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Modeling long-term dependencies in time series has proved very difficult to achieve with
traditional machine learning methods. This problem occurs when considering music data. In
this paper, we introduce predictive models for melodies. We decompose melodic modeling
into two subtasks. We first propose a rhythm model based on the distributions of distances
between subsequences. Then, we define a generative model for melodies given chords and
rhythms based on modeling sequences of Narmour features. The rhythm model consistently
outperforms a standard Hidden Markov Model in terms of conditional prediction accuracy
on two different music databases. Using a similar evaluation procedure, the proposed melodic
model consistently outperforms an Input/Output Hidden Markov Model. Furthermore, these
models are able to generate realistic melodies given appropriate musical contexts.

Keywords: probabilistic models, time series prediction, melodies, rhythms, chord
progressions

1. Introduction

Predictive models for music would be useful in a broad range of applications,
from contextual music generation to on-line music recommendation and retrieval.
However, modeling music involves capturing long-term dependencies in time series,
which has proved very difficult to achieve with traditional statistical methods. Note
that the problem of long-term dependencies is not limited to music, nor to one
particular probabilistic model (Bengio et al. 1994).

In this paper we present graphical models that capture melodic structures in a
given musical style using as evidence a limited amount of symbolic MIDI1 data. A
few models for music generation have already been proposed for music in general
(Dubnov et al. 2003, Pachet 2003). While these models generate impressive musical
results, we are not aware of proper quantitative comparisons between such models
of music, that is for instance in terms of out-of-sample prediction accuracy, as it is
done in Sections 3 and 5.

In the first part of this paper, we focus on modeling rhythmic sequences, ignoring
for the moment other aspects of music such as pitch, timbre and dynamics. Many
algorithms have been proposed for audio beat tracking (Dixon 2007, Scheirer 1998).

∗Corresponding author. Email: paiment@idiap.ch

1MIDI stands for Musical Instrument Digital Interface, an industry-standard interface used on electronic
musical keyboards and PCs for computer control of musical instruments and devices. In our work, we only
consider note onsets and offsets in the MIDI signal.
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Here, we consider rhythm modeling as a first step towards full melodic modeling.
Our main contribution in this respect is to propose a generative model for distance
patterns, specifically designed for capturing long-term dependencies in rhythms.
In this work, distance patterns refer to distances between subsequences of equal
length in particular positions. In Section 2, we describe the model, detail its imple-
mentation and present an algorithm using this model for rhythm prediction. The
algorithm solves a constrained optimization problem, where the distance model is
used to filter out rhythms that do not comply with the inferred structure. The pro-
posed model is evaluated in terms of conditional prediction error on two distinct
databases in Section 3, and a discussion follows.

With a reliable rhythm model available, we can turn our attention towards prob-
abilistic modeling of melodies given rhythms and chord progressions. A chord is a
group of three or more notes. A chord progression is simply a sequence of chords.
In probabilistic terms, the current chord in a song can be seen as a latent variable
(local in time) that conditions the probabilities of choosing particular notes in other
music components, such as melodies or accompaniments. Chord changes occur at
fixed time intervals in most of the musical genres, which makes them much simpler
to detect (Lee and Slaney 2007) than beginnings and endings of musical notes,
which can happen almost everywhere in music signal. Thus, knowing the relations
between such chords and actual notes would certainly help to discover long-term
musical structures in tonal music.

It is fairly easy to generate interesting chord progressions given melodies in a
particular musical genre (Allan and Williams 2004, Paiement et al. 2006). However,
the dual problem that we address in this paper is much more difficult. In Section 4.2,
we describe melodic features derived from Narmour (1990) that will be used to
put useful constraints on melodies based on musicological substantiation. We then
introduce in Section 4.3 a probabilistic model of melodies given chords and rhythms
that leads to significantly higher prediction rates than a simpler Markovian model.
The combination of the rhythm model presented in Section 2 and the melodic
model given chords of Section 4.3 leads to a predictive model of music that could
be interesting in many applications. For instance, a good music model could help
improve the poor performance of state-of-the-art transcription systems; it could
as well be included in genre classifiers, automatic composition systems (Eck and
Schmidhuber 2002), or algorithms for music information retrieval (Grachten et al.
2005).

2. Rhythm Model

We want to model rhythms in a dataset X consisting of rhythms of the same
musical genre. We first quantize the database by segmenting each song in m time
steps and associate each note to the nearest time step, such that all melodies
have the same length m.1 It is then possible to represent rhythms by sequences
containing potentially three different symbols: 1) Note onset, 2) Note continuation,
and 3) Silence. When using quantization, there is a one to one mapping between
this representation and the set of all possible rhythms. Using this representation,
symbol 2 can never follow symbol 3. Thus, each rhythm is represented by an m-
dimensional vector x with discrete elements 1,2 or 3. Each rhythm sequence in the
dataset is denoted by xl ∈ X .

1This hypothesis is not fundamental in the proposed model and could easily be avoided if one would have
to deal with more general datasets.
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Hidden Markov Models (HMMs) are commonly used to model temporal data
(Rabiner 1989). In principle, an HMM as described in Section 2.4 is able to cap-
ture complex regularities in patterns between subsequences of data, provided its
number of hidden states is large enough. Thus, the HMM could be thought as a
valid candidate for rhythm prediction. However, when dealing with music, such a
model would lead to a learning process requiring a prohibitive amount of data: in
order to learn long range interactions, the training set should be representative of
the joint distribution of subsequences. To overcome this problem, we propose in
Section 2.2 to summarize the joint distribution of subsequences by the distribution
of their pairwise distances. This summary is clearly not a sufficient statistic for
the distribution of subsequences, but its distribution can be learned from a limited
number of examples. The resulting model, which generates distances, is then used
to constrain the generation of subsequences. Moreover, empirical results obtained
in Section 3 show that constraining the HMM with distributions over distances
between subsequences significantly improves prediction accuracy.

2.1. Graphical Models and EM

The probabilistic models used in this paper are described using the graphical model
framework. Graphical models (Lauritzen 1996) are useful to define probability dis-
tributions where graphs are used as representations for a particular factorization of
joint probabilities. Vertices are associated with random variables. A directed edge
going from the vertex associated with variable A to the one corresponding to vari-
able B accounts for the presence of the term P (B|A) in the factorization of the joint
distribution of all the variables in the model. The process of computing probability
distributions for a subset of the variables of the model given the joint distribution of
all the variables is called marginalization (e.g. deriving P (A,B) from P (A,B,C)).
The graphical model framework provides efficient algorithms for marginalization
and various learning algorithms can be used to learn the parameters of a model,
given an appropriate dataset.

The Expectation-Maximization (EM) algorithm (Dempster et al. 1977) can be
used to estimate the conditional probabilities of the hidden variables in a graphical
model. Hidden variables are neither observed during training nor during evaluation
of the models. These variables represent underlying phenomena that have an impact
on the actual observations, but that cannot be observed directly. The EM algorithm
proceeds in two steps applied iteratively over a dataset until convergence of the
parameters. Firstly, the E step computes the expectation of the hidden variables,
given the current parameters of the model and the observations of the dataset.
Secondly, the M step updates the values of the parameters in order to maximize
the joint likelihood of the observations, given the expected values of the hidden
variables.

