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Abstract. Sponsored search involves running an auction among adver-
tisers who bid in order to have their ad shown next to search results
for specific keywords. The most popular auction for sponsored search
is the “Generalized Second Price” (GSP) auction where advertisers are
assigned to slots in the decreasing order of their score, which is defined
as the product of their bid and click-through rate. One of the main ad-
vantages of this simple ranking is that bidding strategy is intuitive: to
move up to a more prominent slot on the results page, bid more. This
makes it simple for advertisers to strategize. However this ranking only
maximizes efficiency under the assumption that the probability of a user
clicking on an ad is independent of the other ads shown on the page.
We study a Markovian user model that does not make this assumption.
Under this model, the most efficient assignment is no longer a simple
ranking function as in GSP. We show that the optimal assignment can
be found efficiently (even in near-linear time). As a result of the more
sophisticated structure of the optimal assignment, bidding dynamics be-
come more complex: indeed it is no longer clear that bidding more moves
one higher on the page. Our main technical result is that despite the
added complexity of the bidding dynamics, the optimal assignment has
the property that ad position is still monotone in bid. Thus even in this
richer user model, our mechanism retains the core bidding dynamics of
the GSP auction that make it useful for advertisers.

1 Introduction

Targeted advertisements on search queries is an increasingly important adver-
tising medium, attracting large numbers of advertisers and users. When a user
poses a query, the search engine returns search results together with advertise-
ments that are placed into positions, usually arranged linearly down the page,
top to bottom. On most major search engines, the assignment of ads to posi-
tions is determined by an auction among all advertisers who placed a bid on a
keyword that matches the query. The user might click on one or more of the ads,
in which case (in the pay-per-click model) the advertiser receiving the click pays
the search engine a price determined by the auction.
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In the past few years, the sponsored search model has been highly success-
ful commercially, and the research community is attempting to understand the
underlying dynamics, explain the behavior of the market and to improve the
auction algorithms. The most common auction being run today is the Gener-
alized Second Price (GSP) auction: Each bidder ¢ submits a bid b; stating the
maximum amount they are willing to pay for a click, and the bidders are placed
in descending order of b;p;, where p; is what is called the click-through-rate of
advertiser ¢; i.e., the probability that a user will click on the ad, given that the
user looks at it. Much of previous research on sponsored search auctions has
fixed this sort order, and focused on understanding the implications of different
pricing schemes, assuming strategic behavior on the part of the advertisers. We
now know something about GSP’s equilibrium properties [SIT7I3], alternative
pricing that will make it truthful [3], and to some extent, impact on the revenue
in principle [§] and via simulations [16].

However, by fixing this sort order, and assuming that an ad’s clicks are inde-
pendent of the other ads on the page, prior work exogenizes an important third
party in sponsored search: the search engine user. Unfortunately, there is very
little guidance on this in the literature, even though the user’s behavior is the
essential ingredient that defines the commodity the advertisers are bidding on,
and its value.

We suggest a different framework for principled understanding of sponsored
search auctions:

— Define a suitable probabilistic model for search engine user behavior upon
being presented the ads.

— Once this model is fixed, ask the traditional mechanism design questions of
how to assign the ads to slots, and how to price them.

— Analyze the given mechanism from the perspective of the bidders (e.g.,
strategies) and the search engine (e.g., user satisfaction, efficiency, revenue).

There are certain well-accepted observations about the user’s interaction with
the sponsored search ads that should inform the model:

— The higher the ad is on the page, the more users see it and thus click on it.
— The “better” the ad is, the more users click on it, where the ad’s “goodness”
depends on its inherent quality, and how well it matches the user query.

These properties govern not only how the auction is run but also how advertisers
think about their bidding strategy: they prefer to appear higher and get more
clicks. Indeed even though GSP is not truthful under a private value model
(where each bidder has some inherent private value v; for a click), its ranking
function makes bidding strategy simple: to obtain a higher (more prominent)
slot, bid higher and/or make your ad better. This simplicity is very important,
since an advertiser may not have a precise notion of click value on which to base
their bid. Indeed some advertisers are hoping to generate traffic just to attract
attention to their brand, and the value of this attention is less clear than for an
advertiser who is making direct sales through the Internet.

