
Sequence Kernels for Predicting Protein Essentiality

Cyril Allauzen allauzen@google.com

Google Research, New York, NY

Mehryar Mohri mohri@cs.nyu.edu

Courant Institute of Mathematical Sciences and Google Research, New York, NY

Ameet Talwalkar ameet@cs.nyu.edu

Courant Institute of Mathematical Sciences, New York, NY

Abstract

The problem of identifying the minimal gene
set required to sustain life is of crucial im-
portance in understanding cellular mecha-
nisms and designing therapeutic drugs. This
work describes several kernel-based solutions
for predicting essential genes that outper-
form existing models while using less train-
ing data. Our first solution is based on a
semi-manually designed kernel derived from
the Pfam database, which includes several
Pfam domains. We then present novel and
general domain-based sequence kernels that
capture sequence similarity with respect to
several domains made of large sets of protein
sequences. We show how to deal with the
large size of the problem – several thousands
of domains with individual domains some-
times containing thousands of sequences – by
representing and efficiently computing these
kernels using automata. We report results
of extensive experiments demonstrating that
they compare favorably with the Pfam ker-
nel in predicting protein essentiality, while
requiring no manual tuning.

1. Motivation

Identifying the minimal gene set required to sustain
life is of crucial importance for understanding the fun-
damental requirements for cellular life and for select-
ing therapeutic drug targets. Gene knockout stud-
ies and RNA interference are experimental techniques

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

for identifying an organism’s “essential” genes, or the
set of genes whose removal is lethal to the organism.
However, these techniques are expensive and time-
consuming. Recent work has attempted to extract
from experimental knockout studies relevant features
of essentiality, which aid in identifying essential genes
in organisms lacking experimental results.

Several features have been proposed as indicators
for essentiality, including evolutionary conservation,
protein size, and number of paralogs (Chen & Xu,
2005). Using these basic features, Chen and Xu (2005)
constructed a model of essentiality for S. cerevisiae
(baker’s yeast). Using Naive Bayes Classifiers (NBC),
Gustafson et al. (2006) subsequently created a model
of essentiality for S. cerevisiae and E. coli using an ex-
tended set of features generated from sequence data.

This work presents kernel methods to improve upon
existing models. We first use several sequence ker-
nels recently introduced by the computational biology
community and show that the Pfam kernel (Ben-Hur
& Noble, 2005) is most effective in selecting essential
genes for S. cerevisiae. The Pfam kernel has recently
been applied successfully in several biologically moti-
vated learning tasks, and is generated from the Pfam
database, the leading resource for storing protein fam-
ily classification and protein domain data. However,
the Pfam database is an ad-hoc solution relying on
semi-manually tuned information.

In the second part of this work, we design general se-
quence kernels that produce effective similarity mea-
sures while bypassing the manual tuning of the Pfam
database. We present two sequence kernels that are in-
stances of rational kernels, a class of sequence kernels
defined by weighted automata that are effective for an-
alyzing variable-length sequences (Cortes et al., 2004).
Using automata to represent and compute these ker-

Sequence Kernels for Essential Proteins

nels is crucial in order to handle the large number of
Pfam domains and the size of each of domain – we work
with 6190 domains with the largest domain contain-
ing over 3000 protein sequences. These novel kernels
are designed from the same domain-specific data used
by the Pfam library, and we show how they compare
favorably to the Pfam kernel at predicting protein es-
sentiality. They are general domain-based kernels that
can be used in many problems in bioinformatics or
other applications where similarity needs to be defined
in terms of proximity to several large sets of sequences.

The remainder of the paper is organized as follows.
Section 2 describes the various sequence kernels and
outlines the model used to improve prediction accu-
racy of protein essentiality in S. cerevisiae. Section 3
describes and analyzes the novel rational kernels we
present as alternatives to the Pfam kernel. Section 4
presents the results of extensive experiments compar-
ing these domain-based kernels to the Pfam kernel.

2. Pfam-Based Solution

Our first model uses Support Vector Machines (SVMs)
(Cortes & Vapnik, 1995) to predict protein essential-
ity with choices of kernels including the RBF kernel as
well as three sequence kernels. In the following sub-
sections, we define the sequence kernels, outline the
experimental design, and present our first results.