2.2. Distance Model

Music is characterized by strong hierarchical dependencies determined in large part
by meter, the sense of strong and weak beats that arises from the interaction among
hierarchical levels of sequences having nested periodic components. Such a hierar-
chy is implied in western music notation, where different levels are indicated by
kinds of notes (whole notes, half notes, quarter notes, etc.) and where bars1 estab-
lish measures of an equal number of beats. Meter and rhythm provide a framework

1Bars can also be called measures.
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for developing musical melody. For example, a long melody is often composed by
repeating with variation shorter sequences that fit into the metrical hierarchy (e.g.
sequences of 4, 8 or 16 bars). It is well known in music theory that distance patterns
are more important than the actual choice of notes in order to create coherent mu-
sic (Handel 1993). For instance, measure 1 may always be similar to measure 5 in
a particular musical genre. In fact, even random music can sound structured and
melodic if it is built by repeating random subsequences with slight variations.

Traditionally, musicologists refer to repetition patterns in music with sequences
of letters (e.g. AABA). Let us consider the simple pattern “AB”. This notation
does not tell to what extent the second part differs from the first. Instead of just
stating if the second part is similar or not to the first one, we want to quantify
the distances between the two parts in a corpus of music data. We can even go
further and repeat this process hierarchically with various partition lengths. To do
so, we introduce in this section a generative model for distance patterns and its
application to rhythm sequences. Such a model is appropriate for most music data,
where distances between subsequences of data exhibit strong regularities.

Suppose that we construct a partition of each sequence xl by dividing it into
ρ parts defined by yl

i = (xl
1+(i−1)m/ρ, . . . , x

l
im/ρ) with i ∈ {1, . . . , ρ}. We are in-

terested in modeling the distances between these subsequences, given a suitable
metric d(yi, yj) : Rm/ρ × R

m/ρ → R. As was pointed out in the beginning of Sec-
tion 2, the distribution of d(yi, yj) for each specific choice of i and j may be more
important when modeling rhythms (and music in general) than the actual choice
of subsequences yi.

Let D(xl) = (dl
i,j)1≤i≤ρ,1≤j≤ρ be the distance matrix associated with each se-

quence xl, where dl
i,j = d(yl

i, y
l
j). Since D(xl) is symmetric and contains only zeros

on the diagonal, it is completely characterized by the upper triangular matrix of
distances without the diagonal. Hence,

p(D(xl)) =
ρ−1∏
i=1

ρ∏
j=i+1

p(dl
i,j |Sl,i,j) (1)

where

Sl,i,j = {dl
r,s|(1 < s < j and 1 ≤ r < s) or (s = j and 1 ≤ r < i)} . (2)

In words, we order the elements column-wise and do a standard factorization, where
each random variable depends on the previous elements in the ordering. Hence, we
do not assume any conditional independence between the distances.

Since d(yi, yj) is a metric, we have that d(yi, yj) ≤ d(yi, yk) + d(yk, yj) for all
i, j, k ∈ {1, . . . , ρ}. This inequality is usually referred to as the triangle inequality.
Defining

αl
i,j = min

k∈{1,...,(i−1)}
(dl

k,j + dl
i,k) and

βl
i,j = max

k∈{1,...,(i−1)}
(|dl

k,j − dl
i,k|) ,

(3)

we know that given previously observed (or sampled) distances, constraints im-
posed by the triangle inequality on dl

i,j are simply

βl
i,j ≤ dl

i,j ≤ αl
i,j . (4)
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Figure 1. Each circle represents the random variable associated with the corresponding factor in Eq. (1),
when ρ = 4. For instance, the conditional distribution for dl

2,4 possibly depends on the variables associated

to the grey circles.

One may observe that the boundaries given in Eq. (3) contain a subset of the
distances that are on the conditioning side of each factor in Eq. (1) for each indices
i and j. Thus, constraints imposed by the triangle inequality can be taken into
account when modeling each factor of p(D(xl)): each dl

i,j must lie in the interval
imposed by previously observed/sampled distances given in Eq. (4). Figure 1 shows
an example where ρ = 4. Using Eq. (1), the distribution of dl

2,4 would be conditioned
on dl

1,2, d
l
1,3, d

l
2,3, and dl

1,4, and Eq. (4) reads |dl
1,2−dl

1,4| ≤ dl
2,4 ≤ dl

1,2 +dl
1,4. Then,

if subsequences yl
1 and yl

2 are close and yl
1 and yl

4 are also close, we know that yl
2

and yl
4 cannot be far. Conversely, if subsequences yl

1 and yl
2 are far and yl

1 and yl
4

are close, we know that yl
2 and yl

4 cannot be close.

2.3. Modeling Relative Distances Between Rhythms

When using the rhythm representation introduced in the beginning of Section 2,
dl

i,j can simply be chosen to be the Hamming distance (i.e. counting the number of
positions on which corresponding symbols are different). One could think of using
more general edit distance such as the Levenshtein distance. However, this approach
would not make sense psycho-acoustically: doing an insertion or a deletion in a
rhythm produces a translation that alters dramatically the nature of the sequence.
Putting it another way, rhythm perception heavily depends on the position on
which rhythmic events occur. In the remainder of this paper, dl

i,j is the Hamming
distance between subsequences yi and yj .

We now have to encode our belief that rhythms of the same musical genre have
a common distance structure. For instance, drum beats in rock music can be very
repetitive, except in the endings of every four measures, without regard to the
actual beats being played. This should be accounted for in the distributions of the
corresponding dl

i,j .
With Hamming distances, the conditional distributions of dl

i,j in Eq. (1) should
be modeled by discrete distributions, whose range of possible values must obey
Eq. (4). Hence, we assume that the random variables (dl

i,j−βl
i,j)/(α

l
i,j−βl

i,j) should
be identically distributed for l = 1, . . . , n. Empirical inspection of data supports
this assumption. As an example, suppose that measures 1 and 4 always tend to be
far away, that measures 1 and 3 are close, and that measures 3 and 4 are close;
Triangle inequality states that 1 and 4 should be close in this case, but the desired
model would still favor a solution with the greatest distance complying with the
constraints imposed by triangle inequalities.
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All these requirements are fulfilled if we model di,j − βi,j by a binomial distribu-
tion of parameters (αi,j − βi,j , pi,j), where pi,j is the probability that two symbols
of subsequences yi and yj differ. With this choice, the conditional probability of
getting di,j = βi,j + δ would be

B(δ, αi,j , βi,j , pi,j) =
(
αi,j − βi,j

δ

)
(pi,j)δ(1− pi,j)(αi,j−βi,j−δ) , (5)

with 0 ≤ pi,j ≤ 1. If pi,j is close to zero/one, the relative distance between subse-
quences yi and yj is small/large. However, the binomial distribution is not flexible
enough since there is no indication that the distribution of di,j − βi,j is unimodal.
We thus model each di,j − βi,j with a binomial mixture distribution in order to
allow multiple modes. We thus use

p(di,j = βi,j + δ|Si,j) =
c∑

k=1

w
(k)
i,j B(δ, αi,j , βi,j , p

(k)
i,j ) (6)

with w
(k)
i,j ≥ 0,

∑c
k=1w

(k)
i,j = 1 for every indices i and j, and Si,j defined similarly

as in Eq. (2). Parameters

θi,j = {w(1)
i,j , . . . , w

(c−1)
i,j } ∪ {p(1)

i,j , . . . , p
(c)
i,j }

can be learned with the EM algorithm on rhythm data for a specific music style.
In words, we model the difference between the observed distance dl

i,j between
two subsequences and the minimum possible value βi,j for such a difference by a
binomial mixture.

