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ABSTRACT
We propose a methodology for assessing how ad campaigns
in offline media such as print, audio and TV affect online in-
terest in the advertiser’s brand. Online interest can be mea-
sured by daily counts of the number of search queries that
contain brand related keywords, by the number of visitors
to the advertiser’s web pages, by the number of pageviews
at the advertiser’s websites, or by the total duration of vis-
its to the advertiser’s website. An increase in outcomes like
these in designated market areas (DMAs) where the offline
ad appeared suggests heightened interest in the advertised
product, as long as there would have been no such increase if
the ad had not appeared. We propose a regression analysis
to estimate the incremental value of the ad campaign be-
yond the baseline interest that would have been seen if the
campaign had not been shown. A small print ad campaign
illustrates the method.

General Terms
Statistical Inference, Difference-in-difference estimation, Lift,
Causal Modeling, Bootstrapping

1. INTRODUCTION
Loosely speaking, an ad is effective if it generates more in-
terest in the product advertised. But how should interest in
a product be measured? Interest in low cost consumer goods
that are often bought without much deliberation can often
be measured by changes in sales. But sales may miss much
of the effect of an ad when a product is bought infrequently
and only after careful consideration. In that case, interest
may mean a step towards purchase rather than a purchase
itself. As people spend more time on the web, these steps
toward purchase increasingly include searching for the ad-
vertiser’s brand or visiting the advertiser’s websites, even if
the ad campaign was conducted in an offline medium such
as print, radio or TV. That is, one measure of offline ad
effectiveness is an increase in brand related online activity.

Still, measuring the effectiveness of offline ads is challeng-
ing. An obvious complication is that we would like to know
how the ad affected the people who saw it, but it is usually
impossible to know who saw an offline ad. Instead, we know
only the designated market area (DMA) in which an ad ap-
peared. A more subtle but equally thorny complication is
that we would like to compare interest in a product after an
ad campaign to the interest that would have been there with-
out the ad campaign. It is only heightened interest above the
baseline “that would have been there anyhow” that should
be credited to the ad campaign. That is, an event that hap-
pened (i.e., see the ad) has to be compared to an event that
did not happen and for which there can be no data. Our
goal is to provide a statistically sound method for estimat-
ing online effectiveness that circumvents both complications
and can be routinely applied to data obtained by search en-
gines or advertisers. Our approach uses notions from causal
modeling, an approach which dates back at least to [5], and
is sometimes dated back as far as [2].

Our approach to measuring the online effect of offline ads
is based on daily online activity originating from the DMAs
where the campaign appeared. Typical outcomes would in-
clude any of the following: the number of queries that con-
tain brand related keywords, the number of visits or visitors
to brand related websites, or the total duration of visits to
brand related websites. To be specific, this paper takes the
outcome to be number of daily visits to the advertiser’s web-
site. However outcomes are defined, though, it is convenient
to consider the two potential outcomes for each DMA where
the ad was shown during and after the campaign:

y1, the daily outcome in the target DMA after the ad is
shown

y0, the daily outcome that would have been obtained in the
target DMA had the ad not been shown.

The effect of the ad campaign in a DMA on a given day is
then y1 − y0 since that is the difference in daily outcomes
in the presence and absence of the ad campaign. But, we
cannot observe these pairs because we cannot observe what
would have happened if the ad had not been shown in a
DMA where it was shown. Nevertheless, it is the unob-
servable y1 − y0 that is of interest, so we have to infer the
unobservable daily outcomes y0 from the available data.

There are two obvious strategies for estimating the unob-



servable y0. First, we can assume that the past is like the
present and use daily outcomes before the campaign ran.
That is, we can obtain

yb, the daily number of visits originating in the DMA before
the ad ran.

The “before” number of visits yb is not necessarily a good
estimate of the “no ad” outcome, though, if interest in the
product is expected to change over time even if no ad cam-
paign is run. For example, if an ad is more likely to be run
when interest in a product is high, then comparing counts-
after to counts-before overstates the effect of the campaign.
On the other hand, the advertiser may have run ads in other
media during the pre-campaign period, so yb may reflect
those other ads and be higher than the “no ad” outcome
y0 would be. In that case, using yb as a surrogate for y0

understates the effect of the ad campaign. Any conclusion
based only on the difference in means of before- and after-
visits is thus suspect.