2.1. Sequence Kernels

Pfam Kernel

The Pfam database is a collection of multiple sequence
alignments and Hidden Markov Models (HMMs) rep-
resenting many common protein domains and fami-
lies. Pfam version 10.0 contains 6190 domains, and
for each domain an HMM is constructed from a set of
proteins experimentally determined to be part of the
domain (‘seed’ proteins). Each HMM is trained using
a manually-tuned multiple alignment of the seed pro-
teins with gaps inserted to normalize sequence length.
Once constructed, the HMM is evaluated in an ad-hoc
fashion and the entire process is repeated if the align-
ment is deemed ‘unsatisfactory.’ See (Sonnhammer
et al., 1997) for further details.

When applied to a test sequence, a Pfam domain
HMM generates an E-value statistic that measures the
likelihood of the test sequence containing the domain.
Given a dataset of protein sequences, the Pfam se-
quence kernel matrix is constructed by representing
each protein in the dataset as a vector of 6190 log
E-values and computing explicit dot products from
these feature vectors (Ben-Hur & Noble, 2005). The

PPV1 PPV5 PPV10 PPV20
0

10

20

30

40

50

60

70

80

90

100

 NBC
PFAM+RBF
RBF
PFAM
SPECTRUM
MOTIF
RANDOM

Figure 1. SVM’s performance for RBF and Sequence Ker-
nels using a reduced training set. Note that accuracy for
NBC corresponds to a model trained on 50% of training
data.

Pfam kernel has recently been applied successfully in
learning tasks ranging from protein function (Lanck-
riet et al., 2004) to protein-protein interaction (Ben-
Hur & Noble, 2005).

Spectrum and Motif Kernels

The Spectrum and Motif kernels are two recently pro-
posed sequence kernels used in learning tasks to esti-
mate protein similarity (Leslie & Kuang, 2004; Ben-
Hur & Brutlag, 2003). Both kernels model a protein
in a feature space of subsequences, with each feature
measuring the extent to which the protein contains
a specific subsequence. The Spectrum kernel models
proteins in a feature space of all possible n-grams, rep-
resenting each protein as a vector of n-gram counts (in
our studies we set n = 3). Alternatively, the Motif ker-
nel uses a feature space consisting of a set of discrete
sequence motifs (we use a set of motifs extracted from
the eMotif database (Ben-Hur & Noble, 2005)). For
both kernels, the resulting kernel matrices are com-
puted as an explicit dot product using these features.

2.2. Data

We used the dataset of S. cerevisiae proteins from
Gustafson et al. (2006), consisting of 4728 yeast pro-
teins of which 20.4% were essential. We constructed
the RBF kernel matrix from a set of 16 features gen-
erated directly from protein sequences, corresponding
to the ‘easily attainable’ features from Gustafson et al.
(2006). We used data from Ben-Hur and Noble (2005)
to construct the Pfam, Spectrum and Motif kernel ma-
trices, each of which was constructed following the
steps outlined in Section 2.1 and subsequently centered
and normalized. In addition to the RBF and the three
sequence kernels, we also used a combined Pfam/RBF

Sequence Kernels for Essential Proteins

kernel, which we computed by additively combining
the RBF kernel matrix with the normalized Pfam ker-
nel matrix (RBF kernels are by definition normalized).

2.3. Experimental Design

We ran experiments with 100 trials. For each trial,
we randomly chose 8.3% of the data as a training set
and used the remaining points as a test set, subject
to the constraint that an equal number of essential
proteins were in each set.1 We used the training set to
train an SVM, and used the resulting model to make
predictions on the test set in the form of probabilities
of essentiality. We used libsvm’s functionality (Chang
& Lin, 2001) to estimate the outputs of an SVM as
probabilities by fitting its results to a sigmoid function
(Platt, 2000). To calculate the predicted probability of
essentiality for each protein, we took the average over
the predictions from each trial in which the protein
appeared in the test set.

We measured the accuracy of the model for the pro-
teins with the highest predicted probability of essen-
tiality, using positive predictive value (PPV) as a per-
formance indicator. Grid search was used to determine
the optimal values for parameters C and gamma. Stan-
dard deviations were calculated from 10 ‘super-trials,’
each corresponded to a 100-trial experiment described
above. The Naive Bayes classifier (NBC) results were
taken from Gustafson et al. (2006) and standard devi-
ations were not reported.