The parameters θi,j can be initialized to arbitrary values before applying the
EM algorithm. However, as the likelihood of mixture models is not a convex func-
tion, one may get better models and speed up the learning process by choosing
sensible values for the initial parameters. In the experiments reported in Section 3,
the k-means algorithm for clustering (Duda et al. 2000) was used. More precisely,
k-means was used to partition the values (dl

i,j − βl
i,j)/(α

l
i,j − βl

i,j) into c clusters

corresponding to each component of the mixture in Eq. (6). Let {µ(1)
i,j , . . . , µ

(c)
i,j } be

the centroids and {n(1)
i,j , . . . , n

(c)
i,j } the number of elements in each of these clusters.

We initialize the parameters θi,j with

w
(k)
i,j =

n
(k)
i,j

n
and p

(k)
i,j = µ

(k)
i,j .

We then follow a standard approach (Bilmes 1997) to apply the EM algorithm to
the binomial mixture in Eq. (6). Let zl

i,j ∈ {1, . . . , c} be a hidden variable telling
which component density generated dl

i,j . For every iteration of the EM algorithm,
we first compute

p(zl
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j) =

ψk,i,j,l∑c
t=1 ψt,i,j,l

where θ̂i,j are the parameters estimated in the previous iteration, or the parameters
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guessed with k-means on the first iteration of EM, and

ψk,i,j,l = ŵ
(k)
i,j B(dl

i,j , α
l
i,j , β

l
i,j , p

(k)
i,j ) .

Then, the parameters can be updated with

p
(k)
i,j =

∑n
l=1(d

l
i,j − βl

i,j)p(z
l
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j)∑n

l=1(α
l
i,j − βl

i,j)p(z
l
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j)

and

w
(k)
i,j =

1
n

n∑
l=1

p(zl
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j).

This process is repeated until convergence.
Note that using mixture models for discrete data is known to lead to identifiability

problems. Identifiability refers here to the uniqueness of the representation (up to
an irrelevant permutation of parameters) of any distribution that can be modeled
by a mixture.

Estimation procedures may not be well-defined and asymptotic theory may not
hold if a model is not identifiable. However, the model defined in Eq. (6) is iden-
tifiable if αi,j − βi,j > 2c − 1 (Titterington et al. 1985, p.40). While this is the
case for most di,j , we observed that this condition is sometimes violated. Whatever
happens, there is no impact on the estimation because we only care about what
happens at the distribution level: there may be several parameters leading to the
same distribution, some components may vanish in the fitting process, but this is
easily remedied, and EM behaves well.

As stated in Section 2.2, musical patterns form hierarchical structures closely re-
lated to meter (Handel 1993). Thus, the distribution of p(D(xl)) can be computed
for many numbers of partitions within each rhythmic sequence. Let P = {ρ1, . . . ρh}
be a set of numbers of partitions to be considered by our model, where h is the
number of such numbers of partitions. The choice of P depends on the domain of
application. Following meter, P may have dyadic1 tree-like structure when model-
ing most music genres (e.g. P = {2, 4, 8, 16}). Let Dρr

(xl) be the distance matrix
associated with sequence xl divided into ρr parts. Estimating the joint probabil-
ity

∏h
r=1 p(Dρr

(xl)) with the EM algorithm as described in this section leads to a
model of the distance structures in rhythms datasets. Suppose we consider 16 bar
songs with four beats per bar. Using P = {8, 16} would mean that we consider
pairs of distances between every group of two measures (ρ = 8), and every single
measures (ρ = 16).

One may argue that our proposed model for long-term dependencies is rather
unorthodox. However, simpler models like Poisson or Bernoulli process (we are
working in discrete time) defined over the whole sequence would not be flexible
enough to represent the particular long-term structures in music.

2.4. HMMs

The HMM model (Rabiner 1989) is a well known probabilistic model for time
series. Let X = {x1, . . . ,xn} be a dataset of rhythm sequences, where all the

1Even when considering non-dyadic measures (e.g. a three-beat waltz), the very large majority of the
hierarchical levels in metric structures follow dyadic patterns in most tonal music (Handel 1993).
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Figure 2. Hidden Markov Model. Each node is associated to a random variable and arrows denote con-
ditional dependencies. When learning the parameters of the model, white nodes are hidden whereas grey
nodes are observed.

sequences contain m elements: xl = (xl
1, . . . , x

l
m), l = 1, . . . , n. Furthermore, let

hl = (hl
1, . . . , h

l
m) be the corresponding sequence of states for a discrete hidden

variable synchronized with xl.The joint probability of the rhythm sequence xl and
hidden states hl estimated by an HMM is given by

pHMM(xl,hl) = pπ(hl
1)po(xl

1|hl
1)

m∏
t=2

pō(hl
t|hl

t−1)po(xl
t|hl

t) , (7)

where the pō(.|.) terms are called transition probabilities, the po(.|.) terms are called
emission probabilities, and the pπ(.) is the initial probability of the first state
of the hidden variable. This model is presented in Figure 2, following standard
graphical model formalism. Each node is associated to a random variable and
arrows denote conditional dependencies. The probability distributions pπ, pō, and
po are multinomials, whose parameters can be learned by the EM algorithm.

2.5. Conditional Prediction

For most music applications, it would be particularly helpful to know which se-
quence x̂s, . . . , x̂m maximizes p(x̂s, . . . , x̂m|x1, . . . , xs−1). Knowing which musical
events are the most likely given the past s − 1 observations would be useful both
for prediction and generation. Note that in the remainder of the paper, we refer to
prediction of musical events given past observations only for notational simplicity.
All the models presented in this paper could be used to predict any part of a music
sequence given any other part with only minor modifications.

While the described modeling approach captures long range interactions in the
music signal, it has two shortcomings. First, it does not model local dependencies:
it does not predict how the distances in the smallest subsequences (i.e. with length
smaller than m/max(P)) are distributed on the events contained in these subse-
quences. Second, as the mapping from sequences to distances is many to one, there
exists several admissible sequences xl for a given set of distances. These limitations
are addressed by using another sequence learner designed to capture short-term de-
pendencies between musical events. Here, we use a standard HMM (Rabiner 1989),
as described in Section 2.4.