Alternatively, we could estimate the unobservable y0 by the
outcome in control DMAs, which are markets in which the
ad did not appear. Comparing the data from control and
targeted DMAs on the same days avoids the seasonality is-
sue. Control DMAs also offer a way to adjust for other ad
campaigns that ran during the one of interest. One prob-
lem, though, is that the advertiser may be more likely to
advertise in DMAs where interest in the product is likely to
be high. Then the level of interest in the control DMAs will
be lower than y0 and estimated effects based on the controls
will be overstated. Another problem is that the increase in
interest due to the ad campaign may depend on the current
awareness of the product in the DMA. That is, the scale of
the outcome in a control DMA may be different from that
of the targeted DMA, so that the control DMA outcomes
and targeted DMA outcomes have to be calibrated.

Neither before outcomes nor control outcomes alone suffice
to estimate the unobservable outcomes y0. This paper shows
how they and the observable outcomes y1 can be used to-
gether to estimate the online effect of an offline ad. The re-
sulting estimator generalizes the difference-in-difference es-
timator [4] which is sometimes applied in similar settings,
and it is straightforward to estimate its standard error and
compute confidence intervals. The proposed estimator is
simple enough to automate and apply routinely.

2. A PRINT AD CAMPAIGN
Our illustrative example relates to a print ad campaign that
ran for one day in ten different newspapers in the U.S. The
ad ran on one day in some newspapers and on another day in
the others. For expository purposes the outcome of interest
consists of daily counts of visits to the advertiser’s website.
These counts were obtained from Google Analytics which
allows segregation by geo-region. Counts were obtained for
either 28 or 35 days preceding the ad campaign and 28 days
after the campaign. Target DMAs are defined by the audi-
ence of each newspaper. All other DMAs were collapsed into
a single “control” DMA, and daily visits to the advertiser’s
website from the aggregate control DMA were obtained for
the range of dates covered by the target DMA data. Here

we suppress the newspaper names and simply refer to them
as Paper A through Paper J.

Figure 1: Daily visits originating from each target
DMA before (blue points) and after (gray points)
the print ad campaign. Daily visits in each target
DMA are scaled by the maximum over the period
so they range from 0 to 1.

Figure 1 conveys the challenge of assessing online effective-
ness of print ad campaigns. Each panel of the figure shows
the time series of the daily number of visits to the adver-
tiser’s web site originating from the DMAs associated with
the newspapers that ran a campaign ad. The counts for each
newspaper are scaled by the maximum number of visits orig-
inating from its DMA over the period. (The analysis and
estimates provided use the raw counts; the data are scaled
only to make the Figure panels more similar.) In each case
the number of visits to the advertiser’s website gradually
increases over time, except for the last ten days when the
visits uniformly fall. Drawing conclusions from these target
DMAs alone is tricky because visits were trending up even
before the print ad campaign ran and there is little to sug-
gest from these data alone that any increase in visits to the
advertiser’s website is due to the ad campaign rather than



seasonality. Similarly, the trend downwards may also reflect
seasonality.

Figure 2 shows that the time series of daily visits in the
aggregate control DMA has exactly the same seasonality as
daily visits from the target DMAs, namely a steady increase
in visits through time with a drop off in the final ten days.
Thus, the control DMAs allow us to capture seasonality pat-
terns that complicate the analysis of data from the target
DMAs where the ad was shown.

Figure 2: Daily visits from the aggregate control
DMA, normalized by the maximum number of daily
visits originating from the aggregate control DMA
over the period.

Figure 3 shows the relationship between the daily visits to
the advertiser’s website from the aggregated control DMAs
and those from the target DMAs. In each panel a point rep-
resents one day and shows the number of visits originating
from the target DMA against the number of visits originat-
ing from the aggregated control DMAs on that day. The
blue points correspond to days prior to the start of the ad
campaign and the grey to days post-campaign. A strong
linear relationship holds between the number of visits seen
in each target DMA and the number of visits seen in the
control markets before the campaign started, as shown by
the least squares line fit to just the pre-campaign data in
each panel. The R2 statistics for the lines fit to the pre-
campaign data range from 0.71 to 0.98, with a median of
0.94; these are exceptionally high R2’s for studies involving
real data and evidence that the targeted DMAs do behave
like the control DMAs in absence of the ad campaign.

Neither the target nor the control DMAs were exposed to the
print ad before the campaign, so the least squares line, which
fits the data well, summarizes the relationship between the
target and control DMAs in the absence of a print ad cam-
paign. This suggests that the line can be used to predict the
daily number of post-campaign visits in each target DMA
that would have occurred had there been no ad campaign
(that is, the y0 which we can never observe). In Section 3
we describe how the informal method suggested by these
figures can be turned into formal estimates of offline ad ef-
fectiveness.

Figure 3: Daily visits for each newspaper’s DMA
against daily visits for the aggregated control DMA.
Blue points denote pre-campaign days; gray points
denote post-campaign days. A least squares line fit
to only the pre-campaign days is superimposed on
the data.

