
Thus we chose bias, = 1, and bias, =2 and bias, = 3 as a starting
point for our experiments.

3.2 Age clock period

Age clock period must be selected carefully for optimal strati-
fication of packet ages. If it is too large, there will not be a steady
supply of “old” packets. If it is too small on the other hand, too
many packets will fall into the oldest bin, and the variation in their
ages will be lost.

To choose the age clock period we will determine the average
number of hops in the network and set the age clock so that we
have packets with a diverse age value, since ties are broken fairly
using round-robin which defeats the age-based arbitration when
there are too many ties. To accomplish this we choose the param-
eters that result in a diverse set of packet ages across the 0...255
range of age values. The age bias value will be added at each hop
of the network. For our 11,12,16-ary 3-cube, the average number
of hops that a packet would take is 3+3+4=10 hops, from Equation
4.

Tyias = H, xbias, + Hy xbiasy, + H. X bias,
= 3x3 + 3x2 + 4x1
= 19

So, on average, the age bias will contribute T3;,s=19 to the age
value. We want the distribution of age values so that they are cen-
tered about 128 - 19 = 109. Thus, the age clock must be configured
so that, on average, over the 10 hops we accumulate 109 age ticks
—or, 109/10 =~ 11 age ticks per hop. If we assume that the net-
work is fully utilized, there will be a total of 10 maximum-sized (9
flit) packets in the input queue, and 1 in the output staging buffer,
for a total of 11 packets queued. With two virtual channels, we
will move a packet from each input queue every 2x9=18 cycles.
Thus, we would have (11 packets)x (18 cycles/packet) = 198 cy-
cles of queueing delay per hop. If we want 198 cycles to represent
11 age ticks, then the age_clock_period must be set to 198/11 = 18.

4 Results

The Seastar performance counters (Table 4) are used to
measure the effect of age-based arbitration for different work-

8For worst-case traffic patterns all the traffic crosses the bisection and
the channel load is doubled — % for torus, and g for a mesh.

Table 4. Performance counter registers

Register \ Bits \ Description

RTR_PERF_VCv_BLOCKED | 63:0 | Count of the number of cycles spent blocked waiting

for buffer resource in virtual channel v.
RTR_PERF_STALLED 63:0 | Count of the number of cycles stalled where the router does not have

sufficient virtual channel send credits to transmit the packet.
RTR_AGE_GROUPO 63:0 | Histogram of packet ages. Bits [31:0] count the number of packets with

0 < age < 63, and bits[63:32] count packets with 64 < age < 127.
RTR_AGE_GROUP1 63:0 | Histogram of packet ages. Bits [31:0] count the number of packet with

128 < age < 191, and bits[63:32] count the packets with 192 < age < 255.
RTR_PERF_VCv_PKTS 63:0 | Count of the number of packets received on this port for virtual channel v
RTR-PERF_VCuv_FLITS 63:0 | Count of the number of flits received on this port for virtual channel v

loads. It is likely that some fine-tuning will be required to the
age_clock_period value because, in practice, our assumption of
uniform random traffic is not necessarily representative of real
workloads. In fact, applications will likely use spatial decompo-
sition and exploit nearest neighbor communication when possi-
ble which will offset the age_bias for that dimension. In general,
the aging parameters are dependent on the radix of the network,
as well as the topology. We experimented with several values of
age_clock_period and measured the average packet occupancy as
a metric for evaluation. These experiments were performed using
both the default age bias of 1 for all ports as well as age biases of
3,2, and 1 for x, y, and z. The experiments were performed on an
XT3 configured as 11,12,16-ary torus. We wrote scripts to extract
the performance counters from the Seastar router, and compute the
following metric:

Tstall

————————— cycles stalled per packet
Pyco+ Pyvca Y perpb

a7
where Ts:qu is the number of cycles spent waiting at the head
of the crossbar because we could not profitably move a packet
through the crossbar, and P,.o and P,.1 are the number of pack-
ets flowing on virtual channels VCO and VCl, respectively. As the
packet occupancy rises, the bandwidth falls and latency increases —
thus lower occupancy is better. Tables 5 and 6 illustrate the benefit
of age-based arbitration.