The two models are trained separately using their respective version of the EM
algorithm. For predicting the continuation of new sequences, they are combined
by choosing the sequence that is most likely according to the local HMM model,
provided it is also plausible regarding the model of long-term dependencies. Let
pHMM(xl) be the probability of observing sequence xl estimated by the HMM after
training. The final predicted sequence is the solution of the following optimization
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(1) Initialize x̂s, . . . , x̂m using Eq. (10);
(2) Set j = s and set end = true;
(3) Set x̂j = arg max

a∈A
[log pHMM(x∗|x1, . . . , xs−1) +

λ
∑h

r=1 log p(Dρr
(x1, . . . , xs−1,x∗))]

where x∗ = (x̂s, . . . , x̂j−1, a, x̂j+1, . . . , x̂m)
(4) If x̂j has been modified in the last step, set end = false.
(5) If j = m and end = false, go to 2;
(6) If j < m, set j = j + 1 and go to 3;
(7) Return x̂s, . . . , x̂m.

Figure 3. Simple optimization algorithm to maximize p(x̂i, . . . , x̂m|x1, . . . , xi−1)

problem: 
max

x̃s,...,x̃m

pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1)

subject to
h∏

r=1

p(Dρr
(xl)) ≥ P0 ,

(8)

where P0 is a threshold. In practice, one solves a Lagrangian formulation of prob-
lem (8), where we use log-probabilities for computational reasons:

max
x̃s,...,x̃m

[log pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1) + λ

h∑
r=1

log p(Dρr
(xl))] , (9)

where tuning λ has the same effect as choosing a threshold P0 in problem (8) and
can be done by cross-validation.

Multidimensional Scaling (MDS) is an algorithm that tries to embed points (here
“local” subsequences) into a potentially lower dimensional space while trying to
be faithful to the pairwise affinities given by a “global” distance matrix. Here, we
propose to consider the prediction problem as finding sequences that maximize the
likelihood of a “local” model of subsequences under the constraints imposed by
a “global” generative model of distances between subsequences. In other words,
solving problem (8) is similar to finding points such that their pairwise distances
are as close as possible to a given set of distances (i.e. minimizing a stress func-
tion in MDS). Naively trying all possible subsequences to maximize (9) leads to
O(|A|(m−s+1)) computations. Instead, we propose to search the space of sequences
using a variant of the Greedy Max Cut (GMC) method (Rohde 2002) that has
proven to be optimal in terms of running time and performance for binary MDS
optimization.

The subsequence x̂s, . . . , x̂m can be simply initialized with

(x̂s, . . . , x̂m) = max
x̃s,...,x̃m

pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1) (10)

using the local HMM model. The complete optimization algorithm is described
in Figure 3. For each position, we try every admissible symbol of the alphabet
and test if a change increases the probability of the sequence. We stop when no
further change can increase the value of the utility function. Obviously, many other
methods could have been used to search the space of possible sequences x̂s, . . . , x̂m,
such as simulated annealing (Kirkpatrick et al. 1983). Our choice is motivated by
simplicity and the fact that it yields excellent results, as reported in the following
section.
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Note that the algorithm in Figure 3 does not define by itself a generative model
of rhythms. It only provides an approximation of the most probable sequence ac-
cording to an implicitly defined probabilistic model. However, the conditioning set
of variables in the objective value of problem (8) may be empty if we set the value
of s to 1 (i.e. the HMM term becomes a joint distribution of all the observations),
in which case problem (8) defines a proper generative model of observed data. A
naive sampling algorithm for this model would be to sample the HMM distribution,
and to use the distance constraint as a rejection criterion. The parameter P0 would
thus determine indirectly the proportion of rejected samples during the sampling
process.

3. Rhythm Prediction Experiments

Two databases from different musical genres were used to evaluate the pro-
posed model. Firstly, 47 jazz standards melodies (Sher 1988) were interpreted and
recorded by the first author in MIDI format. Appropriate rhythmic representations
as described in Section 2.3 have been extracted from these files. The complexity
of the rhythm sequences found in this corpus is representative of the complexity
of common jazz and pop music. We used the last 16 bars of each song to train
the models, with four beats per bar. Two rhythmic observations were made for
each beat, yielding observed sequences of length 128. We also used a subset of the
Nottingham database1 consisting of 53 traditional British folk dance tunes called
“hornpipes”. In this case, we used the first 16 bars of each song to train the mod-
els, with four beats per bar. Three rhythmic observations were made for each beat,
yielding observed sequences of length 192. The sequences from this second database
contain no silence (or rest), leading to sequences with binary states.

The goal of the proposed model is to predict or generate rhythms given previ-
ously observed rhythm patterns. As pointed out in Section 1, such a model could
be particularly useful for music information retrieval, transcription, or music gen-
eration applications. Let εji = 1 if x̂j

i = xj
i , and 0 otherwise, with xj = (xj

1, . . . , x
j
m)

a test sequence, and x̂j
i the output of the evaluated prediction model on the i-th

position when given (xj
1, . . . , x

j
s) with s < i. Hence, we fix the value of s in each ex-

periment to be the number of rhythm symbols observed by the model before trying
to make predictions. Assume that the dataset is divided into K folds T1, . . . , TK

(each containing different sequences), and that the k-th fold Tk contains nk test
sequences. When using cross-validation, the accuracy Acc of an evaluated model is
given by

Acc =
1
K

K∑
k=1

1
nk

∑
j∈Tk

1
m− s

m∑
i=s+1

εji . (11)

Note that, while the prediction accuracy is simple to compute and to apprehend,
other performance criteria, such as ratings provided by a panel of experts, should
be more appropriate to evaluate the relevance of music models. We plan to define
such an evaluation protocol in future work. We used 5-fold double cross-validation
to estimate the accuracies. Double cross-validation is a recursive application of
cross-validation that enables to jointly optimize the hyper-parameters of the model
and evaluate its generalization performance. Standard cross-validation is applied

1http://www.cs.nott.ac.uk/~ef/music/database.htm.
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Table 1. Accuracy (the higher the better) for

best models on the jazz standards database.

Observed Predicted HMM Global
32 96 34.5% 54.6%
64 64 34.5% 55.6%
96 32 41.6% 47.2%

Table 2. Accuracy (the higher the better) for

best models on the hornpipes database.

Observed Predicted HMM Global
48 144 75.1% 83.0%
96 96 75.6% 82.1%
144 48 76.6% 80.1%

to each subset of K−1 folds with each hyper-parameter setting and tested with the
best estimated setting on the remaining hold-out fold. The reported accuracies are
the averages of the results of each of the K applications of simple cross-validation
during this process.