3. METHOD
We propose two measures of offline ad effectiveness. The
first is the incremental effect δ or average incremental visits
defined as the average daily difference between the number
of post-campaign visits y1 in target DMAs and the predicted
number of visits y0 that would have been observed post-
campaign had the campaign not been run:

δ = ave(y1 − y0). (1)

The second measure is the relative effect on the average num-
ber of visits over the period, sometimes called lift in the
industry, which we denote by λ. More precisely, λ is the dif-
ference in the average number of visits with and without the
campaign relative to the average number of visits without
the campaign, or the average incremental effect relative to



the baseline without the campaign:

λ =
ave(y1 − y0)

ave(y0)
=

δ

ave(y0)
(2)

where the average is taken over the days in a fixed period
after the campaign.

Figure 4: Illustration of the prediction formula for
Paper A. The line is obtained by least squares re-
gression using the pre-campaign data only (blue
points). The dashed vertical lines connect the pre-
dictions of the post-campaign outcomes to their
observed values (grey points) The average of the
lengths of these vertical line segments provides the
estimate of δ for Paper A.

Because y0 is unobservable, it is estimated by ŷ0, which is
the prediction obtained from the least squares line fit to the
daily pre-campaign visits of target versus aggregated control
DMAs. This is illustrated in Figure 4 for a single target
DMA. Substituting the prediction ŷ0 into Equations (1) and
(2) yields the estimated lift statistics:

δ̂ = ave(y1 − ŷ0)

λ̂ =
ave(y1 − ŷ0)

ave(ŷ0)
.

Before presenting some technical details of the proposed
method, we apply it to the data introduced in Section 2.

4. RESULTS
Table 1 provides the estimated incremental number of vis-
its δ̂ and estimated lift in visits λ̂ provided by the print ad
campaign in each target market in the 28 days after the day
the print ad appeared. (The standard error estimates are
explained in Section 6.) For example, the DMA for Paper A
enjoyed an additional 128 visits per day on average in the 28

days after the print ad appeared with an estimated standard
deviation of 29 visits per day. The DMAs for the ten news-
papers differ greatly in size, and the estimated incremental
effects reflect these differences. The largest DMAs (that is,
those with the most baseline visits) show the largest increase
in number of visits. The total incremental visits per day over
all ten target DMAs, which is obtained by summing across
the ten target DMAs, is 925.4 with an estimated standard
error of 245.9 visits.

Table 1: Estimates and bootstrapped standard er-
rors of the incremental effect of the ad and lift.

Market δ̂ stderr(δ̂) λ̂ stderr(λ̂)
Paper A 128.4 29.2 0.122 0.029
Paper B 85.9 20.3 0.129 0.033
Paper C 53.9 25.2 0.100 0.051
Paper D 53.1 20.0 0.075 0.030
Paper E 459.4 215.8 0.106 0.054
Paper F 66.5 30.7 0.107 0.054
Paper G 11.0 25.3 0.032 0.077
Paper H 15.4 17.7 0.047 0.057
Paper I 19.0 13.3 0.037 0.027
Paper J 32.8 14.3 0.056 0.025

For Paper A, the additional 128 visits per day corresponds to
an estimated 12% lift (relative increase over what we would
have expected if the campaign had not been run). The es-
timated standard error of this value is 2.9% indicating that
the estimated lift is statistically significant, using the usual
rule of thumb that an estimate more than two standard er-
rors from zero is statistically significant at the 5% level. The
estimated lifts for the target DMAs range between 3% and
13%. They seem to fall into two groups, those slightly above
10% and those that are around 5%. The overall estimated
lift, computed by dividing the total incremental visits by the
total visits predicted by the model, is 9.6%.

Figure 5: Estimated incremental number of visits
by DMA summed over 28 days after the campaign
with a two standard-error confidence interval.

Figure 5 shows the number of incremental visits with a two
standard error confidence interval, δ̂ ± 2stderr(δ̂), averaged



Figure 6: Estimated daily incremental visits
summed over all target DMAs. The shaded region
denotes a one standard error confidence band.

over the 28 days after the ad appeared for each targeted
DMA. This plot highlights the differing market sizes and
the uncertainty in the estimates.

