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Abstract
In this paper we consider the orienteering problem in undirected
and directed graphs and obtain improved approximation algorithms.
The point to point-orienteering-problem is the following: Given an
edge-weighted graph G = (V, E) (directed or undirected), two
nodes s, t ∈ V and a budget B, find an s-t walk in G of total length
at most B that maximizes the number of distinct nodes visited by
the walk. This problem is closely related to tour problems such as
TSP as well as network design problems such as k-MST. Our main
results are the following.
• A 2 + ε approximation in undirected graphs, improving upon

the 3-approximation from [6].

• An O(log2 OPT) approximation in directed graphs. Pre-
viously, only a quasi-polynomial time algorithm achieved a
poly-logarithmic approximation [14] (a ratio of O(log OPT)).

The above results are based on, or lead to, improved algorithms for
several other related problems.

1 Introduction
The traveling salesman problem (TSP) and its variants have
been an important driving force for the development of new
algorithmic and optimization techniques. This is due to
several reasons. First, the problems have many practical
applications. Second, they are often simple to state and
intuitively appealing. Third, for historical reasons, TSP
has been a focus for trying new ideas. See [25, 22] for
detailed discussion on various aspects of TSP. In this paper
we consider some TSP variants in which the goal is to find a
tour or a walk that maximizes the number of nodes visited,
subject to a strict budget requirement. The main problem
of interest is the orienteering problem [21] which we define
formally below. The input to the problem consists of an
edge-weighted graph G = (V,E) (directed or undirected),
two nodes s, t ∈ V and a non-negative budget B. The goal is
to find an s-t walk of total length at most B so as to maximize
the number of distinct nodes visited by the walk. Note that a
node might be visited multiple times by the walk, but is only
counted once in the objective function.

One of the main motivations for budgeted TSP problems
comes from real world applications under the umbrella of
vehicle routing; a large amount of literature on this topic
can be found in operations research. Problems in this area
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arise in transportation, distribution of goods, scheduling of
work, etc. Most problems that occur in practice have several
constraints, and are often difficult to model and solve exactly.
A recent book [27] discusses various aspects of vehicle
routing. Another motivation for these problems comes
from robot motion planning, where typically, the planning
problem is modeled as a Markov decision process. However
there are situations where this does not capture the desired
behaviour and it is more appropriate to consider orienteering
type objective functions in which the reward at a site expires
after the first visit; see [9], which discusses this issue and
introduced the discounted-reward TSP problem. In addition
to the practical motivation, budgeted TSP problems are of
theoretical interest.

Orienteering is NP-hard via a straight forward reduction
from TSP and we focus on approximation algorithms; it
is also known to be APX-hard to approximate [9]. The
first non-trivial approximation algorithm for orienteering is
due to Arkin, Mitchell and Narasimhan [2], who gave a
2 + ε approximation for points in the Euclidean plane. For
points in arbitrary metric spaces, which is equivalent to the
undirected case, Blum et al. [9] gave the first approximation
algorithm with a ratio of 4; this was shortly improved to a
ratio of 3 in [6]. More recently, Chen and Har-Peled [16]
obtained a PTAS for points in fixed-dimensional Euclidean
space. The basic insights for approximating orienteering
were obtained in [9], where a related problem called the
minimum-excess problem was defined. It was shown in [9]
that an approximation for the min-excess problem implies
an approximation for orienteering. Further, the min-excess
problem can be approximated using algorithms for the k-
stroll problem. In the k-stroll problem, the goal is to find
a minimum length walk from s to t that visits at least
k nodes. Note that the k-stroll problem and orienteering
problem are equivalent in terms of exact solvability but
an approximation for one does not immediately imply an
approximation for the other. Nevertheless, it is shown in
[9] via a clever reduction that an approximation algorithm
for k-stroll implies a corresponding approximation algorithm
for orienteering. The results in [9, 6] are based on existing
approximation algorithms for k-stroll [18, 11] in undirected
graphs. In directed graphs, no non-trivial algorithm is known
for the k-stroll problem and the best previously known
approximation ratio for orienteering was O(

√
OPT). A

different approach was taken for the directed orienteering



problem in [14]; the authors use a recursive greedy algorithm
to obtain a O(log OPT) approximation for orienteering and
for several generalizations, but unfortunately the running
time is quasi-polynomial in the input size.

In this paper we obtain improved algorithms for orien-
teering and related problems in both undirected and directed
graphs. Our main results are encapsulated by the following
theorems.

THEOREM 1.1. For any fixed δ > 0, there is an algorithm
with running time nO(1/δ2) which gives a (2 + δ) approxi-
mation for orienteering in undirected graphs.

THEOREM 1.2. There is an O(log2 OPT) approximation
for orienteering in directed graphs1.

An algorithm for orienteering can be used to obtain
algorithms for more complex problems such as TSP with
deadlines and TSP with time windows [6, 13]. In TSP with
time windows, each node v in the graph has a time window
[Rv, Dv] and a node is counted in the objective function only
if the walk visits v in its time window when started at s
at time 0. The TSP with deadlines is a special case when
Rv = 0 for all v.

Our main results can be used to obtain improvements
for the above generalizations and other related problems.
We discuss these in more detail along with a high level
description of the main new technical ideas.

Overview of Algorithmic Ideas and Other Results: For
orienteering we follow the basic framework of [9], which
reduces orienteering to k-stroll via the min-excess problem
(formally defined in Section 2). We thus focus on the k-stroll
problem.