For the baseline HMM model, double cross-validation optimizes the number of
possible states for the hidden variables. In the reported experiments, we tried 2
to 20 possible states. In the case of the model with distance constraints, referred
to as the global model, the hyper-parameters that were optimized are the number
of possible states for hidden variables in the local HMM model (i.e. 2 to 20), the
Lagrange multiplier λ, the number of components c (common to all distances) for
each binomial mixture, and the choice of P, i.e. which partitions of the sequences to
consider. Values of λ ranging between 0.1 and 4 and values of c ranging between 2
and 5 were tried during double cross-validation. Since music data commonly shows
strong dyadic structure following meter, many subsets of P = {2, 4, 8, 16} were
allowed during double cross-validation.

Note that the baseline HMM model is a poor benchmark on this task, since
the predicted sequence, when prediction consists in choosing the most probable
subsequence given previous observations, only depends on the state of the hidden
variable at time s. This observation implies that the number of possible states for
the hidden variables of the HMM upper-bounds the number of different sequences
that the HMM can predict. However, this behavior of the HMM does not question
the validity of the reported experiments. The main goal of this quantitative study
is to measure to what extent distance patterns are present in music data and how
well these dependencies can be captured by the proposed model. What we really
want to measure is how much gain we observe in terms of out-of-sample prediction
accuracy when using an arbitrary model if we impose additional constraints based
on distance patterns. That being said, it would be interesting to measure the ef-
fect of appending distance constraints to more complex music prediction models
(Dubnov et al. 2003, Pachet 2003).

Results in Table 1 for the jazz standards database show that considering distance
patterns significantly improves the HMM model. One can observe that the baseline
HMM model performs much better when trying to predict the last 32 symbols.
This is due to the fact that this database contains song endings. Such endings
contain many silences and, in terms of accuracy, a useless model predicting silence
at any position performs already well. On the other hand, the endings are generally
different from the rest of the rhythm structures, thus harming the performance of
the global model when just trying to predict the last 32 symbols. Results in Table 2
for the hornpipes database again show that the prediction accuracy of the global
model is consistently better than the prediction accuracy of the HMM, but the
difference is less marked. This is mainly due to the fact that this dataset only
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Table 3. Accuracy over the last

64 positions for many sets of par-

titions P on the jazz database,

given the first 64 observations.

The higher the better.

P Global
{2} 49.3%
{2, 4} 49.3%
{2, 4, 8} 51.4%
{2, 4, 8, 16} 55.6%

contains two symbols, associated to note onset and note continuation. Moreover,
the frequency of these symbols is quite unbalanced, making the HMM model much
more accurate when almost always predicting the most common symbol.

In Table 3, the set of partitions P is not optimized by double cross-validation.
Results are shown for different fixed sets of partitions. The best results are reached
with “deeper” dyadic structure. This is a good indication that the basic hypothesis
underlying the proposed model is well-suited to music data, namely that dyadic
distance patterns exhibit strong regularities in music data. We did not compute
accuracies for ρ > 16 because it makes no sense to estimate distribution of distances
between too short subsequences.

One could wonder why we restricted our proposed model to metric distances.
It would indeed be possible to design a model for non metric distances, such as
subjective human similarity judgments. However, we want to emphasize that specif-
ically dealing with metrics has many advantages. First, we do not have subjective
measures between our rhythm subsequences available. In contrast, the Hamming
distance is an easily computed objective dissimilarity that is psychoacoustically
relevant and intuitive given our proposed representation for rhythms. Since Ham-
ming distance is a metric, not modeling the metric constraints would add useless
degrees of freedom to a model of such distances, since we know how to model these
constraints directly. Second, an embedding of rhythm subsequences could be built
using the proposed metric (i.e. Hamming distances) that could be used as a pre-
processing step to other models of subsequences. One could design algorithms that
would first draw samples from a generative model of metric distances like ours, and
then generate actual observations from the sampled metrics. This would be much
more difficult if sampling from a model of non metric distances.

4. Melodic Model

With a reliable predictive model of rhythms available, we can now turn our atten-
tion to a more difficult problem, which is to model melody notes, given rhythm and
chord progressions. In order to do so, we proceed iteratively in three steps depicted
schematically in Figure 4. We first model rhythms with the model presented in
Section 2. Then, we model features that represent the plausibility of sequences of
notes. These “Narmour” features, introduced in Section 4.2, are computed for each
sequence of three consecutive notes. Their prediction is an interesting intermediate
problem since the cardinality of such features is much lower than the number of
sequences of three notes. Moreover, such features are descriptive of the perceptual
expectancy of a particular group of three notes. As stated in Section 1, chords
can be seen as latent variables (local in time) that condition the probabilities of
choosing particular notes in a melody. However, chords do not describe longer term
melodic structure. This is why we propose to use Narmour features as sequences
of constraints on the choices of melody notes. In Section 4.3, we describe a proba-
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1. Rhythm

2. Narmour

Chords

3. Melody

Figure 4. Schematic overview of the proposed melodic model. We first model rhythms. Then, we model
Narmour features sequences given rhythms. Finally, we model actual melodies given Narmour features and
chords.
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Figure 5. Variant of an IOHMM model for MIDI notes given chords. The variables in level 1 are always
observed and correspond to chords. Variables in level 2 are hidden, while variables in level 3 correspond
to melodic notes. All variables in grey are observed during training.

bilistic model for melody notes given Narmour features and chord progressions.
Results reported in Section 5 show that using sequences of Narmour features

as constraints leads to much better prediction accuracy than the direct baseline
approach using the IOHMM model described in the following section.

4.1. IOHMMs

A simple probabilistic model for melodies given chords can be designed by adding
input variables to the HMM of Section 2.4. Let U = {u1, . . . ,un} be a dataset of
varying length melodies, where melody ul has length gl, ul = (ul

1, . . . , u
l
gl

). Each
melodic line is composed of notes ul

i in the MIDI standard, ul
i ∈ {0, . . . , 127}. The

melodies in dataset U are synchronized with rhythms in the dataset X defined as in
Section 2. The length gl of melodic line ul corresponds thus to the number of note
onsets (symbol 1) in rhythm sequence xl. In addition, let νl = (νl

1, . . . , ν
l
gl

) be the
chord progression corresponding to the l-th melody. Here, each νl

t takes a discrete
value within the number of different chords in the dataset. The joint probability
of each sequence ul, its associated chord progression νl, and hidden states hl can
be modeled by

pIOHMM(ul,νl,hl) = pi(νl
1)pπ(hl

1|νl
1)po(ul

1|hl
1)

gl∏
t=2

pi(νl
t)pō(hl

t|hl
t−1, ν

l
t)po(ul

t|hl
t) .