Table 5 shows the experimental results for different values of
the age_clock_period and the age_bias. Our goal is to maximize
throughput and minimize packet latency, which occurred when
bias;=3, biasy=2, bias.=1, and age_clock_period = 8. Our ini-

occupancy =

tial predication of an age_clock_period=18 was too high, but quite
close to optimal. An age_clock_period=16 performed very close to
the value of 8, having on average only 100 ns more latency.

With the default configuration (age_clock_rate=0x1000) we ex-
perienced very little benefit from age-based arbitration. How-
ever, as we increased age rate (by lowering the value of
age_clock_period) from the default value to age_clock_rate=8 was
experience a significant improvement in bandwidth and reduction
in latency (Table 6) From Table 5 we see that the z dimension is
able to eject a packet every ~11.5 clocks. Thus the channel utiliza-
tion of the z dimension is 9 flits / (9 + 11.5) = 0.44. We observe
that the 0.44x4.8 GB/s = 2.1 GB/s which is approximately the
processor ejection bandwidth, E),, as Equation 14 predicted.

Perhaps more importantly, from Table 5 we see the variance
of the packet occupancy coming down as well. This will im-
prove the average packet latency in the network, as well as tighten
the packet latency variance. This has important ramifications for
performance in applications containing synchronized communica-
tion. If all processors are in a barrier, for example, performance
is optimized by minimizing the maximum time for a processor
to reach the barrier. Indeed, we measure an average reduction in
latency of 2.3us, approximately 31% iimprovement. This result
was obtained on a machine running a mix of production jobs over
a period of several days with the default age clock and age bias
settings, and then again with age_clock_period set to 8 and bias_x
to 3, bias_y set to 2, and bias_z set to 1.

In addition to examining packet statistics, we quantify the

impact of age-based versus round-robin packet arbitration poli-
cies on several benchmarks: MPI-FFTE from the HPC Challenge

Table 5. Age-based arbitration results for different values age_clock_period.

Age clock Age bias Average number of stalled cycles Queueing delay Average latency
peid [@ [yl 2] fy [+2 | +2 | =2 [—= | —y | Q® [Q) [Q@ (ns)
H round robin [[[[18.6 [43.0 [13.2 [12.7 [43.1 [19.2 [737 [227 [169 [7301 H
4 1| 1| 1]200| 369 | 117 | 11.2 | 37.0 | 199 | 607 246 153 6585
4 3 12| 1| 174 | 314 | 11.7 | 11.5 | 31.6 | 17.8 | 421 247 189 5844
8 1| 1| 1] 214 | 441 | 132 | 13.0 | 44.1 | 205 | 611 255 167 6771
8 3|21 | 158|246 | 11.6 | 114 | 247 | 157 | 357 209 156 5007
16 1| 1| 1] 247 | 412 | 145 | 143 | 41.5 | 246 | 554 322 240 7443
16 3 12| 1] 172|305 | 109 | 10.8 | 30.6 | 17.1 | 378 217 148 5101

Table 6. Benchmarks with age-based and round-robin
packet arbitration on 2048 processors

Figure 5. Age histograms showing the distribution of
packet age.

Arbitration policy | MPI-FFTE | MPI_Alltoall | MPI_Allreduce
Gflops MB/s us
Age-based 507 194 532
Round-robin 451 142 607
Improvement of
age-based over 12.4% 36.6% 12.4%
round-robin

benchmark, MPI_Alltoall, and MPI_Allreduce. These benchmarks
were selected to be representative of the communication patterns
found in communication-intensive production codes. The re-
sults, shown in Table 6, are compelling: Performance of MPI-
FFTE and MPI_Allreduce improve by 12.4%, and performance of
MPI_Alltoall improves by 36.3%.