In undirected graphs, Chaudhuri et al. [11] give a 2 + ε
approximation for the k-stroll problem. To improve the 3-
approximation for orienteering via the method of [9] one
needs a 2-approximation for the k-stroll problem with some
additional properties. Unfortunately it does not appear that
even current advanced techniques can be adapted to obtain
such a result (see [18] for more technical discussion of this
issue). We get around this difficulty by giving a bi-criteria
approximation for k-stroll. For k-stroll, let L be the length
of an optimal path, and D the shortest path in the graph from
s to t. (Thus, the excess of the optimal path is L − D.) Our
main technical result for k-stroll is an algorithm that finds an
s-t walk of length at most max{1.5D, 2L−D} that contains
at least (1− ε)k nodes. For this, we prove various structural
properties of near optimal k-strolls via the algorithm of [11],
which in turn relies on the algorithm of Arora and Karkostas
for k-MST [3]. We also obtain a bi-criteria algorithm for
min-excess.

1A similar result was obtained concurrently and independently by Na-
garajan and Ravi [26]. See related work for more details.

For directed graphs, no non-trivial approximation al-
gorithm is known for the k-stroll problem. In [14] the
O(log OPT) approximation for orienteering is used to ob-
tain an O(log2 k) approximation for the k-TSP problem in
quasi-polynomial time. Once again we focus on a bi-criteria
approximation for k-stroll and obtain a solution of length
3OPT that visits Ω(k/ log2 k) nodes. Our algorithm for k-
stroll is based on an algorithm for k-TSP for which we give
an O(log3 k) approximation - for this we use simple ideas in-
spired by the algorithms for asymmetric traveling salesman
problem (ATSP) [17, 24] and an earlier poly-logarithmic ap-
proximation algorithm for k-MST [4].

In addition to the results above, we obtain the following
as consequences of existing ideas from [9, 6, 13]. Due to
space constraints, we do not discuss the details of these
results in this version of the paper.

• A (4 + ε) approximation for a tree rooted at s of total
length B that maximizes the number of nodes in the
tree. This improves the 6 approximation in [9, 6].

• A 3 + ε approximation for the time-window problem
when there are fixed number of time windows; this
improves a ratio of 4 from [13].

• In directed graphs, an O(log2 OPT) approximation for
discounted-reward TSP, an O(log3 OPT) approxima-
tion for TSP with deadlines, and an O(log4 OPT) ap-
proximation for TSP with time windows. Previously,
only a quasi-polynomial time algorithm was known
[14].

Related Work: We have already mentioned some of the re-
lated work in the discussion so far. The literature on TSP is
vast, so we only describe some other work here that is di-
rectly relevant to the results in this paper. We first discuss
undirected graphs. The orienteering problem seems to have
been formally defined in [21]. Goemans and Williamson
considered the prize-collecting Steiner tree and TSP prob-
lems [20] (these are special case of the more general version
defined in [5]); in these problems the objective is to min-
imize the cost of the tree (or tour) plus a penalty for not
visiting nodes. They used primal-dual methods to obtain
a 2-approximation. This influential algorithm was used to
obtain constant factor approximation algorithms for the k-
MST, k-TSP and k-stroll problems [10, 19, 3, 18, 11], im-
proving upon an earlier poly-logarithmic approximation [4].
As we mentioned already, the algorithms for k-stroll yield
algorithms for orienteering [9]. The time window version of
orienteering was shown to be NP-hard even when the graph
is a path [28]; for the path Bar-Yehuda, Even, and Shahar
[7] give an O(log OPT) approximation. The best known ap-
proximation for general graphs is O(log2 OPT), given by
Bansal et al. [6]; the ratio improves to O(log OPT) for the



case of deadlines only [6]. A constant factor approximation
can be obtained if the number of distinct time windows is
fixed [13].

In directed graphs the problems are less understood. For
example, we have no non-trivial approximation for the k-
stroll problem, though it is only known to be APX-hard. In
[14] a simple recursive greedy algorithm that runs in quasi-
polynomial time was shown to give an O(log OPT) approx-
imation for orienteering and TSP with time windows. The
algorithm also applies to the problem where the objective
function is any given submodular functions on the nodes vis-
ited by the walk; several more complex problems can be cap-
tured by this generalization. Motivated by the lack of algo-
rithms for the k-stroll problem, in [15] the asymmetric trav-
eling salesman path problem (ATSPP) was studied. ATSPP
is the special case of k-stroll with k = n. Although closely
related to the well studied ATSP problem, an approximation
algorithm for ATSPP does not follow directly from that for
ATSP. In [15] an O(log n) approximation is given for AT-
SPP.

In concurrent and independent work, Nagarajan and
Ravi [26] obtained an O(log2 n) approximation for orien-
teering in directed graphs. They also use the bi-criteria ap-
proach for the k-stroll problem and obtain essentially similar
results as in this paper for directed graph problems includ-
ing rooted k-TSP. However their algorithm for (bi-criteria)
k-stroll is based on an LP approach while we use a simple
combinatorial greedy merging algorithm. Our ratios depend
only on OPT or k while theirs depend also on n. On the
other hand, the LP approach has some interesting features
and we refer the reader to [26]; a more detailed comparision
of results and techniques is deferred to a full version of this
paper.

2 Preliminaries and Notation
We provide a brief overview of the ideas in [9] that reduce
orienteering to the k-stroll problem; we adapt some of the
technical lemmas for our setting. Given a graph G, for any
path P that visits vertices u, v (with u occurring before v
on the path), we define dP (u, v) to be the distance along
the path from u to v, and d(u, v) to be the shortest distance
in G from u to v. We define excessP (u, v) (the excess
of P from u to v) to be dP (u, v) − d(u, v). We simplify
notation in the case that u = s, the start vertex of the
path P : we write dP (v) = dP (s, v), d(v) = d(s, v), and
excessP (v) = excessP (s, v).