(12)
This model, shown in Figure 5, is a specific Input/Output Hidden Markov Model
(IOHMM), as introduced by Bengio and Frasconi (1996). Usual IOHMMs have
additional links connecting directly the input variables (level 1) to the outputs
(level 3). We removed these links to decrease to number of parameters in the
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model, and thus being less prone to overfit the training data.
The probability distributions pπ, pi, pō, and po are multinomials, as in Equa-

tion (7), and the model is learned by the standard EM algorithm. Marginalization
must be carried out in this model both for learning (during the expectation step
of the EM algorithm) and for evaluation. Exact marginalization with the standard
Junction Tree Algorithm (Lauritzen 1996) is usually tractable in IOHMMs be-
cause of their limited complexity. Performance of the IOHMM in terms of melodic
prediction accuracy given chords is presented in Section 5.

4.2. Narmour Features

In this section, we introduce melodic features that will prove to be useful for melodic
prediction. The Implication-Realization (I-R) model has been developed by Nar-
mour (1990, 1992) as a theory of musical expectation. This fairly complex musi-
cological model was then simplified and implemented by Schellenberg (1997), who
proposed a formal analysis of each sequence of three consecutive notes, according
to five perceptual items: registral direction, intervallic difference, registral return,
proximity, and closure, as described later in this section. The model returns five
scores measuring expectancy according to these five criteria, and, according to
Narmour’s theory, high perceptual expectancy incurs high cumulative scores. This
model was empirically shown to be relevant in information retrieval applications
(Grachten et al. 2005).

In this paper, our goal is quite different. Instead of quantifying melodic ex-
pectancy, we design a probabilistic model of melodic sequences given chords. We
propose to collectively use the Narmour principles as discrete features to charac-
terize each sequence of three consecutive notes. In the remainder of this paper, we
refer to these features as Narmour features. There is far fewer possible Narmour
features (108 in our implementation) than possible groups of three notes (1283

if we consider all MIDI notes). Given that observation, we expect that modeling
sequences of Narmour features should be easier than modeling actual sequences
of notes. We describe in Section 4.3 how we propose to generate actual melodies
given sequences of Narmour features.

Our particular implementation of the Narmour features is mostly derived from
Schellenberg (1997). We simply define the interval vt between two notes ut and
ut−1 to be the difference vt = ut−1 − ut between their MIDI note numbers. In-
terval has to be taken here in its musicological sense, which is not related to the
usual mathematical definition: an interval is an integer that counts the number of
semi-tones between two notes. Each Narmour principle can be computed for any
sequence of three consecutive notes, corresponding to two intervals. In Narmour’s
theory, the first interval is referred to as the Implication while the second interval
corresponds to the Realization of a melodic pattern of three notes. We define the
sign function as

sgn(x) =

−1 if x < 0
0 if x = 0
1 if x > 0

.

The registral direction principle states that continuation in pitch direction is ex-
pected after small intervals and that large intervals imply a change of direction.
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We define

rmt =

0 if |vt−1| > 6 and sgn(vt−1) = sgn(vt)
1 if |vt−1| ≤ 6
2 if |vt−1| > 6 and sgn(vt−1) 6= sgn(vt)

to be the Narmour feature scoring the registral direction principle computed on
arbitrary MIDI notes ut−2, ut−1, and ut.

The intervallic difference principle says that small intervals imply similar-sized
realized intervals and that large implicative intervals imply relatively smaller real-
ized intervals. Formally,

idt =


1 if |vt−1| < 6 and sgn(vt−1) 6= sgn(vt) and ||vt−1| − |vt|| < 3
1 if |vt−1| < 6 and sgn(vt−1) = sgn(vt) and ||vt−1| − |vt|| < 4
1 if |vt−1| > 6 and |vt−1| ≥ |vt|
0 otherwise

is the Narmour feature scoring the intervallic difference principle.
The registral return principle states that the second tone of a realized interval is

expected to be very similar to the original pitch (within 2 semi-tones). Thus, we
define the following scoring function

rrt =
{

1 if |vt + vt−1| ≤ 2
0 otherwise.

Then, the closure principle states that either melody changes direction, or that
large intervals are followed by a relatively smaller interval. This feature is scored
by

clt =


2 if sgn(vt−1) 6= sgn(vt) and |vt−1| − |vt| > 2
1 if sgn(vt−1) 6= sgn(vt) and |vt−1| − |vt| < 3
1 if sgn(vt−1) = sgn(vt) and |vt−1| − |vt| > 3
0 otherwise.

Finally, the proximity principle favors small realized intervals. We define

prt =

0 if |vt| ≥ 6
1 if 3 ≤ |vt| ≤ 5
2 if 0 ≤ |vt| ≤ 2

.

We define this feature with less possible states than in (Schellenberg 1997) in order
to limit the dimensionality of the Narmour representation. Besides, the actual
numerical values for each of the Narmour features do not correspond to those of
Schellenberg (1997), where the goal was to quantify numerically the subjective
melodic expectation. In the context of this paper, these values only correspond to
discrete ordered values summarizing triplets of notes.

From these definitions, the Narmour features for the note triplet (ut−2, ut−1, ut)
are defined as

γt = (rmt, idt, rrt, clt,prt) .

Such features have 108 possible different discrete states.
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Figure 6. Variant of an IOHMM model for Narmour features given note lengths. The variables in level
1 are always observed and correspond to previous note lengths. Variables in level 2 are hidden, while
variables in level 3 correspond to Narmour features. All variables in grey are observed during training.

As an example, the sequence of MIDI notes (u1, u2, u3, u4) = (71, 74, 72, 84)
would lead to the Narmour features γ3 = (1, 1, 1, 1, 2) and γ4 = (1, 0, 0, 1, 0).

4.3. Melodic Model

In this section, we describe a probabilistic model for melodies given rhythms and
chord progressions. While the IOHMM in Section 4.1 was directly modeling the
choice of notes given chords (and implicitly rhythms), the model described here
proceeds in two steps. We first model sequences of Narmour features given rhythm.
Then, we model the actual choice of melodic notes, given sequences of Narmour fea-
tures generated in the last step and chord progressions. These two steps correspond
to steps 2. and 3. in Figure 4.

4.3.1. IOHMM for Narmour Features

An IOHMM like the one presented in Section 4.1 can be used to model sequences
of Narmour features given rhythms. We first compress the rhythm dataset in a form
that is synchronized with Narmour features: we define al = (al

2, . . . , a
l
gl−1) to be

the l-th sequence of note lengths in the rhythm dataset X , ignoring the first and
last note lengths al

1 and al
gl

. When considering the rhythm representation defined
in Section 2.3, each al

i is equal to one plus the number of symbols 2 following the
i-th symbol 1 in the corresponding rhythm sequence xl. For instance, the rhythm
sequence xl = (1, 1, 2, 2, 3, 1, 2, 1) produces the note length sequence al = (3, 2).
We denote by γl = (γl

3, . . . , γ
l
gl

) the sequence of Narmour features associated to
the l-th melody. This sequence starts with index 3 because each Narmour feature
spans three notes.