2.4. First Results

Figure 1 shows SVM’s performance using the set of
kernels outlined above. The results show that the
Pfam kernel is the most effective of the three sequence
kernels at predicting essentiality. They also clearly
show that the combined Pfam/RBF kernel outper-
forms all other models. The importance of the phyletic
retention feature is a possible reason for the superior
performance of the combined kernel compared with
Pfam alone. As shown by Gustafson et al. (2006) and
verified in our work, phyletic retention (a measure of
gene conservation across species) is a powerful predic-
tor of essentiality. This feature is used by RBF but
not by Pfam (or by the domain-based kernels defined
in Section 3) because it requires comparing sequences
across organisms.

These results improve upon the leading model for pre-
diction of protein essentiality while reducing the size
of the training set more than five fold. Further, this is

1Gustafson et al. (2006) used 50% of the data for train-
ing, but otherwise, our experimental designs are identical.

0 a:b/1

1

a:b/2

2/1
a:b/4

3/8

b:a/6

b:a/3

b:a/5

0 b/1

1

b/2

2/1
b/4

3/8

a/6

a/3

a/5

(a) (b)

Figure 2. (a) Example of weighted transducer T . (b) Ex-
ample of weighted automaton A. A can be obtained from
T by projection on the output and T (aab, bba) = A(bba) =
1 × 2 × 6 × 8 + 2 × 4 × 5 × 8.

the first result showing the effectiveness of the Pfam
kernel for this task, a fact that motivates the following
sections of this paper, in which we seek a more general
alternative to the Pfam kernel.

3. Domain-Based Sequence Kernels

In the previous section, we tested various sequence ker-
nels, all introduced precisely to compute the similarity
between protein sequences. Our results showed that
the Pfam kernel was the most effective of these ker-
nels, and we now aim to find a more general solution
free of the manual tuning associated with the Pfam
database.

Specifically, we wish to determine a method to extract
similarities between protein sequences based on their
similarities to several domains, each represented by a
set of sequences, i.e., Pfam domains. Although sev-
eral sequence kernels have been recently introduced
in the machine learning community, e.g., mismatch,
gappy, substitution and homology kernels (Leslie &
Kuang, 2004; Eskin & Snir, 2005), none of these ker-
nels provides a solution to our domain-based learning
problem. Indeed, these kernels are not designed to ef-
ficiently compute the similarity between a string and a
large set of strings, which in our case consists of 6190
Pfam domains each containing tens to thousands of
sequences.

Alternatively, large sets of strings, such as the Pfam
domains, can be efficiently represented by minimal de-
terministic automata. Hence, an efficient way to de-
fine a similarity measure between such sets is to use
automata-based kernels. This leads us to consider
the framework for automata-based kernels proposed
by Cortes et al. (2004). An additional benefit of this
framework is that most commonly used string kernels
are special instances of this scheme.

Sequence Kernels for Essential Proteins

3.1. Representation and Algorithms

We will follow the definitions and terminology given
by Cortes et al. (2004). The representation and com-
putation of the Domain-based kernels are based on
finite-state transducers, which are finite automata in
which each transition is augmented with an output la-
bel in addition to the familiar input label (Salomaa
& Soittola, 1978). Input (output) labels are concate-
nated along a path to form an input (output) sequence.
Weighted transducers are finite-state transducers in
which each transition carries some weight in addition
to the input and output labels. The weights of the
transducers considered in this paper are real values.

Figure 2(a) shows an example of a weighted finite-state
transducer. In this figure, the input and output labels
of a transition are separated by a colon delimiter, and
the weight is indicated after the slash separator. A
weighted transducer has a set of initial states repre-
sented in the figure by a bold circle, and a set of final
states, represented by double circles. A path from an
initial state to a final state is an accepting path.

The weight of an accepting path is obtained by first
multiplying the weights of its constituent transitions
and multiplying this product by the weight of the ini-
tial state of the path (which equals one in our work)
and the weight of the final state of the path (dis-
played after the slash in the figure). The weight asso-
ciated by a weighted transducer T to a pair of strings
(x, y) ∈ Σ∗ ×Σ∗ is denoted by T (x, y) and is obtained
by summing the weights of all accepting paths with in-
put label x and output label y. For example, the trans-
ducer of Figure 2(a) associates the weight 416 to the
pair (aab, bba) since there are two accepting paths la-
beled with input aab and output bba: one with weight
96 and another one with weight 320.