If P is a path from s to t, the excess of path P is
defined to be excessP (t). That is, the excess of a path
is the difference between the length of the path and the
distance between its endpoints. (Equivalently, length(P ) =
d(t) + excessP (t).) In the min-excess path problem, we are
given a graph G = (V,E), two vertices s, t ∈ V , and a
target k; our goal is to find an s-t path of minimum-excess

that visits at least k vertices. The path that minimizes excess
clearly also has minimum total length, but the situation is
slightly different for approximation. If x is the excess of the
optimal path, an α-approximation for the minimum-excess
problem has length at most d(t) + αx ≤ α(d(t) + x), and
so it gives us an α-approximation for the minimum-length
problem; the converse is not necessarily true.

From k-stroll to orienteering, via min-excess: Recall that
in the k-stroll problem, we are given a graph G(V,E),
two vertices s, t ∈ V , and a target k; the goal is to find
a minimum-length walk from s to t that visits at least k
vertices.

LEMMA 2.1. ([9]) In undirected graphs, a β-
approximation to the k-stroll problem implies a ( 3β

2 − 1
2 )-

approximation to the min-excess problem.

Using very similar arguments, we can show the follow-
ing analogous result for directed graphs:

LEMMA 2.2. In directed graphs, a β-approximation to the
k-stroll problem implies a (2β − 1)-approximation to the
min-excess problem.

The following lemma applies to both directed and undi-
rected graphs.

LEMMA 2.3. ([6]) A γ-approximation to the min-excess
problem implies a dγe-approximation for orienteering.

The way in which our algorithms differ from those of [9]
and [6] is that we use bi-criteria approximations for k-stroll.
We say that an algorithm is an (α, β)-approximation to the k-
stroll problem if, given a graph G, vertices s, t ∈ V (G), and
a target k, it finds a path which visits at least k/α vertices,
and has length at most β times the length of an optimal path
that visits k vertices.

Lemmas 2.2 and 2.3 can be easily extended to show
that an (α, β)-approximation to the k-stroll algorithm for
directed graphs gives an (αd2β − 1e)-approximation for the
orienteering problem in directed graphs. In Section 4, we
use this fact, with a (O(log2 k), 3)-approximation for the k-
stroll problem in directed graphs, to get an O(log2 OPT)-
approximation for directed orienteering.2 For undirected
graphs, one might try to use Lemmas 2.1 and 2.3 with a
(1 + δ, 2)-approximation for the k-stroll problem, but this
leads to a ((1 + δ) × d2.5e) = (3 + δ) approximation for
orienteering. To obtain the desired ratio of (2 + δ), we
need a refined analysis to take advantage of the particular
bi-criteria algorithm that we develop for k-stroll; the details
are explained in Section 3.

2When we use the k-stroll algorithm as a subroutine, we call it with
k ≤ OPT, where OPT is the number of vertices visited by an optimum
orienteering solution.



3 A (2 + δ)-approximation for Undirected Orienteering
In the k-stroll problem, given a metric graph G, with 2
specified vertices s and t, and a target k, we wish to find an
s-t path of minimum length that visits at least k vertices. Let
L be the length of an optimal such path, and D the shortest-
path distance in G from s to t. We describe a bi-criteria
approximation algorithm for the k-stroll problem, with the
following guarantee: For any fixed δ > 0, we find an s-t
path that visits at least (1 − O(δ))k vertices, and has total
length at most max{1.5D, 2L−D}.

THEOREM 3.1. ([11]) Given a graph G, with two vertices s
and t and a target k, if L is the length of an optimal path from
s to t visiting k vertices, for any ε > 0, there is a polynomial-
time algorithm to find a k-vertex tree containing both s and
t, of length at most (1 + ε)L.

The algorithm of [11] guesses O(1/ε) vertices s =
w1, w2, w3, . . . wm−1, wm = t such that an optimal path P
visits the guessed vertices in this order, and for any i, the
distance from wi to wi+1 along P is ≤ εL. It then uses
the k-MST algorithm of [3] to obtain a tree with the desired
properties. We can assume that all edges of the tree have
length at most εL; longer edges can be subdivided without
adding more than O(1/ε) vertices.

Our bi-criteria approximation algorithm for k-stroll be-
gins by setting ε = δ2, and using the algorithm of Theo-
rem 3.1 to obtain a k-vertex tree T containing s and t. We
are guaranteed that length(T ) ≤ (1 + ε)L (recall that L
is the length of a shortest s-t path P visiting k vertices).
Let PT

s,t be the path in T from s to t; we can double all
edges of T not on PT

s,t to obtain a path PT from s to t
that visits at least k vertices. The length of the path PT is
2length(T )− length(PT

s,t) ≤ 2length(T )−D.
If either of the following conditions holds, the path PT visits
k vertices and has length at most max{1.5D, 2L−D}, which
is the desired result:

• The total length of T is at most 5D/4. (In this case, PT

has length at most 3D/2.)

• length(PT
s,t) ≥ D + 2εL. (In this case, PT has length

at most 2(1 + ε)L− (D + 2εL) = 2L−D.)

We refer to these as the easy doubling conditions. Our
aim will be to show that if neither of the easy doubling
conditions applies, we can use T to find a new tree T ′

containing s and t, with length at most L, and with at least
(1−O(δ))k vertices. Then, by doubling the edges of T ′ that
are not on the s-t path (in T ′), we obtain a path of length at
most 2L−D that visits at least (1−O(δ))k vertices.

In the next subsection, we describe the structure the tree
T must have if neither of the easy doubling conditions holds,
and in Section 3.2, how to use this information to obtain the
tree T ′.