The joint probability of each sequence of Narmour features γl, its associated
sequence of note lengths al, and hidden states hl can be modeled by

pNIOHMM(al,γl,hl) = pi(al
2)pπ(hl

1|al
2)po(γl

3|hl
1)

gl∏
t=4

pi(al
t−1)pō(hl

t−2|hl
t−3, a

l
t−1)po(γl

t|hl
t−2) . (13)

This model is shown in Figure 6. As in Equation (12), the probability distributions
pπ, pi, pō, and po are multinomials, and the model is learned by the standard EM
algorithm.

As can be seen in Equation (13), we arbitrarily chose to condition the Narmour
features on the previous note length. This is due to the empirical observation that
greater intervals tend to occur after long notes while smaller intervals tend to occur
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after short notes. Other models of Narmour features given current length, a longer
past context, or even no note length at all could be considered. We leave this
exploration for future work.

4.3.2. Notes Model

We are now about to reach the end of our quest for a complete generative model
of melodies given chord progressions and rhythms. The only piece of the puzzle
that remains to be defined is a model for MIDI notes given Narmour features,
chord progressions, and rhythms.

As stated in Section 1, each chord is made of three or more notes. Usually, the
lowest note of the chord is called the root of the chord. This note is so important
in the chord that it gives its name to the chord. For instance, the root of the chord
CMaj7b5 is the pitch class C. Here we decompose the chord representation defined
in Section 4.1 into two parts: νl

i = (ηl
i, τ

l
i ), where ηl

i is the structure of the chord and
τ l
i is the root pitch class. Chord structures are just the chord definitions aside of

the name of the root (e.g. “m7b5” is the chord structure in the chord “Bm7b5”).
Each different chord structure is mapped to a specific state of the variables ηl

i.
The sequences ηl = (ηl

1, . . . , η
l
gl

) and τ l = (τ l
1, . . . , τ

l
gl

) are respectively the chord
structure and the root progressions of the l-th song in the dataset.

Let ũl
t be an arbitrary MIDI note played at time t. We define

φ(ũl
t, τ

l
t ) = ((ũl

t mod 12)− τ l
t ) mod 12

to be the representation of the pitch class associated to the MIDI note ũl
t, relative

to the root of the current chord. For instance, let ũl
t = 65 (note F) be played over

the D minor chord. In that case, we have τ l
t = 2, meaning that the pitch class of the

root of the chord is D. Hence, φ(65, 2) = 3 for that particular example, meaning
that the current melody note pitch class is 3 semi-tones higher than the root of the
current chord.

It is easy to estimate p(ηl
t|ũl

t, τ
l
t ) with a multinomial distribution conditioned on

the values of φ(ũl
t, τ

l
t ). This distribution can be estimated by maximum likelihood

over a training set. Hence, we learn a simple distribution of the chord structures
η for each possible pitch classes of the melodies relative to the roots of the corre-
sponding chords. For instance, this distribution could learn the fact that we often
observe a minor seventh chord when playing a minor third over the tonic in the
melody.

Let γ̃l
t(u

l
t−2, u

l
t−1, ũ

l
t) be the extracted Narmour feature when notes ul

t−2 and ul
t−1

are followed by the arbitrary note ũl
t. Also, let κ̃l

t be an arbitrary random variable
such that

p(κ̃l
t = 1|ũl

t, u
l
t−2, u

l
t−1, γ

l
t) =

{
1 if γl

t = γ̃l
t(u

l
t−2, u

l
t−1, ũ

l
t)

0 otherwise.

In words, κ̃l
t is equal to 1 if and only if the Narmour feature produced when playing

arbitrary note ũl
t is equal to the given Narmour feature γl

t, given the two previous
notes.

We define a factorization of the joint probability of the variables ũl
t, u

l
t−1,

ul
t−2, η

l
t, τ

l
t ,γ

l
t, and κ̃l

t with

p(ũl
t, u

l
t−1, u

l
t−2, η

l
t, τ

l
t ,γ

l
t, κ̃

l
t) =

p(ul
t−1)p(u

l
t−2)p(γ

l
t)p(κ̃

l
t|ũl

t, u
l
t−2, u

l
t−1, γ

l
t)p(ũ

l
t)p(τ

l
t )p(η

l
t|ũl

t, τ
l
t )

(14)

at each time t. This factorization is is shown by the graphical model in Figure 7.
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ut−2 ut−1

γt ηt

τtũt

κ̃t

Figure 7. Graphical model representation of the factorization of the joint probability defined in Eq. (14).

We want to estimate the probability of playing any arbitrary MIDI note ũl
t at

time t in the l-th song of the dataset given the two previous observed notes ul
t−2

and ul
t−1, the current Narmour feature γl

t, and the current chord νl
t = (ηl

t, τ
l
t ).

Given the factorization in Equation (14), we have that

pMEL(ũl
t|ul

t−1, u
l
t−2, η

l
t, τ

l
t ,γ

l
t, κ̃

l
t = 1) =

p(κ̃l
t = 1|ũl

t, u
l
t−2, u

l
t−1, γ

l
t)p(ũ

l
t)p(η

l
t|ũl

t, τ
l
t )∑

ũl
t
p(κ̃l

t = 1|ũl
t, u

l
t−2, u

l
t−1, γ

l
t)p(ũl

t)p(ηl
t|ũl

t, τ
l
t )

(15)

where p(ũl
t) is the prior probability of observing ũl

t. The distribution p(ũl
t) is a

multinomial that can be simply estimated by maximum likelihood on the training
set.

Hence, a simple strategy to find the most likely MIDI note ũl
t given ul

t−1,
ul

t−2, η
l
t, τ

l
t , and γl is to solve

arg max
{ũl

t|κ̃l
t=1,ul

t−1,u
l
t−2,γ

l}
p(ũl

t)p(η
l
t|ũl

t, τ
l
t ) ,

since the denominator in the right-hand side of Equation (15) is the same for all
values of ũl

t. In other words, we search for the most likely melodic note (with respect
to the current chord) among all the possible notes given the current Narmour
constraint and the current chord. Despite the fact that this model only predicts
one note at a time, it is able to take into account longer term melodic shapes
through the constraints imposed by the sequences of Narmour features.

Melodic prediction without observing Narmour features can be done with this
model in two steps. We first generate the most likely sequence of Narmour features
given rhythms with the IOHMM model described in Section 4.3.1. Then, we can
use the melodic prediction model described in the current section to predict MIDI
notes given chord progressions. Such a model is shown in Section 5 to have much
better prediction accuracy than using a simpler IOHMM model alone.

Unsupervised probabilistic models can be sampled to generate genuine chord
progressions (Paiement et al. 2005). The melodic model described here is able
to generate realistic melodies given these chord progressions and beginning of
melodies. This system can be used as a tool to ease music composition. Audio files
generated by sampling the different models presented in this paper are available
at http://www.idiap.ch/∼paiement/connection. Even for the non musician, it
should be obvious that the sequences generated by sampling the melodic model
introduced in this section are much more realistic than sequences generated by
sampling the IOHMM model described in Section 4.1. Both models generate notes
that are coherent with the current chord. However, the sequences generated by the
IOHMM model do not have any coherent structure. On the other hand, melodies
generated by the melodic model presented here tend to follow the same melodic
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Table 4. Local accuracy (the

higher the better) for prediction

models on the jazz standards

database, for various prediction

starting points s.

s IOHMM Narmour
32 2.0% 11.9%
64 1.7% 12.1%
96 2.2% 14.9%

shapes than the songs in the training sets. These melodic shapes are constrained
by the conditioning sequences of Narmour features used as inputs.