The standard operations of sum +, product or con-
catenation ·, and Kleene-closure ∗ can be defined for
weighted transducers (Salomaa & Soittola, 1978). For
any pair of strings (x, y),

(T1 + T2)(x, y) = T1(x, y) + T2(x, y)

(T1 · T2)(x, y) =
∑

x1x2=x
y1y2=y

T1(x1, y1) · T2(x2, y2). (1)

For any transducer T , T−1 denotes its inverse, that is
the transducer obtained from T by swapping the input
and output labels of each transition. For all x, y ∈ Σ∗,
we have T−1(x, y) = T (y, x).

The composition of two weighted transducers T1 and
T2 with matching input and output alphabets Σ, is a

weighted transducer denoted by T1 ◦T2 when the sum:

(T1 ◦ T2)(x, y) =
∑

z∈Σ∗

T1(x, z) · T2(z, y) (2)

is well-defined and in R for all x, y (Salomaa & Soit-
tola, 1978).

Weighted automata can be defined as weighted trans-
ducers A with identical input and output labels, for
any transition. Since only pairs of the form (x, x) can
have a non-zero weight associated to them by A, we
denote the weight associated by A to (x, x) by A(x)
and call it the weight associated by A to x. Similarly,
in the graph representation of weighted automata, the
output (or input) label is omitted. Figure 2(b) shows
an example of a weighted automaton. When A and B

are weighted automata, A◦B is called the intersection
of A and B. Omitting the input labels of a weighted
transducer T results in a weighted automaton which
is said to be the output projection of T .

3.2. Automata-Based Kernels

A string kernel K : Σ∗ × Σ∗ → R is rational if it co-
incides with the function defined by a weighted trans-
ducer U , that is for all x, y ∈ Σ∗, K(x, y) = U(x, y).
Not all rational kernels are positive definite and sym-
metric (PDS), or equivalently verify the Mercer condi-
tion, which is crucial for the convergence of training for
discriminant classification algorithms such as SVMs.
But, for any weighted transducer T , U = T ◦ T−1 is
guaranteed to define a PDS kernel (Cortes et al., 2004).

Furthermore, most rational kernels used in computa-
tional biology and natural language processing are of
this form (Haussler, 1999; Leslie & Kuang, 2004; Lodhi
et al., 2002; Zien et al., 2000; Collins & Duffy, 2001;
Cortes & Mohri, 2005). For instance, the n-gram ker-
nel is a rational kernel. The n-gram kernel Kn is de-
fined as

Kn(x, y) =
∑

|z|=n

cx(z)cy(z), (3)

where cx(z) is the number of occurrences of z in x.
Kn is a PDS rational kernel since it corresponds to the
weighted transducer Tn ◦T−1

n where the transducer Tn

is defined such that Tn(x, z) = cx(z) for all x, z ∈ Σ∗

with |z| = n. The transducer T2 for Σ = {a, b} is
shown in Figure 3.

We will now extend this formalism to measure the sim-
ilarity between domains, or sets of strings represented
by an automaton. Let us define the count of a string
z in a weighted automaton A as:

cA(z) =
∑

u∈Σ∗

cu(z)A(u). (4)

Sequence Kernels for Essential Proteins

0

a:ε
b:ε

1a:a
b:b

2a:a
b:b

a:ε
b:ε

Figure 3. Counting transducer T2 for Σ = {a, b}.

The similarity between two sets of strings represented
by the weighted automata A and B according to n-
gram kernel Kn can then be defined by:

Kn(A, B) =
∑

x,y∈Σ∗

(A ◦ Tn ◦ T−1

n ◦ B)(x, y)

=
∑

|z|=n

cA(z)cB(z).
(5)

Other rational kernels can be extended into a similar-
ity measure between sets of strings in the same way.
We will now define two families of kernels that can be
used in a variety of applications where similarity with
respect to domains is needed.