In this paper, we propose a natural Markov model for user clicks that retains
the properties above, and no longer assumes that the number of clicks an ad
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receives is independent of the other ads on the page. We show that simple ranking
no longer finds the optimal assignment of ads to slots under this model, but the
optimal assignment can still be found efficiently (in near-linear time). Our main
technical result is to show that under this new assignment algorithm, the auction
mechanism still has a simple bidding strategy; i.e., we prove that a bidder’s ad
slot is monotone in her bid.

1.1 Owur Contributions

Modeling the Search Engine User. Most previous work on sponsored search has
(implicitly) modeled the user using two types of parameters: ad-specific click-
through rates p; and position-specific visibility factors ;. There are some in-
tuitive user behavior models that express overall click-through probabilities in
terms of these parameters. One possibility is “for each position j independently,
the user looks at the ad ¢ in that position with probability o; then clicks on
the ad with probability p;.” Alternatively: “The user picks a single position ac-
cording to the distribution implied by the «;’s, and then clicks on the ad ¢ in
that position with probability p;.” Under both these models, it follows that the
probability of an ad 7 in position j receiving a click is equal to p;a;, which is
the so-called separability assumption [3]. From separability it follows that GSP
ordering of ads will be suitable, because GSP ordering maximizes the total ad-
vertiser value on the page.

In both these models there is no reason a priori that the position factors
o should decrease; this is simply imposed because it makes sense, and it is
verifiable empirically. Also, both suggested models assume that the probability
of an ad getting clicked is independent of other ads on the page, an assumption
made without much justification. It is hard to imagine that seeing an ad, perhaps
followed by a click, has no effect on the subsequent behavior of the user.

In designing a user model, we would like the monotonicitiy of click-through
rate in position to arise naturally. Also, each ad should have parameters dictating
their effect on the user both in terms of clicking on that ad, as well as looking at
other ads. We propose a model based on a user who starts to scan the list of ads
from the top, and makes decisions (about whether to click, continue scanning, or
give up altogether) based on what he sees. More specifically, we model the user as
the following Markov process: “Begin scanning the ads from the top down. When
position j is reached, click on the ad ¢ with probability p;. Continue scanning
with probability ¢;.” In this model, if we try to write the click probability of
an ad ¢ in position j as p;a;, we get that a; = Il;c aq;r, where A is the set of
ads placed abovd] position j. Thus the “position factor” in the click probability
decreases with position, and does so naturally from the model. Also note that
we do not have separability anymore, since o; depends on which ads are above
position j. Consequently, it can be shown that GSP assignment of ads is no
longer the most efficient.

! Throughout the paper, we will often refer to a position or an ad being “higher” or
“above” another position or ad; this means that it is earlier on the list, and is looked
at first by the user.
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Auction with Markovian users. Given this new user model, we can now ask what
the best assignment is of ads to slots. We will study the most efficient assignment;
i.e., the one that maximizes total advertiser value derived from user clicks. It
turns out that the structure of this assignment is different from that of GSP,
and indeed is more sophisticated than any simple ranking. The presence of the
¢;’s requires a tradeoff between the click probability of an ad and its effect on
the slots below it. In this paper, we identify certain structural properties of the
optimal assignment and use them to find such an optimal assignment efficiently,
not only in polynomial time, but in near-linear time. Given this algorithm, a
natural candidate for pricing is VCG [I8J6I11], which is truthful in this setting
under a private value model.

Monotonicity of Bidding. Now that we have defined a more sophisticated assign-
ment function, even though VCG pricing makes the mechanism truthful under a
private click-value model, the auction may not still admit the intuitive bidding
strategies that are so important under GSP—especially for advertisers without
a precise notion of click value. Our main technical result is to show that in our
Markov model, if a mechanism uses the most efficient assignment, indeed po-
sition and click probabilities are monotonic in an ad’s bid (with all other bids
fixed), thus preserving this important property. Monotonicity of click probabil-
ity follows from the general result of Archer and Tardos [4] on single-parameter
mechanisms—for completeness we provide a proof from first principles. In con-
trast, position monotonicity turns out to be rather involved to prove, requiring
some detailed combinatorial arguments, and insights into the optimal substruc-
ture of bidder assignments.

1.2 Related Work

Sponsored search has been an active area of research in the last several years
after the early papers explored the foundational models [SI3IT7/T5]. In general,
the motivation for the work that followed is that sponsored search in practice is
much more complex than as described by the first models; see [9] for a discussion.