5. Melodic Prediction Experiments

To compare the melodic model described in the previous section with the IOHMM
model of Section 4.1, we propose a slightly different evaluation criterion than the
prediction accuracy defined in Section 3. This alternate criterion was chosen in this
case for its computational simplicity.

The goal of the proposed models is to predict or generate melodies given chord
progressions and rhythms. Let uj = (uj

1, . . . , u
j
gj ) be a test sequence of MIDI notes

and ûj
i to be the output of the evaluated prediction model on the i-th position

when given (uj
1, . . . , u

j
i−1) and the associated rhythm sequence xj . Assume that the

dataset is divided into K folds T1, . . . , TK (each containing different sequences),
and that the k-th fold Tk contains nk test sequences. Again, let s be the first
rhythm position from which the evaluated model try to guess what would be the
next notes in each test songs. When using cross-validation, we define the “local
accuracy” LocAcc of an evaluated model to be

LocAcc =
1
K

K∑
k=1

1
nk

∑
j∈Tk

1

gj − ζj
s + 1

gj∑
i=ζj

s

ε̃ji (16)

where ε̃ji = 1 if ûj
i = uj

i , and 0 otherwise, and ζj
s is the smallest note index in the

j-th song whose onset position is greater than position s. Hence, prediction models
have access to all the previously observed notes when trying to guess what would
be the next note. This rate of success is averaged on the last gj − ζj

s + 1 notes of
each song.

We tried 2 to 20 possible hidden states in the reported experiments for the base-
line IOHMM model of Section 4.1 and the “Narmour” IOHMM of Section 4.3.1.
Both models try to predict out-of-sample melody notes, given chord progressions
and complete test rhythm sequences xj . The same chord representations are used
as input for both models. We used 5-fold cross-validation to compute prediction ac-
curacies. We report results for the choices of parameters that provided the highest
accuracies for each model. The IOHMM model of notes given chords is a stronger
contender than would be a simpler HMM trained on melodies, because the predic-
tion given by the IOHMM takes advantage of the current input.

Results in Table 4 for the jazz standards database show that generating Narmour
features as an intermediate step greatly improves prediction accuracy. Since there
are 128 different MIDI notes, a completely random predictor would have a local
accuracy of 0.8%. Both models take into account chord progressions when trying to
predict the next MIDI note. However, the Narmour model favors melodic shapes
similar to the ones found in the training set. The Narmour model still provides
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Table 5. Local accuracy (the

higher the better) for predic-

tion models on the hornpipes

database, for various prediction

starting points s.

s IOHMM Narmour
48 2.5% 4.6%
96 2.6% 4.9%
144 2.6% 5.0%

consistently better prediction accuracy on the hornpipes database, as can be seen
in Table 5. However, prediction accuracies are lower on the hornpipes database
than on the jazz database for the Narmour model. Note onsets (symbol 1) occur
on most rhythm positions in this database. This means that rhythm sequences
in this database have relatively low entropy. Hence, rhythm sequences are less
informative when used as conditioning inputs to generate sequences of Narmour
features. Another observation is that the chord structures in this database are
almost always the same (i.e. simple triads). The melodic model of Section 4.3 is
directly modeling the distribution p(ηl

t|ũl
t, τ

l
t ) of chord structures given relative

MIDI notes. This distribution was probably more helpful for melodic prediction in
the jazz database than in the hornpipes database. Despite these two drawbacks,
the melodic model of Section 4.3 has a prediction accuracy twice as good as what
was obtained with the simpler IOHMM model in the hornpipes database.

Again, while the prediction accuracy is simple to compute and to apprehend,
other performance criteria, such as ratings provided by a panel of experts, should
be more appropriate to evaluate the relevance of music models. The fact that the
Narmour model accurately predict “only” about 12% of the notes on out-of-sample
sequences does not mean that it is not performing well when generating the other
“wrong” notes. Many realistic melodies can be generated on the same chord pro-
gression in a given musical genre. Moreover, some mistakes are more harmful than
others. For most applications, a model that would have very low prediction accu-
racy, but that would generate realistic melodies, would be preferable to a model
with 50% prediction accuracy, but that would generate unrealistic notes the other
half of the time. In principle, likelihood of out-of-sample sequences could have been
an interesting alternative evaluation measure to the reported prediction accuracies
that would somehow alleviate this problem. Indeed, out-of-sample likelihood mea-
sures the fit of a whole distribution to out-of-sample data, whereas prediction error
rate concentrates on the fit of the modes of the distribution. However, out-of-sample
likelihood has three major drawbacks that prevented us to use it as an evaluation
measure in this paper. First, each factor in the likelihood can be potentially ar-
bitrary close to 0 when a very unlikely event is encountered during testing. This
means that a single unlikely event can have a dramatic impact on the evaluation
of the model. Prediction error rate does not suffer from this problem because all
errors have the same cost, which makes this evaluation method much more robust
to outliers. Secondly, our objective was not to sample the proposed models, but to
predict the most probable ending of a song given its beginning. Prediction error
rate is an evaluation measure that is directly related to this particular applica-
tion. Last but not least, exact computation of the likelihood is not tractable in our
proposed rhythm model.
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6. Conclusion

The main contribution of this paper is the design and evaluation of predictive
models for rhythms and melodies. While a few models have already been proposed
for music in general (Dubnov et al. 2003, Pachet 2003), we are not aware of proper
quantitative comparisons between predictive models of music, as we do in Sections 3
and 5.

In Section 2, we considered rhythm modeling as a first step towards full melodic
modeling. For doing so, we proposed a generative model for distance patterns
in temporal data. The model is specifically well-suited to music data, which ex-
hibits strong regularities in dyadic distance patterns between subsequences. Re-
ported conditional prediction accuracies in Section 3 show that such regularities
are present in music data and can be effectively captured by the proposed model.
Moreover, learning distributions of distances between subsequences really helps for
accurate rhythm prediction.

Finally, with a reliable rhythm model available, we introduced in Section 4 a gen-
erative model of melodies given rhythms and chord progressions. For that purpose,
we first described melodic features derived from Narmour (1990) that put useful
constraints on melodies based on musicological substantiation. We then defined
in Section 4.3 a probabilistic model of melodies that provides significantly higher
prediction rates than a simpler, yet powerful, Markovian model. The combination
of the rhythm model and the melodic model given chords leads to a predictive
model of music that could be interesting in many applications. Furthermore, these
models are able to generate realistic melodies given appropriate musical contexts.
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