3.3. Independent Domain Kernel

The Independent Domain kernel (IDK) measures the
similarity between two sequences in our dataset D
by comparing their similarities to each domain, e.g.,
Pfam domains.2 For the i-th Pfam domain (with
1 ≤ i ≤ P = 6190), let Pi be the set of all seed pro-
tein sequences for that domain. Each sequence in Pi

is represented as a string in an alphabet, Σ, consist-
ing of |Σ| = 21 characters, 20 for different amino acids
plus an optional gap character used to represent gaps
in the seed alignment. We denote by Di the mini-
mal deterministic automaton representing the set of
strings Pi. For a given sequence x in our dataset,
we can use the n-gram kernel Kn to compute the
similarity between x and the i-th Pfam domain Pi:
Kn(x, Di). This leads to an overall similarity measure
vector s(x) ∈ R

P between x and the set of domains:
s(x) = (Kn(x, D1), . . . , Kn(x, DP)). We now define
the IDK KI as, for all x, y in Σ∗:

KI(x, y) =

P
X

i=1

Kn(x, Di)Kn(y,Di)

=

P
X

i=1

(
X

|z|=n

cx(z)cDi
(z))(

X

|z|=n

cy(z)cDi
(z)).

(6)

KI is PDS since it is constructed via an explicit dot-
product. Any PDS kernel K with positive eigenvalues

2Both the IDK and spectrum kernels represent se-
quences as vectors of n-gram counts but only the IDK ac-
counts for the n-gram spectrums of the domains of interest.

can be normalized to take values between 0 and 1 by
defining K ′ as

K ′(x, y) =
K(x, y)

√

K(x, x)K(y, y)
. (7)

We apply this normalization to KI to account for the
varying lengths of proteins in our dataset, since longer
proteins will contain more n-grams and will thus tend
to have more n-gram similarity with every domain.

The kernel KI can be efficiently computed by comput-
ing Kn(x, Di) for all 1 ≤ i ≤ P as follows:

1. Compute Di for each Pi by representing each se-
quence in Pi by an automaton and determinizing
and minimizing the union of these automata.

2. For all 1 ≤ i ≤ P compute Tn◦Di, and for each se-
quence x in the dataset compute Tn ◦X , where X

is the automaton representing x. Optimize the re-
sults by projecting onto outputs, applying epsilon-
removal, determinizing and minimizing to obtain
weighted automata Ai and Yx.

3. Compute Kn(x, Di) by intersecting Ai and Yx and
using a generic single-source shortest-distance al-
gorithm (Cortes et al., 2004) to compute the sum
of all the paths in the resulting automaton.

The complexity of computing Kn(x, Di) for a fixed set
of domains grows linearly in the length of x, hence
the complexity of computing KI(x, y) grows linearly
in the sum of the length of x and y, i.e. in O(|x|+ |y|).
Thus, this kernel is efficient to compute. However, it
does not capture the similarity of two sequences in as
fine a way as the next kernel we present.

3.4. Joint Domain Kernel

Let us consider two sequences x and y and a given
domain Pi. Let X be the set of n-grams in common
between x and Pi, and Y the set of n-grams in common
between y and Pi. When computing the similarity
between x and y according to Pi, the IDK KI takes
into account all n-grams in common between x and Pi

and between y and Pi, i.e., all the n-grams in X ∪ Y,
regardless of whether these n-grams appear in both x

and y. Thus, KI may indicate that x and y are similar
according to Pi even if X and Y differ significantly, or
in other words, even if x and y are similar to Pi for
different reasons. In contrast, the Joint Domain kernel
(JDK) only takes into consideration the n-grams in
common to x, y and Pi, that is the n-grams in X ∩Y,
when determining the similarity between x and y. It
will thus declare x and y similar according to Pi iff x

and y are similar to Pi for the same reason.

Sequence Kernels for Essential Proteins

0

a:ε
b:ε
?:ε

1

a:a

b:b
?:a/0.5
?:b/0.5

2

?:b/0.5
a:a
b:b

?:a/0.5

a:ε
b:ε
?:ε

Figure 4. Counting transducer T 2 with Σ = {a, b}, ‘?’ rep-
resenting the gap symbol and an expansion penalty weight
of 0.5.