3.1 Structure of the Tree: If neither of the easy doubling
conditions holds, then since D is at most 4/5 of the length
of T , and the length of PT

s,t is less than D + 2εL, the total
length of the edges of T \ PT

s,t is greater than (1/5− 2ε)L.

PROPOSITION 3.1. We can greedily decompose the edge set
of T \PT

s,t into Ω(1/δ) disjoint connected components, each
with length in [δL, 3δL).

Let T be the tree formed by contracting PT
s,t to a single

vertex, and each of the components of Proposition 3.1 to a
single vertex.

PROPOSITION 3.2. The tree T contains a vertex of degree
1 or 2 that corresponds to a component containing at most
32δk vertices.

Proof. The number of vertices in T is at least (1/5−2ε)L
3δL =

1
15δ −

2δ
3 ≥ 1

16δ . At least one more than half these vertices
have degree 1 or 2, since T is a tree. Therefore, the
number of vertices of degree 1 or 2 (not counting the vertex
corresponding to the s-t path in T ) is at least 1/(32δ). If
each of them corresponds to a component that has more than
32δk vertices, the total number of vertices they contain is
more than k, which is a contradiction. 2

If T has a leaf that corresponds to a component with at
most 32δk vertices, we delete this component from T , giving
us a tree T ′ with length at most (1 + ε)L − δL < L, with
at least (1 − 32δ)k vertices. Doubling the edges of T ′ not
on its s-t path, we obtain an s-t walk that visits (1 − 32δ)k
vertices and has length at most 2L−D, and we are done.

If there does not exist such a leaf, we can find a
component C of degree 2 in T , with length ` in [δL, 3δL),
and at most 32δk vertices. Deleting C from T gives us two
trees T1 and T2; let T1 be the tree containing s and t. We can
reconnect the trees using the shortest path between them. If
the length of this path is at most ` − εL, we have a new tree
T ′ with length at most L, and containing at least (1− 32δ)k
vertices. In this case, as before, we are done.

Therefore, we now assume that the shortest path in G
that connects T1 and T2 has length greater than ` − εL,
and use this fact repeatedly. (Recall that the total length of
component C is `.) One consequence of this fact is that the
component C is path-like. That is, if x and y are the two
vertices of T − C with edges to C, the length of the path in
C from x to y is more than `− εL; we refer to this path from
x to y as the spine of the component. (See Fig. 1) It follows
that the total length of edges in C that are not on the spine is
less than εL. We also refer to the vertex x ∈ T1 adjacent to C
as the head of the spine, and y ∈ T2 adjacent to C as the foot
of the spine. Finally, we say that for any vertices p, q ∈ C,
the distance along the spine between vertices p and q is the
length of those edges on the path between p and q that lie on
the spine.
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Figure 1: To the left, is the tree T ; a constant fraction of its length is not on PT
s,t. We break these parts into components; the

path-like component C of degree 2, with fewer than 32δk vertices, is shown in the box with the dashed lines. The center
shows C in more detail, with vertices x and y at the head and foot of the spine, and guessed vertices shown as diamonds.
To the right, we show two consecutive segments.

We assume for the moment that T2 contains at least one
vertex that was guessed by the algorithm of Theorem 3.1; if
this is not the case, the proof is to be modified by finding the
guessed vertex nearest the base of the spine, adding the path
from it to the base to the tree T2, and removing that path from
the component C. This does not change our proof in any
significant detail. Consider the highest-numbered guessed
vertex wp in T2; where is the next guessed vertex wp+1? It
is not in T2 by definition, nor in T1 because the shortest path
from T2 to T1 has length at least `−εL, and the edge wpwp+1

has length ≤ εL. Therefore, it must be in C. Similarly, since
εL � l − εL, the guessed vertices wp+2, wp+3, . . . must be
in C. (In fact, there must be at least `−εL

εL = Ω(1/δ) such
consecutive guessed vertices in C.) Let wq be the highest-
numbered of these consecutive guessed vertices in C.

By an identical argument, if wb is the lowest-numbered
guessed vertex in T2, wb−1, wb−2, . . . must be in C. Let
wa be the lowest-numbered of these consecutive guessed
vertices, so wa, wa+1, . . . wb−2, wb−1 are all in C.

We now break up the component C into segments as
follows: Starting from x, the head of the spine, we cut C at
distance 10εL along the spine from x. We repeat this process
until the foot of the spine, obtaining at least `−εL

10εL ≥ 1
10δ −

1
10

segments. We discard the segment nearest x and the two
segments nearest y, and number the remaining segments
from 1 to r consecutively from the head; we have at least
1

10δ −
1
10 − 3 ≥ 1

15δ segments remaining. For each segment,
we refer to the end nearer x (the top of the spine) as the top
of the segment, and the end nearer y as the bottom of the
segment.

We now restrict our attention to guessed vertices in the
range wa to wb−1 and wp+1 through wq. For each segment
i, define vlow

i to be the lowest-numbered guessed vertex in
segments i through r, and vhigh

i to be the highest-numbered

guessed vertex in segments i through r.

LEMMA 3.1. For each i:

1. vlow
i occurs before vlow

i+1 in the optimal path, and vhigh
i

occurs after vhigh
i+1 in the optimal path.

2. the distance along the spine from the top of segment i to
each of vlow

i and vhigh
i is at most 2εL.

3. the distance between vlow
i and vlow

i+1, is at least 7εL; the
distance between vhigh

i and vhigh
i+1 is at least 7εL.