The age histogram registers (Table 4) are critical tools for eval-
uating if age-based arbitration is performing as desired. Figure 5
shows the distribution of packets for three different settings of the
age_clock_period. Even with values of 8 and 4, there were dispro-
portionately more packets in the 0-63 age bucket. The distribution
of packets differed by only one order of magnitude in Figure 5(b)
and (c), whereas it differed by a factor of five orders of magnitude
in Figure 5(a) (i.e. the 0-63 age bucket had 1x 10% more than the
64-127 age bucket).

5 Conclusion

Age-based packet arbitration can be highly effective in miti-
gating the effects of merging traffic in large-radix networks and
therefore reducing the variance in packet transit time. In this pa-
per, we describe the age-based packet arbitration scheme used by
the Cray XT and present results, both in terms of Seastar perfor-
mance counters and representative benchmarks, demonstrating the
positive effects of age-based packet arbitration.

In doing so, we describe how to derive the key parameters
of the aging algorithm bias and age_clock_period. We present a
metric for evaluating the effectiveness of aging (occupancy, as de-
scribed in Equation 17). We demonstrate how to examine packet
age distribution using the age histogram performance counters.

As applications scale to increasingly high processor counts,
minimizing the variance in packet delivery time becomes ever
more important to performance. The methods presented in this
paper are shown to be highly effective in mitigating the effects of
merging traffic in large-radix networks, the effects of which are
clearly represented in relevant, realistic benchmarks.

1.00E+13
9.00E+12
8.00E+12

[2]

£ 7.00E+12

=<

® 6.00E+12

o

% 5.00E+12

o

% 4.00E+12

3 3.00E+12
2.00E+12
1.00E+12
0.00E+00

Age clock period = 0x1000 (default)

Port0 Port1 Port2 Port3 Port4 Port5

0-63
W64-127

128-191

192-255

(a) default values for age-based arbitration

1.00E+13
9.00E+12
8.00E+12

12}

% 7.00E+12

=

8 6.00E+12

(-9

‘6 5.00E+12

v

2 4.00E+12

£

3 3.00E+12
2.00E+12
1.00E+12
0.00E+00

Age clock period = 0x0008

Port0 Port1 Port2 Port3 Port4 Port5

0-63
W64-127

128-191

192-255

(b) more uniform distribution with age_clock_period=8

1.00E+13
9.00E+12
8.00E+12
7.00E+12
6.00E+12
5.00E+12
4.00E+12
3.00E+12
2.00E+12
1.00E+12
0.00E+00

number of packets

Age clock period = 0x0004

Port 0 Port1 Port 2 Port3 Port4 Port5

0-63
W64-127

128-191

192-255

(c) about the same distribution as with (b) but with

age_clock_period=4

References

(1]
(2]

(3]

(4]

(3]
(6]

(7]

Cray XT3. http://www.cray.com/products/xt3/.
W. J. Dally. Performance Analysis of k-ary n-cube Inter-

connection Networks. [EEE Transactions on Computers,

39(6):775-1785, 1990.
W.J. Dally and C. L. Seitz. Deadlock-free message routing in

multiprocessor interconnection networks. IEEE Trans. Com-

put., 36(5):547-553, 1987.
C.J. Glass and L. M. Ni. The turn model for adaptive routing.

In ISCA ’92: Proceedings of the 19th annual international

symposium on Computer architecture, pages 278-287, 1992.
HPCC Challenge Benchmarks. http://icl.cs.utk.edu/hpec/.
C. Izu. Throughput fairness in k-ary n-cube networks. In

ACSC ’06: Proceedings of the 29th Australasian Computer
Science Conference, pages 137-145, Darlinghurst, Australia,

Australia, 2006. Australian Computer Society, Inc.
P. Kermani and L. Kleinrock. Virtual cut-through: A new

computer communication switching technique. Computer
Networks, 3:267-286, 1979.