Only very recently are alternate user models that break the separability as-
sumption starting to receive some attention. Ghosh and Mahdian [I0] study a
very general model and show hardness results for the allocation (winner deter-
mination) problem; they also give algorithms for several special cases, but none
of those imply the algorithms discussed in this work. Craswell et al. [7] give an
empirical study of several user click models. The “cascade” model, which was
found to fit the data the best, is a special case of the model we study here (with
p; = 1—¢; and the events being mutually exclusive). Gunawardana and Meek [12]
performed an empirical study of ad aggregators with the goal of detecting the
affect of an ad on the other ads on the page. Their findings were consistent with
our model; i.e., the presence of an ad can have a significant affect on the ads
below it. Athey and Ellison [5] present a model where users have an inherent
need, and click until that need is filled (or there is little chance of it getting
filled). They analyze user behavior, advertiser bidding strategies and Bayesian
equilibria in their model.
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Independently of our work (which also appeared in [1I2]), Mahdian and Kempe
[13] study the same model we do here. They also provide an O(nlogn + nk)
dynamic program for allocation; however at that point they generalize to the case
of position-dependent continuation probabilities and provide an approximation
algorithm for this case, whereas we go on to study deeper structural and incentive
properties in the original model.

2 Markov User Click Model

We consider an auction with n bidders B = {1,...,n} and k positions. We
will also refer to “ad ¢,” meaning the advertisement submitted by bidder :.
Each bidder ¢ € B has two parameters, p; and ¢;. The click-through-rate p; is
the probability that a user will click on ad ¢, given that they look at it. The
continuation probability g; is the probability that a user will look at the next ad
in a list, given that they look at ad 7.

Each bidder submits a bid b; to the auction, representing the amount that
they value a click. The quantity p;b; then represents the value of an “impression,”
i.e., how much they value a user looking at their ad. This is commonly referred
to as their “ecpm.” Throughout, we use the notation e; = p;b; for convenience.

Our model is as follows. Given an assignment (z1,...,x) of bidders to the k
positions, the user looks at the first ad x1, clicks on it with probability p,,, and
then continues looking with probability qzlﬁ This is repeated with the second
ad, etc., until the last ad is reached, or some continuation test has failed. Thus
the overall expected value of the assignment to the bidders is e,, + ¢z, (€2, +
Qoo + s (- iy (€,)))):

The goal of the auctioneer is to compute an assignment of ads to positions
that maximizes overall expected value. Given this assignment, prices can be
computed using VCG [I8J61T]: for each assigned bidder we compute the change
in others’ value if that bidder were to disappear. This assures truthful reporting
of bids under a profit-maximizing utility.

3 Properties of the Optimal Assignment

In this section, we establish several properties of optimal assignments in this
Markov user model, including our main technical result that position and click
probability will be monotone in bid and match our intuition. We also give our
algorithm for finding an optimal assignment, which gives the truthful auction
via VCG pricing. All proofs can be found in [IJ.

2 The acronym ecpm stands for “expected cost per thousand” impressions, where M
is the roman numeral for one thousand. We will drop the factor of one thousand and
refer to p;b; as the “ecpm.”

The user could also have some fixed probability of looking at the first ad, which
can be trivially incorporated into our results, and we leave this out for clarity. Also,
the click event and the continuation event could in principle have some correlation,
and all our results will still hold. However since we only consider expected value, we
never use this correlation explicitly in our analysis.
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Adjusted ECPM. Tt turns out that the quantity e;/(1—g¢;), which we will refer to
as the “adjusted ecpm (a-ecpm),” plays a central role in this model. Intuitively,
this quantity is the impression value adjusted by the negative effect this bid
has on the ads below it. We use a; = e;/(1 — ¢;) for convenience. The following
lemma tells us how to assign a set of k selected ads to the k positions:

Lemma 1. [ In the most efficient assignment, the ads that are placed are sorted
in decreasing order of adjusted ecpm a; = e;/(1 — q;).
While this result tells us how to sort the ads selected, it does not tell us which
k ads to select. One is tempted to say that choosing the top k ads by a-ecpm
would do the trick; however the following example proves otherwise.
Ezxample 1. Suppose we have two slots and three bidders as follows:

Bidder e ¢iai=-¢e/(1—q)

1 $1.75 4
2 $2 2 2.5
3%0.85 .8 4.25

Let’s consider some possible assignments and their efficiency. If we use simple rank-
ing by ecpm e;, we get the assignment (2, 1), which has efficiency $2 + .2($1) = $2.20.
If we use simple ranking by a-ecpm a; we get the assignment (3,1) with efficiency
$0.85+.8(%1) = $1.65. It turns out that the optimal assignment is (1, 2) with efficiency
$1 4 .75($2) = $2.50. The assigned bidders are ordered by a-ecpm in the assignment,
but are not the top 2 bidders by a-ecpm.