Proof. We prove the statements for vlow
i and vlow

i+1; those for
vhigh

i and vhigh
i+1 are symmetric. Our proofs repeatedly use

the fact (referred to earlier) that the shortest path from x to y
does not save more than εL over `, the length of C.

First, we claim that each segment contains some guessed
vertex between wa and wb−1. Suppose some segment i did
not; let c be the first index greater than or equal to a such
that wc is not above segment i in the tree. (Since wa is above
segment i, and wb below it, we can always find such an a.)
Therefore, wc−1 is above segment i, and wc below it. We
can now delete segment i, and connect the tree up using the
edge between wc−1 and wc; this edge has length at most
εL. But this gives us a path from x to y of length at most
`− 10εL + εL, which is a contradiction.

Now, let vlow
i be the guessed vertex wj ; we claim that it

is in segment i. Consider the location of the guessed vertex
wj−1. By definition, it is not in segments i through r; it
must then be in segments 1 through i − 1. If wj were not in
segment i, we could delete segment i (decreasing the length
by 10εL) and connect x and y again via the edge between wj

and wj−1, which has length at most εL. Again, this gives us a
path that is shorter by at least 9εL, leading to a contradiction.
Therefore, for all i, vlow

i is in segment i.



Because the lowest-numbered guessed vertex in seg-
ments i through r is in segment i, it has a lower number
than the lowest-numbered guessed vertex in segments i + 1
through r. That is, vlow

i occurs before vlow
i+1 on the optimal

path, which is the first part of the lemma.
We next prove that for all i, the distance along the spine

from vlow
i to the top of segment i is at most 2εL. If this is

not true, we could delete the edges of the spine from vlow
i

to the top of segment i, and connect vlow
i to the previous

guessed vertex, which must be in segment i−1. The deletion
decreases the length by at least 2εL, and the newly added
edge costs at most εL, giving us a net saving of at least εL;
as before, this is a contradiction.

The final part of the lemma now follows, because we
can delete the edges of the spine from vlow

i to the bottom of
the segment (decreasing our length by at least 8εL), and if
the distance from vlow

i to vlow
i+1 were less than 7εL, we would

save at least εL, giving a contradiction. 2

Now, for each segment i, define gain(i) to be the sum
of the reward collected by the optimal path between vlow

i and
vlow

i+1 and the reward collected by the optimal path between
vhigh

i+1 and vhigh
i . Since these parts of the path are disjoint,∑

i gain(i) ≤ k, and there are at least 1
15δ such segments,

there must exist some i such that gain(i) ≤ 15δk. By
enumerating over all possibilities, we can find such an i.

3.2 Contracting the Graph: We assume we have found
a segment numbered i such that gain(i) ≤ 15δk. Consider
the new graph H formed from G by contracting together the
4 vertices vlow

i , vhigh
i , vlow

i+1 and vhigh
i+1 of G to form a new

vertex v′; we prove the following proposition.

PROPOSITION 3.3. The graph H has a path of length at
most L− 14εL that visits at least (1− 15δ)k vertices.

Proof. Consider the optimal path P in G, and modify it to
find a path PH in H by shortcutting the portion of the path
between vlow

i and vlow
i+1, and the portion of the path between

vhigh
i+1 and vhigh

i . Since gain(i) ≤ 15δk, the new path
PH visits at least (1 − 15δ)k vertices. Further, since the
shortest-path distance from vlow

i to vlow
i+1 and the shortest-

path distance from vhigh
i to vhigh

i+1 are each ≥ 7εL, the path
PH has length at most L− 14εL. 2

Using the algorithm of [3], we can find a tree TH in H
of total length at most L − 13εL with at least (1 − 15δ)k
vertices. This tree TH may not correspond to a tree of G (if
it uses the new vertex v′). However, we claim that we can
find a tree Ti in G of length at most 13εL, that includes each
of vlow

i , vhigh
i , vlow

i+1, vhigh
i+1 . We can combine the two trees

TH and Ti to form a tree T ′ of G, with total length L.

PROPOSITION 3.4. There is a tree Ti in G containing vlow
i ,

vhigh
i , vlow

i+1 and vhigh
i+1 , of total length at most 13εL.

Proof. We use all of segment i, and enough of segment i+1
to reach vlow

i+1 and vhigh
i+1 . The edges of segment i along the

spine have length≤ 10εL, vlow
i+1 and vhigh

i+1 each have distance
along the spine at most 2εL from the top of segment i + 1
(by Lemma 3.1). Finally, the total length of all the edges in
the component C not on the spine is at most εL. Therefore,
to connect all of vlow

i , vhigh
i , vlow

i+1 and vhigh
i+1 , we must use

edges of total length at most (10 + 2 + 1)εL = 13εL. 2

THEOREM 3.2. For any δ > 0, there is an algorithm with
running time O(nO(1/δ2)) that, given a graph G, 2 vertices
s and t and a target k, finds an s-t walk of length at most
max{1.5D, 2L − D} that visits at least (1 − δ)k vertices,
where L is the length of the optimal s-t path that visits k
vertices and D is the shortest-path distance from s to t.

Proof. Set δ′ = δ/32 and run the algorithm of [11] with ε =
δ′2 to obtain a k-vertex tree T of length at most (1 + ε)L. If
either of the easy doubling conditions holds, we can double
all the edges of T not on its s-t path to obtain a new s-t walk
visiting k vertices, with length at most max{1.5D, 2L−D}.