For each domain Pi, the JDK defines a kernel Ki that
measures the similarity between two sequences x and
y according to Pi, using as a similarity measure the
count of the n-grams in common among x, y and Pi.
More precisely, we define Ki : Σ∗×Σ∗ → R as follows:

Ki(x, y) =
∑

|z|=n

cx(z)c2

Di
(z)cy(z). (8)

Each Ki is normalized as shown in Equation 7. We
then combine these P kernels to obtain the kernel KJ :
Σ∗ × Σ∗ → R defined as follows:

KJ(x, y) =

P
∑

i=1

Ki(x, y)

=
∑

i=1

∑

|z|=n

cx(z)c2

Di
(z)cy(z).

(9)

We will now show that each Ki and thus KJ is a PDS
rational kernel. Let Ai be the weighted automata ob-
tained by composing Di with Tn and projecting the
result onto its output: Ai = π2(Di ◦ Tn). From the
definition of Tn, it follows that Ai(z) = cDi

(z) and
cx(z) = Tn(x, z) for all |z| = n. Thus, for all (x, y),
Ki(x, y) can be rewritten as:

Ki(x, y) =
∑

|z|=n

Tn(x, z)Ai(z)Ai(z)Tn(y, z)

=(Tn ◦ Ai ◦ Ai ◦ (Tn)−1)(x, y).

(10)

Observe that (Tn◦Ai)
−1 = A−1

i ◦T−1
n = Ai◦T−1

n since
for an automaton the inverse A−1

i coincides with Ai.
Thus, Ki(x, y) =

(

(Tn ◦Ai) ◦ (Tn ◦Ai)
−1

)

(x, y), which
is of the form T ◦T−1 and thus Ki is PDS. Since PDS
kernels are closed under sum, KJ is also PDS.

The computation of the kernel KJ is more costly than
that of KI since a full D × D kernel matrix needs to
be computed for each Pfam domain. This leads to
D2 × P rational kernel computations to compute KJ ,
compared to only D×P rational kernel computations
for KI . This is significant when P = 6190. Thus, it
is important to determine an efficient way to compute
the kernels Ki. The following is an efficient method
for computing KJ that we adopt in our experiments,

in which the complexity of computing KJ(x, y) for a
fixed set of domains linearly depends on the product
of the length of x and y, i.e. in O(|x||y|):

1. Compute each Ai and optimize using epsilon-
removal, determinization and minimization.

2. For each sequence x in the dataset, compute
Yx = π2(Tn ◦X) where X is the automaton repre-
senting x and optimize Yx using epsilon-removal,
determinization and minimization.

3. Ki(x, y) is obtained by computing Ai ◦ Yx and
Ai ◦ Yy, computing the intersection of the result-
ing automata and using a generic single-source
shortest-distance algorithm (Cortes et al., 2004)
to compute the sum of all paths in the resulting
automaton.

Gap Symbol Handling

The sequence alignments in the Pfam domain (Pi) con-
tain a gap symbol used to pad the alignments. In the
previous two sections, we either ignored the gap sym-
bol (when dealing with raw sequence data) or treated
it as a regular symbol (when dealing with aligned se-
quences). In the latter case, since this symbol does
not appear in the sequences in the dataset, the result
is that all n-grams containing the gap symbol are ig-
nored during the computation of KI and KJ .

Alternatively, we can treat the gap symbol as a wild-
card, allowing it to match any regular symbol. This
can be achieved by modifying the transducer Tn to
match any gap symbol on its input to any regular sym-
bol on its output (these transitions can also be assigned
a weight to penalize gap expansion). We denote by Tn

the resulting transducer and replace Tn by Tn when
composing with Di. Figure 4 shows T 2 for |Σ| = {a, b}
with the symbol ‘?’ representing the gap symbol and
an expansion penalty weight of 0.5.

3.5. Domain Kernels Based on Moments of

Counts

Although counting common n-grams leads to informa-
tive kernels, this technique affords a further general-
ization that is particularly suitable when defining ker-
nels for domains. We can view the sum of the counts
of an n-gram in a domain as its average count after
normalization. One could extend this idea to consider
higher moments of the counts of an n-gram, as this
could capture useful information about how similarity
varies across the sequences within a single domain.