Figure 6 shows the estimated incremental number of vis-
its summed over all DMAs by day with a one standard er-
ror confidence interval.[We use a one standard error interval
here to preserve the resolution that otherwise would be lost
if we plotted the usual two standard error interval.] This
plot shows the total effect of the ad campaign and allows us
to assess how each successive day contributes to the over-
all estimate. There is only a modest lift on the day the ad
appeared, with the biggest bumps occurring the next two
days. The additional number of visitors gained on the first
day an ad runs is often small because an ad cannot have
an effect until it is seen, which means that additional vis-
its are accrued over fewer than 24 hours on the first day
it runs. Moreover, in this example the ad ran in the Sun-
day edition of each target DMA, and individuals exposed
to the ad may have waited until a business day to explore
the advertiser’s web page. After approximately 10 days, the
number of incremental daily visits stays between 900 - 950.
This persistent lift is surprising and seems unlikely to hold
in other campaigns.

5. THE PROPOSED ESTIMATES AND THEIR
RELATIONSHIP TO OTHER METHODS

As suggested in Section 2, a least squares line fit to the pre-
campaign visits for a targeted DMA and the control DMA
can be used to estimate the number of visits y0 that would
have been observed in the post-campaign period had the ad
not run in the targeted DMA. A little algebra shows that
the least squares estimate of y0 on a post-campaign day for

which the control DMA saw x visits is

ŷ0(x) = ȳb + β̂(x− x̄b)

where ȳb denotes the average daily number of visits in the
targeted DMA prior to the campaign, x̄b denotes the average
daily number of visits in the control DMAs prior to the
campaign, x is the number of daily visits to the control DMA
on the day of interest after the campaign, and β̂ is the least
squares slope estimate.

The estimated effect δ̂ of the ad campaign in a DMA is
then computed by averaging the daily differences y1 − ŷ0

of the observed-after-campaign and estimated-assuming-no-
campaign number of visits in the targeted DMA. The alge-
braic form of δ̂ is

δ̂ = ave(y1 − ŷ0)

= ave(y1)− ave(ŷ0)

= ȳ1 − (ȳb − β̂(x̄a − x̄b))

= (ȳ1 − ȳb)− β̂(x̄a − x̄b) (3)

where x̄a is the average number of visits per day in the
control DMA in the period after the campaign ran in the
targeted DMA.

Equation 3 for δ̂ is identical to the so-called difference-in-
difference estimate [4] when β̂ = 1, namely

D̂nD = (ȳ1 − ȳb)− (x̄a − x̄b).

The difference-in-difference estimate D̂nD compares the post-
campaign change in visits in the targeted DMAs to the post-
campaign change in visits in the aggregated control DMAs.
In our application, the least squares slope estimate β̂ is
necessary to scale the controls to the size of the targeted
DMA. The fact that the proposed estimate reduces to the
difference-in-difference estimate when β̂ = 1 shows that ex-
ploiting the relationship between targeted and non-targeted
DMAs prior to the print ad campaign is consistent with ex-
isting practice. Not requiring that the targeted and control
DMAs have matching number of visits before the campaign
makes it easier to routinely apply the proposed estimator. It
would be troublesome to find a control DMA with approx-
imately the same number of pre-campaign visits for each
target DMA; i.e., to find controls for which β = 1. Equa-
tion (3) shows that this degree of matching is not necessary.
Simply aggregate traffic from all non-targeted DMAs and
use least squares to handle the attenuation factor. Note
that not requiring β = 1 allows the control DMA to be
much larger than the targeted DMA. The number of visits
may be more stable in larger DMAs, providing more stable
estimates of β.

Recently Lee [3] proposed a pair of generalizations of the
difference-in-difference estimate:

GDγ = (ȳ1 − ȳb)− γ(x̄a − x̄b)

DGη = (ȳ1 − ηȳb)− (x̄a − ηx̄b).

We see that the first of these has exactly the same form as
our estimator defined in Equation 3. However Lee formu-
lated the problem differently and did not see a way to use
data to estimate γ. Instead, Lee focused attention on DGη



and proposed an estimate of η based on an analysis of panel
data.

Equation (3) also shows what happens if there is no sta-
tistically significant relationship between the outcomes in
the targeted DMAs and the control DMA. In this case, the
slope estimate is 0 and δ̂ is the standard difference of the
before and after averages. That is, if there is no predictive
power in the non-target markets, then the best estimate
of post-campaign average daily traffic is the pre-campaign
daily average. More formally, a statistical hypothesis test
of H0 : β = 0 can be employed to determine when the con-
trol market does not provide enough information about the
targeted DMAs pre-campaign to be used to estimate the
’without campaign’ outcome y0.

6. STANDARD ERROR ESTIMATES
Point estimates such as δ̂ and λ̂ are only meaningful if pre-
sented with estimates of their sampling variability. In this
section we derive an explicit formulas for the variance of δ̂
and λ̂. As a check on the accuracy of these formulas, es-
pecially for λ̂, we propose an alternative approach based on
re-sampling methods.