If neither of the easy doubling conditions holds, use T
to obtain T ′ containing s and t, with length at most L and at
least (1−32δ′)k vertices. Doubling edges of T ′ not on its s-t
path, we find a new s-t path visiting (1− 32δ′)k = (1− δ)k
vertices, of length at most 2L−D. 2

3.3 From k-stroll to minimum-excess: We solve the
minimum-excess problem using essentially the algorithm of
[9]; the key difference is that instead of calling the algorithm
of [11] as a subroutine, we use the algorithm of Theorem 3.2
that returns a bi-criteria approximation. In addition, the anal-
ysis is slightly different, making use of the fact that our algo-
rithm returns a path of length at most max{1.5D, 2L−D}.
In the arguments below, we fix an optimum path P , and
chiefly follow the notation of [9].

If P visits vertices in increasing order of their distance
from s, we say that it is monotonic. The best monotonic path
can be found via dynamic programming. In general, how-
ever, P may be far from monotonic; in this case, we break
it up into continuous segments that are either monotonic, or
have large excess. The monotonic sections can be found by
dynamic programming, and we use our new algorithms in
the large-excess sections.

For each real r, we define f(r) as the number of edges
on the optimal path P with one endpoint at distance from s
less than r, and the other endpoint at distance at least r from
s. We partition the distances into maximal intervals with
f(r) = 1 and f(r) > 1. An interval from bi to bi+1 is of
type 1 (corresponding to a monotonic segment) if, for each r
between bi and bi+1, f(r) = 1. The remaining intervals are
of type 2 (corresponding to segments with large excess).

For each interval i, from vertex u (at distance bi from
s) to vertex v (at distance bi+1 from s), we define ex(i) as



the increase in excess that P incurs while going from u to v.
(That is, ex(i) = excessP (v)−excessP (u).) Also, we let `i

be the length of P contained in interval i, and di be the length
of the shortest path from u to v contained entirely in interval
i. From our definition, the overall excess of the optimal path
P is given by excessP (t) =

∑
i ex(i). In [9] it is shown

that for any type-2 interval i, `i ≥ 3(bi+1 − bi), and hence
that the global excess, excess(P ), is at least 2

3

∑
i of type 2 `i.

We need to refine this slightly by bounding the local excess
in each interval, instead of the global excess.

LEMMA 3.2. For any type-2 interval i of path P , ex(i) ≥
max{`i − di,

2`i

3 }.

Proof. We have:

ex(i) =
(
dP (v)− d(v)

)
−

(
dP (u)− d(u)

)
=

(
dP (v)− dP (u)

)
− (d(v)− d(u))

= `i − (bi+1 − bi).

(In the case of the last segment, containing t, the last equality
should be `i − (d(t) − bi).) For any type-2 segment, `i ≥
3(bi+1 − bi) (or 3(dt − bi)), so we have ex(i) ≥ 2`i

3 . Also,
the shortest-path distance di from u to v contained in interval
i is at least bi+1 − bi. Therefore, ex(i) ≥ `i − di. 2

THEOREM 3.3. For any fixed δ > 0, there is a polynomial-
time algorithm to find an s-t path visiting at least (1 − δ)k
vertices, with excess at most twice that of an optimal path P .

Proof. The algorithm uses dynamic programming similar to
that in [9] with our bi-criteria k-stroll algorithm in place of an
approximate k-stroll algorithm. Let P ′ be the path returned
by our algorithm. Roughly speaking (details omitted here),
P ′ will be at least as good as a path obtained by replacing
the segment of P in each of its intervals by a path that
the algorithm finds in that interval. In type-1 intervals the
algorithm finds an optimum path because it is monotonic.
In type-2 intervals we have a bi-criteria approximation that
gives a (1 − δ) approximation for the number of vertices
visited. This implies that P ′ contains at least (1 − δ)k
vertices. To bound the excess, we sum up the lengths of the
replacement paths to obtain:

length(P ′) ≤
∑

i of type 1

`i +
∑

i of type 2

max{1.5di, 2`i − di}

≤
∑

i

`i +
∑

i of type 2

max{0.5di, `i − di}

≤
∑

i

`i +
∑

i of type 2

ex(i)

≤ length(P ) + excessP (t)
= d(t) + 2excessP (t) 2

For completeness, we restate Lemma 2.3, modified for
a bi-criteria excess approximation: An (α, β)-approximation
to the min-excess problem gives an αdβe-approximation to
the orienteering problem.

Proof of Theorem 1.1. For any constant δ > 0, to obtain
a (2 + δ)-approximation for the undirected orienteering
problem, first find δ′ such that 2 + δ = 2

1−δ′ . Theorem 3.3
implies that there is a ( 1

1−δ′ , 2)-bi-criteria approximation

algorithm for the min-excess problem that runs in nO(1/δ2)

time. Now, we use Lemma 2.3 to get a 2
1−δ′ = (2 + δ)-

approximation for the orienteering problem in undirected
graphs. 2

4 Orienteering in Directed Graphs
We give an algorithm for orienteering in directed graphs,
based on a bi-criteria approximation for the (rooted) k-TSP
problem: Given a graph G, a start vertex s, and an integer k,
find a cycle in G of minimum length that contains s and visits
k vertices. We assume that G always contains such a cycle;
let OPT be the length of the shortest such cycle. We assume
knowledge of the value of OPT, and that G is complete, with
the arc lengths satisfying the asymmetric triangle inequality.

Our algorithm finds a cycle in G containing s that visits
at least k/2 vertices, and has length at most O(log2 k) ·OPT.
The algorithm gradually builds up a collection of strongly
connected components. Each vertex starts as a separate com-
ponent, and subsequently components are merged to form
larger components. The main idea of the algorithm is to find
low density cycles that visit multiple components, and use
such cycles to merge components. (The density of a cycle
C is defined as its length divided by the number of vertices
that it visits; there is a polynomial-time algorithm to find
a minimum-density cycle in directed graphs.) While merg-
ing components, we keep the invariant that each component
is strongly connected and Eulerian, that is, each arc of the
component can be visited exactly once by a single closed
walk.