Remarkably, it is possible to design efficiently com-
putable domain kernels based on these quantities by

Sequence Kernels for Essential Proteins

PPV5 PPV10 PPV20
0

5

10

15

20

25

30

35

40

45

50

PFAM
JDK−GAP−W
JDK−GAP
JDK
IDK
RANDOM

Figure 5. SVM’s performance with various kernels aver-
aged over all datasets.

generalizing the domain kernels from Sections 3.3 and
3.4 in a way similar to what is described by Cortes and
Mohri (2005). Let m be a positive integer. We can de-
fine the m-th moment of the count of the sequence z

in a weighted automata A, denoted by cA,m(z), as:

cA,m(z) =
∑

u∈Σ∗

cm
u (z)A(u). (11)

Both of our kernel families can then be generalized to
a similarity measure based on the m-th moment of the
n-gram counts as follows:

K
I
m(x, y) =

P
X

i=1

(
X

|z|=n

cx,m(z)cDi,m(z))(
X

|z|=n

cy,m(z)cDi,m(z))

K
J
m(x, y) =

X

i=1

X

|z|=n

cx,m(z)c2

Di,m(z)cy,m(z).

These kernels can be efficiently computed by using, in
place of Tn, a transducer T n

m that can be defined such
that T n

m(x, z) = (cx(z))m = cx,m(z) for all x, z ∈ Σ∗

with |z| = n.

4. Experimental Results

We evaluated the domain-based kernels described in
Section 3 (with n = 3) using an experimental de-
sign similar to Section 2.3. In order to test these ker-
nels under various conditions, we chose to work with
datasets sampled from the yeast dataset used in Sec-
tion 2. We constructed 10 datasets, each containing
500 sampled data points randomly chosen from the
4728 initial points, subject to the constraint that we
maintained the same ratio of positively and negatively
labeled points. We worked on a large cluster machines
and used the OpenFst and OpenKernel libraries to
construct similarity matrices for each sample dataset
for varying kernels (Allauzen et al., 2007; Allauzen

PPV5 PPV10 PPV20
0

10

20

30

40

50

60

70

80

RBF
PFAM+RBF
JDK−GAP−W+RBF
JDK−GAP+RBF
JDK+RBF
RANDOM

Figure 6. SVM’s performance with various kernels com-
bined with RBF kernel averaged over all datasets.

& Mohri, 2007). Generating similarity matrices took
less than 30 minutes for IDK, 1 hour for JDK, and 2.5
hours for JDK with gaps treated as wildcards. We do
not show results for the top 1% since it is an unre-
liable statistic when working with 500 points. In all
reported results we exclude results from one sampled
dataset that generated pathological results for all se-
quence kernels.

Figure 5 shows the average prediction performance
over the sampled datasets for various kernels. The fig-
ure shows that the average performance of the JDK
with gaps treated as wildcards (JDK-GAPS-W) is
slightly better than the Pfam kernel, as it outperforms
the Pfam kernel for the top 10% and 20% predictions.
The figure also presents results for variants of the JDK
that either ignore gaps in the seed alignment (JDK)
or treat them as a distinct symbol (JDK-GAPS). The
results show that, regardless of the treatment of gaps,
the JDK drastically outperforms the IDK.

Based on these results, we next tested the effectiveness
of the JDK combined with the RBF kernel. Similar to
the results in Figure 1, average prediction performance
over the sampled datasets was better using combina-
tion kernels in contrast to any kernel alone.3 Figure
6 shows that the combined JDK is comparable to the
combined Pfam kernel. Further, in contrast to the re-
sults in Figure 5, the treatment of gaps by the JDK
does not significantly alter prediction efficiency. In
other words, the JDK is able to match the best results
of the Pfam kernel using only raw Pfam sequence data
(JDK), while completely ignoring the hand-curated
multiple sequence alignments that are vital to param-
eterizing the HMMs of the Pfam Library. We did
not perform experiments using higher moments of the
count, as described in Section 3.5, though we suspect

3As in Figure 1, RBF alone outperforms all sequence
kernels alone, possibly due to the phyletic retention feature.

Sequence Kernels for Essential Proteins

that these more refined kernels would lead to further
improvements over the Pfam kernel.

