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ABSTRACT

We track a large set of “rapidly” changing web pages and
examine the assumption that the arrival of content changes
follow a Poisson process on a microscale. We demonstrate
that there are significant differences in the behavior of pages
that can be exploited to maintain freshness in a web corpus.
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1. INTRODUCTION

Search engines crawl the web to download a corpus of
web pages to index for user queries. One of the most effi-
cient ways to maintain an up-to-date corpus of web pages
for a search engine to index is to re-crawl pages preferen-
tially based on their rate of content update [3]. Much of
the existing work on estimating expected rates of change
has been based on the assumption that changes arrive as a
Poisson process, and that the average rate of change can be
estimated under this model. Given the rate at which rapidly
changing pages need to be crawled, there are high costs asso-
ciated with these pages both in terms of crawling resources
and corpus consistency with the web. In this paper, we ask
the question of whether the Poisson model truly represents
the changes for rapidly updating pages, and if not, what can
be gained by better understanding the real structure of page
changes in terms of acquiring fresh content.

2. METHODOLOGY

Definitions: For each page, the number of updates
that occur in a single hour, X, is distributed as a Poisson
distribution, with parameter A = 1/A. The average time
between changes is A, and the time between page updates
is distributed exponentially with parameter 1/A.
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Defining a ‘Change’: We employ the simhash tech-
nique, outlined by Charikar [1], which creates a fingerprint-
like representation of the page but has the unique benefit
that pages with similar content have similar simhash val-
ues. Distance between simhashes can be measured by the
number of bits in which they differ; for this study we con-
sider versions of a page with 6 or more bits different in their
simhashes to be changed.

Computing Rates of Change: Given a history of re-
ported “changes,” measured on any regular interval of length
C, the simple estimator is to divide the total number of
changes observed by the total time observed. That simple
estimator of the rate of change, A, is A= T/X, where T
= total time and X = total number of changes. However, if
the time between crawls of the page is remotely similar to
the rate of change of the page, this estimate is significantly
asymptotically biased. If more than one change occurs dur-
ing an interval of length C', the crawler will only observe a
single change. As a result, if C' is too large compared to
A, no matter how many observations are taken, the esti-
mate will always overestimate the length of time between
changes.

Cho and Garcia-Molina, section 4.2, [2] reduce the asymp-
totic bias of the simple estimator by subtracting off the ex-
pected bias and making a small modification to remove sin-
gularities. The modified estimator,
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is demonstrated to have significantly better bias, even for
small (N < 50) observations, especially when C'/A is in the
neighborhood of 0.5 —2.0. Although our page crawl interval
granularity will be quite small compared to the total space
of possible rates of change, the pages we are examining have
rates of change on the order of 1-2 days, and therefore the
shrinkage of the estimator given by Cho and Garcia-Molina
makes a critical difference in the values. However, if the
samples are significantly non-Poisson, the asymptotic results
for this estimator do not apply. For this reason, we will
compute both A and the estimator A*.

Sampling Web Pages: We use a multi-staged process
to generate our sample. We first selected hosts according
to the number of URLs they had in a feed from the Google
crawl containing over 1B documents. From each host we
sampled a number of URLs, crawled them twice daily, and
down-sampled the URLs with an average rate of change of
less than 48 hours. This left us with 29,000 URLs which
we crawled every hour. Of those 80% had at least 500 con-
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secutive successful fetches, which is the set of URLs we will
examine in this paper. Every time a page is accessed in our
sample, we compute a simhash of the page’s content as de-
scribed in Charikar [1], and consider the page changed if the
current simhash differs from the previous by 6 or more bits.

3. DISTRIBUTION OF CONTENT CHANGES

Content Changerate Profiles: We begin by examin-
ing the overall distribution of rates of change given by this
sample. In our data, only a very small (< 5%) portion of
the sample changes by 6 bits or more every time we access
it. However, applying the modified estimator A* in 1, we
estimate that up to 25% of our fast-changing sample has
an average rate of change less than or equal to one hour.
Over 50% of pages in the sample have an estimated rate of
change of less than 4 hours. The primary differences be-
tween the simple estimator (A) and the modified estimator
(A™) occurs in the fastest-changing bins because those are
the most sensitive to the remaining censoring introduced by
our hour-granularity sample.

Pages with Regular Updates: Intuitively, it would
seem that many pages should show a much more regular
behavior than is dictated by the Poisson model due to au-
tomated updating of the sites on an hourly or daily basis.
Figure 1 is a heatmap of all actual between-change inter-
vals observed, plotted by the overall average rate of change
observed for the page. The high-frequency bins are con-
centrated around the fastest-changing pages at the lower
left corner. However, there is an additional bright spot
at 24-hour observed intervals — there are significant num-
bers of pages with an average rate of change near 24 hours
and a large number of changes at exactly 24 hours. Fig-
ure 2 illustrates this effect specifically for pages with A=
24. The point plotted in Figure 2 show the observed num-
ber of change intervals in with each length, and the lighter
line shows the predicted number of change intervals of each
length from a model where observed times between changes
are distributed Exzp(1/24).

Temporal Effects in Content Updates: If humans or
machines set by humans are the cause of page updates, those
updates should have a clear temporal association. Within
our “rapid” change sample, we divided the pages into region-
associations based on the top level domain of the page. The
data was aggregated into two major groups, CJK = {.cn,
.jk, .ko} pages, and FIGS = {.fr, .it, .de, .es} pages.
Plotting the arrival times of observed updates against the
day (day is with respect to Pacific Standard Time) in Figure
3, we see that there is a significant decrease in probability
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Figure 2: Comparison of the observed interval fre-
quencies for pages with A = 24 with the number pre-
dicted by an exponentially-distributed waiting time
between updates.
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of a page change between local daytime and local nighttime,
and an even more significant decrease in update volume on
the weekend. The graph is smoothed with a 5-hour window
to reduce significant spikiness. This graph suggests that
resources for refreshing pages should be prioritized to occur
directly after the highest local page update volume.

4. CONCLUSIONS

The case for an aggregate Poisson model for these fast-
changing pages is somewhat inconclusive: relatively few pages
in our sample were strictly consistent with a Poisson model,
but only a small portion differ significantly. We do show
several effects that can be exploited to improve refresh per-
formance on fast-changing pages: change volume increases
depending on local time and day of the week, and fast-
updating pages bias toward hourly and daily changes. One
dominating question in this work is whether the large com-
ponent (nearly 20%) of pages that are more consistent with
a 1-hour regular change pattern than with a Poisson process
are updating content useful to the user.
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