We note that this technique is similar to the algorithms
of [17, 24] for ATSP; however, the difficulty is that a k-TSP
solution need not visit all vertices of G and the algorithm is
unaware of the vertices to visit. We deal with this using two
tricks. First, we force progress by only merging components
of similar size, hence ensuring that each vertex only partic-
ipates in a logarithmic number of merges — when merging
two trees or lists, one can charge the cost of merging to the
smaller side, however when merging multiple components
via a cycle, there is no useful notion of a smaller side. Sec-
ond, we are more careful about picking representatives for
each component; picking an arbitrary representative vertex
from a component does not work. A variant that does work
is to contract each component to a single vertex, however,
this loses an additional logarithmic factor in the approxima-



tion ratio since an edge in a contracted vertex may have to be
traversed a logarithmic number of times in creating a cycle
in the original graph. To avoid this, our algorithm ensures
components are Eulerian. One option is to pick a represen-
tative from a component a randomly and one can view our
coloring scheme as a derandomization.

We begin by pre-processing the graph to remove any
vertex v such that the sum of the distance from s to v and v to
s is greater than OPT; such a vertex v obviously cannot be in
an optimum solution. Each remaining vertex initially forms
a component of size 1. As components combine, their sizes
increase; we use |X| to denote the size of a component X ,
i.e. the number of vertices in it. We assign the components
into tiers by size; components of size |X| will be assigned to
tier blog2 |X|c. Thus, a tier i component has at least 2i and
fewer than 2i+1 vertices; initially, each vertex is a component
of tier 0. For ease of notation, we use α to denote the quantity
4 log k · OPT/k.

In the main phase of the algorithm, we will iteratively
push components into higher tiers, until we have enough
vertices in large components, that is, components of size at
least k/4 log k. The procedure BUILDCOMPONENTS (see
next page) implements this phase. Once we have amassed at
least k/2 vertices belonging to large components, we finish
by attaching a number of these components to the root s via
direct arcs. Before providing the details of the final phase of
the algorithm, we establish some properties of the algorithm
BUILDCOMPONENTS.

LEMMA 4.1. Throughout the algorithm, all components are
strongly connected and Eulerian. If any component X was
formed by combining components of tier i, the sum of the
lengths of arcs in X is at most (i + 1)α|X|.

Proof. Whenever a component is formed, the newly added
arcs form a cycle in G. It follows immediately that every
component is strongly connected and Eulerian. We prove
the bound on arc lengths by induction.

Let C be the low-density cycle found on vertices
v1, v2, . . . vl that connects components of tier i to form the
new component X . Let C1, C2, . . . Cl be the components of
tier i that are combined to form X . Because the density of
C is at most α2i, the total length of the arcs in C is at most
α2il. However, each tier i component has at least 2i vertices,
and so |X| ≥ 2il. Therefore, the total length of arcs in C is
at most α|X|.

Now, consider any component Ch of tier i; it was formed
by combining components of tier at most i − 1, and so,
by the induction hypothesis, the total length of all arcs in
component Ch is at most iα|Ch|. Therefore, the total length
of all arcs in all the components combined to form X is
iα

∑l
h=1 |Ch| = iα|X|. Together with the newly added arcs

of C, which have weight at most α|X|, the total weight of
all arcs in component X is at most (i + 1)α|X|. 2

Let O be a fixed optimum cycle, and let o1, . . . , ok be
the vertices it visits.

LEMMA 4.2. At the end of iteration i of BUILDCOMPO-
NENTS, at most k

2 log k vertices of O remain in components
of tier i.

Proof. Suppose that more than k
2 log k vertices of O remain

in tier i at the end of the ith iteration. We show a low-
density cycle in one of the graphs Hi

j , contradicting the
fact that the while loop terminated because it could not find
any low-density cycle: Consider the color classes Vi

j for
j ∈ {1, . . . , 2i+1 − 1}. By the pigeonhole principle, one
of these classes has to contain more than k/(2 log k · 2i+1)
vertices of O.3 We can “shortcut” the cycle O by visiting
only these vertices; this new cycle has cost at most OPT and
visits at least two vertices. Therefore, it has density less than
(2i+2 · OPT log k)/k, which is 2i · α. Hence, the while loop
would not have terminated. 2

We call a component large, if it has at least k/4 log k
vertices. Since we lose at most k

2 log k vertices of O in each
iteration, and there are fewer than log k iterations, we must
have at least k/2 vertices of O in large components after the
final iteration.

THEOREM 4.1. There is an O(n4)-time algorithm that,
given a directed graph G and a node s, finds a cycle with k/2
vertices rooted at s, of length O(log2 k)OPT, where OPT is
the length of an optimum k-TSP tour rooted at s.

Proof. Run the algorithm BUILDCOMPONENTS, and con-
sider the large components; at least k/2 vertices are con-
tained in these components. Greedily select large compo-
nents until their total size is at least k/2; we have selected
at most 2b(log k)c components. For each component, pick a
representative vertex v arbitrarily, and add arcs from s to v
and v to s; because of our pre-processing step (deleting ver-
tices far from s), the sum of the lengths of newly added arcs
for each representative is at most OPT. Therefore, the total
length of newly added arcs (over all components) is at most
2 log kOPT. The large components selected, together with
the newly added arcs, form a connected Eulerian component
H , containing s. Let k′ ≥ k/2 be the number of vertices of
H . From Lemma 4.1, we know that the sum of the lengths
of arcs in H (not counting the newly added arcs) is at most
(log k− 1)αk′. With the newly aded arcs, the total length of
arcs of H is at most 4 log2 kOPT × k′/k. Since H is Eule-
rian, there is a cycle of at most this length that visits each of
the k′ vertices of H .