5. Conclusion

We presented novel domain-based sequence kernels
that require no hand-crafted information, in contrast
to the Pfam kernel. The joint domain kernels we de-
fined were shown to match or outperform the best pre-
vious results for predicting protein essentiality. These
kernels and their generalization based on moments of
counts can be used for any application requiring sim-
ilarity between sequences that may be extracted from
proximity to several large sequence domains. In bioin-
formatics, such applications may include remote ho-
mology prediction, subcellular localization, and pre-
diction of protein-protein interaction.

6. Acknowledgments

This work was partially supported by the National Sci-
ence Foundation award number MCB-0209754 and the
New York State Office of Science Technology and Aca-
demic Research (NYSTAR), and was also sponsored
in part by the Department of the Army Award Num-
ber W81XWH-04-1-0307. The U.S. Army Medical Re-
search Acquisition Activity, 820 Chandler Street, Fort
Detrick MD 21702-5014 is the awarding and adminis-
tering acquisition office. The content of this material
does not necessarily reflect the position or the policy
of the Government and no official endorsement should
be inferred.

References

Allauzen, C., & Mohri, M. (2007). OpenKernel library.
http://www.openkernel.org.

Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., &
Mohri, M. (2007). OpenFst: a general and efficient
weighted finite-state transducer library. CIAA 2007
(pp. 11–23). Springer. http://www.openfst.org.

Ben-Hur, A., & Brutlag, D. L. (2003). Remote ho-
mology detection: a motif based approach. ISMB
(Supplement of Bioinformatics) (pp. 26–33).

Ben-Hur, A., & Noble, W. (2005). Kernel methods
for predicting protein-protein interactions. Bioin-
formatics, 21, 38–46.

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library
for support vector machines. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Chen, Y., & Xu, D. (2005). Understanding protein

dispensability through machine learning analysis of
high-throughput data. Bioinformatics, 21, 575–581.

Collins, M., & Duffy, N. (2001). Convolution kernels
for natural language. NIPS 2001 (pp. 625–632).

Cortes, C., Haffner, P., & Mohri, M. (2004). Rational
Kernels: Theory and Algorithms. Journal of Ma-
chine Learning Research, 5, 1035–1062.

Cortes, C., & Mohri, M. (2005). Moment kernels for
regular distributions. Machine Learning, 60, 117–
134.

Cortes, C., & Vapnik, V. N. (1995). Support-Vector
Networks. Machine Learning, 20, 273–297.

Eskin, E., & Snir, S. (2005). The Homology Kernel:
A Biologically Motivated Sequence Embedding into
Euclidean Space. CIBCB (pp. 179–186).

Gustafson, A., Snitkin, E., Parker, S., DeLisi, C., &
Kasif, S. (2006). Towards the identification of es-
sential genes using targeted genome sequencing and
comparative analysis. BMC:Genomics, 7, 265.

Haussler, D. (1999). Convolution Kernels on Dis-
crete Structures (Technical Report UCSC-CRL-99-
10). University of California at Santa Cruz.

Lanckriet, G., Deng, M., Cristianini, N., Jordan, M., &
Noble, W. (2004). Kernel-based data fusion and its
application to protein function prediction in yeast.
Pacific Symposium on Biocomputing (pp. 300–311).

Leslie, C. S., & Kuang, R. (2004). Fast String Kernels
using Inexact Matching for Protein Sequences. Jour-
nal of Machine Learning Research, 5, 1435–1455.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristian-
ini, N., & Watskins, C. (2002). Text classification
using string kernels. Journal of Machine Learning
Research, 2, 419–44.

Platt, J. (2000). Probabilities for support vector ma-
chines. In Advances in large margin classifiers. Cam-
bridge, MA: MIT Press.

Salomaa, A., & Soittola, M. (1978). Automata-
Theoretic Aspects of Formal Power Series. Springer.

Sonnhammer, E., Eddy, S., & Durbin, R. (1997).
Pfam: A comprehensive database of protein domain
families based on seed alignments. Proteins: Struc-
ture, Function and Genetics, 28, 405–420.

Zien, A., Rätsch, G., Mika, S., Schölkopf, B.,
Lengauer, T., & Müller, K.-R. (2000). Engineer-
ing Support Vector Machine Kernels That Recog-
nize Translation Initiation Sites. Bioinformatics, 16,
799–807.