Now suppose we have the same set of bidders, but now we have three slots. The
optimal assignment in this case is (3, 1, 2); note how bidder 3 goes from being unassigned
to being assigned the first position.

Bidder Dominance. In classical sponsored search with simple ranking, a bidder
j can dominate another bidder ¢ by having higher ecpm; i.e., bidder j will always
appear whenever ¢ does, and in a higher position. Example [Tl above shows that
having a higher ecpm (or a-ecpm) does not allow a bidder to dominate another
bidder in our new model. However, we show that if she has higher ecpm and
a-ecpm, then this does suffice. This is not only interesting in its own right, it is
essential for proving our deeper structural properties.

Lemma 2. For all bidders i in an optimal assignment, if some bidder j is not
in the assignment, and a; > a; and e; > e;, then we may substitute j for i, and
the assignment is no worse.

Subset Substructure in Optimal Assignments. We show some subset structure
between optimal assignments to different numbers of slots. This is used to
prove position monotonicity, and is an essential ingredient of our algorithm.
Let OPT(C, j) denote the set of all optimal solutions for filling j positions with
bidders from the set C.

Theorem 1. Let j € {1,...,k} be some number of positions, and let C be
an arbitrary set of bidders. Then, for all S € OPT(C,j — 1), there is some
S’ € OPT(C,j) where 8" D S.

4 Interestingly, this result also essentially follows from a prior work on optimizing
database queries [14].
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Monotonicity of Position and Click Probability. Our main theorem regarding
the structure of the optimal assignments in the Markovian click model is that
position and click probability are monotonic in a bidder’s bid, with all other
bids fixed. This is a fundamental property that makes the bidder’s interaction
with the system intuitive, and allows the bidder to adjust her bid intelligently
without global knowledge of the other bids.

Theorem 2. As a bidder increases her bid (keeping all other bids fized):

(a) the probability of her receiving a click in the optimal solution does not de-
crease, and
(b) her position in the optimal solution does not go down.

Computing the Optimal Assignment. A dynamic program gives an O(nlogn +
nk) time algorithm. for computing the optimal assignment of bidders to posi-
tions. The algorithm proceeds as follows. First, sort the ads in decreasing order of
a~ecpm in time O(nlogn). Then, let F(i, j) be the efficiency obtained (given that
you reach slot j) by filling slots (4, . . ., k) with bidders from the set {7,...,n}. We
get the following recurrence: F'(i, j) = max(F(i+1,j+1)g;+e;, F(i+1, j)). Solv-
ing this recurrence for F(1,1) yields the optimal assignment, and can be done
in O(nk) time. In fact, insights from the previous sections give an O(nlogn +
k2 log? n) time algorithm which is faster when k is large with respect to logn:

Theorem 3. Consider the auction with n Markovian bidders and k slots. There
is an optimal assignment which can be determined in O(nlogn+ k? log? n) time.

4 Concluding Remarks

We approached sponsored search auctions as a three party process by modeling
the behavior of users first and then designing suitable mechanisms to affect the
game theory between the advertiser and the search engine. This formal approach
shows an intricate connection between the user models and the mechanisms.

There are some interesting open issues to understand about our model and
mechanism. For example, in order to implement our mechanism, the search en-
gine needs to devise methods to estimate the parameters of our model, in partic-
ular, ¢;’s. This is a challenging statistical and machine learning problem. Also,
we could ask how much improvement in efficiency and/or revenue is gained by
using our model as opposed to VCG without using our model.

More powerful models will also be of great interest. One small extension of our
model is to make the continuation probability ¢; a function of location as well,
which makes the optimization problem more difficult; Mahdian and Kempe [13]
have given an approximation algorithm for this case, and so it is natural to ask
if position monotonicity is preserved in their algorithm. One can also generalize
the Markov model to handle arbitrary configurations of ads on a web page (not
necessarily a search results page), or to allow various other user states (such as
navigating a landing page). Finally, since page layout can be performed dynam-
ically, one could ask what would happen if the layout of a web page were a part
of the mechanism; i.e., a function of the bids.
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