If, from this cycle, we pick a segment of k/2 consecutive
vertices uniformly at random, the expected length of this

3The largest value of i used is such that k/2 log k · 2i+1 ≥ 1, so there
are always at least 2 vertices in this color class.



BUILDCOMPONENTS:
for (each i in {0, 1, . . . , blog2(k/4 log2 k)c}) do:

For each component in tier i, (arbitrarily) assign each node a distinct color in {1, . . . , 2i+1 − 1}.
Let {Vi

j | j = 1, . . . , 2i+1 − 1} be the resulting color classes.
Let Hi

j be the subgraph of G induced by the vertex set Vi
j .

while (there is a cycle C of density at most α · 2i in some graph Hi
j)

Let v1, . . . , vl be the vertices of Hi
j visited by C, and let vp belong to component Cp, 1 ≤ p ≤ l

(Note that two vertices of Hi
j never share a component, hence C1, . . . , Cl are distinct.)

Form a new component (which must belong to a higher tier) by merging C1, . . . , Cl using C
Remove all vertices of the new component from the graphs Hi

j′ for j′ ∈ {1, . . . , 2i+1 − 1}.

segment will be 2 log2 kOPT. Hence, the shortest segment
containing k/2 vertices has length at most 2 log2 kOPT.
Concatenate this with the arc from s to the first vertex of
this segment (paying at most OPT), and the arc (again of
cost ≤ OPT) from the last vertex to s; this gives us a
cycle that visits at least k/2 vertices, and has cost less than
3 log2 k · OPT.

The running time of this algorithm is dominated by the
time to find minimum-density cycles, each of which takes
O(nm) time [1], where n and m are the number of vertices
and edges respectively. The algorithm makes O(n) calls to
the cycle-finding algorithm which implies the desired O(n4)
bound. 2

By using the algorithm from Theorem 4.1 greedily log k
times, we obtain the following corollary.

COROLLARY 4.1. There is an O(log3 k) approximation for
the rooted k-TSP problem in directed graphs.

THEOREM 4.2. There is an O(n4)-time algorithm that,
given a directed graph G and nodes s, t, finds an s-t path of
length 3OPT containing Ω(k/ log2 k) vertices, where OPT
is the length of an optimal k-stroll from s to t.

Proof. We pre-process the graph as before, deleting any
vertex v if the sum of the distance from s to v and the
distance from v to t is greater than OPT. In the remaining
graph, we consider two cases: If the distance from t to s is at
most OPT, we leave the graph unmodified. Otherwise, we
add a ‘dummy’ arc from t to s of length OPT. Now, there
is a cycle through s that visits at least k vertices, and has
length at most 2OPT. We use the previous theorem to find
a cycle through s that visits k/2 vertices and has length less
than 6 log2 kOPT. Now, break this cycle up into consecutive
segments, each containing bk/(12 log2 k)c vertices (except
possibly the last, which may contain more). One of these
segments has length less than OPT; it follows that this part
cannot use the newly added dummy arc. We obtain a path
from s to t by beginning at s and taking the shortest path
to the first vertex in this segment; this has length at most
OPT. We then follow the cycle until the last vertex of

this segment (again paying at most OPT), and then take the
shortest path from the last vertex of the segment to t. The
total length of this path is at most 3OPT, and it visits at least
bk/(12 log2 k)c vertices. 2

We can now prove Theorem 1.2: There is an O(log2 OPT)
approximation for orienteering in directed graphs.
Proof of Theorem 1.2. As mentioned in Section 2, Lem-
mas 2.2 and 2.3 can be extended to show that an (α, β)-
bi-criteria approximation to the directed k-stroll problem
can be used to get an (α · d2β − 1e)-approximation to
the orienteering problem on directed graphs. Theorem 4.2
gives us a (O(log2 k, 3)-approximation to the the directed k-
stroll problem, which implies that there is a polynomial-time
O(log2 OPT)-approximation algorithm for the directed ori-
enteering problem. 2

5 Open Problems
• Is there a 2 approximation for orienteering in undirected

graphs? In addition to matching the known ratios for k-
MST and k-TSP [18], this may lead to a more efficient
algorithm than the one presented in this paper.

• Is there an O(1) approximation for orienteering in di-
rected graphs? We give an O(log2 OPT) approxima-
tion and there is a quasi-polynomial time O(log OPT)
approximation [14]. However, only APX-hardness is
known.

• Is there a poly-logarithmic, or even an O(1), approxi-
mation for the k-stroll problem in directed graphs? Cur-
rently there is only a bi-criteria algorithm.

• Can we obtain improved ratios for TSP with deadlines
and TSP with time windows? Prior to this paper, the
best ratio for TSP with time windows was O(log2 OPT)
in undirected graphs, and our algorithm for directed
orienteering leads to a O(log4 OPT) ratio for directed
graphs. In recent work [12], these ratios have been
improved in poly-bounded instances to O(log n) and
O(log n log2 OPT) respectively.



• In the max-prize tree problem, we are given a graph
G(V,E), s ∈ V (G), and a budget B; the goal is to
find a tree rooted at s that contains as many vertices
as possible, subject to the constraint that the total tree
length is at most B. Our (2 + ε) approximation
for orienteering gives a (4 + ε) approximation to this
problem; a 3 approximation for the unrooted version
follows from [11]. Can the approximation factor for the
rooted version be improved to 3, or (2 + ε)?
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