6.1 Standard Error of Incremental Visits
Equation (3) leads to a simple estimate of the variance of

δ̂. From the theory of least squares regression, the vari-
ance of the estimated slope β̂ in the linear regression of
pre-campaign DMA daily visits against pre-campaign con-
trol daily visits is

var(β̂) =
σ2

(nb − 1)s2
b

,

where σ2 is the residual variance of the pre-campaign visits
yb in a targeted DMA given that there were x visits in the
control DMA that day, nb is the number of days included in
the pre-campaign period, and sb is the standard deviation
across days of the daily number of visits in the control mar-
ket in the pre-campaign period. By the assumptions that
underlie linear regression modeling, the residual variance σ2

is the same for all levels xb. Moreover, β̂ is independent of
ȳb, and the post-campaign data are independent of the pre-
campaign data. Putting all this together, conditional on the
outcomes in the control DMA,

var(δ̂) = σ2

„
1

na
+

1

nb
+

(x̄a − x̄b)
2

(nb − 1)s2
b

«
(4)

where na is the number of days in the study after the ad cam-
paign ran. Note that all quantities in this equation can be
computed from the data with the exception of σ2. However
the residual mean squared error from the linear regression
model provides a convenient and accurate estimate of σ2.

Table 2 gives the estimated standard errors of δ̂ for each
target market using equation (4). We see good agreement

with the bootstrap standard error estimates for δ̂ (which we
explain in Section 6.3) that are reported in Table 1.

6.2 Standard Error of Lift
Lift is the ratio of the estimate of incremental visits and
the average daily visits that we predict we would have ob-
served had the campaign not been run. Thus it is the ratio

Table 2: Estimates of the incremental number of vis-
its δ and their standard errors obtained from equa-
tion (4).

Market δ̂ stderr(δ̂) λ̂ stderr(λ̂)
Paper A 128.4 21.3 0.122 0.029
Paper B 85.9 18.0 0.129 0.039
Paper C 53.9 26.3 0.100 0.062
Paper D 53.1 19.1 0.075 0.033
Paper E 459.4 237.5 0.106 0.079
Paper F 66.5 31.9 0.107 0.074
Paper G 11.0 24.0 0.032 0.084
Paper H 15.4 18.8 0.047 0.070
Paper I 19.0 11.5 0.037 0.031
Paper J 32.8 13.6 0.056 0.032

of two random variables and as such, a simple and accurate
variance estimate is problematic. One standard approach is
to use a “first order” approximation based on a Taylor se-
ries expansion of the ratio of random variables around their
means.

To proceed, note that we can write λ̂ = ave(y1)/ave(ŷ0)− 1
and that ave(y1) and ave(ŷ0) are statistically independent.

Using this fact, the approximate variance of λ̂ as

var(λ̂) ≈
„

ave(y1)

ave(ŷ0)

«2 »
var(ave(y1))

ave2(y1)
+

var(ave(ŷ0))

ave2(ŷ0)

–
(5)

where the variance terms in the brackets are

var(ave(y1)) =
σ2

na

var(ave(ŷ0)) = σ2

„
1

nb
+

(x̄a − x̄b)
2

(nb − 1)s2
b

«

Table 2 gives the estimated standard errors of λ̂ for each tar-
get market using equation (5). In contrast to those for δ̂ we
see that these are much larger than the bootstrap standard
error estimates for λ̂ that are reported in Table 1.

6.3 Bootstrap Confidence Intervals
The estimated standard error for δ̂ is easy to compute and
accurate, while the estimated standard error for the lift es-
timate λ̂ is problematic. To obtain a reliable and honest
estimate of variability for λ̂, we recommend a re-sampling
technique known as the bootstrap [1]. The bootstrap method
of estimating the sampling variability of estimates has a rich
history in statistics and is often used in cases such as ours
where a reliable and honest method of estimating a standard
error is required but there is no simple formula for the stan-
dard error. The idea is to generate data sets that resemble
the one under study by randomly sampling the original data,
or some combination of the original data and a model for
the data, with replacement. The lift estimate λ̂ is then com-
puted for each generated data set, and confidence intervals
can be formed by



- computing the sample standard deviation of these values
(sλ) and use this to define the limits of a 95% confi-

dence interval as (λ̂− 2sλ, λ̂ + 2sλ);

- computing the quantiles of the bootstrap estimates and
define the limits of a 95% confidence interval as

(λ̂.025, λ̂.975).

In cases where the bootstrap distribution is unimodal and
symmetric, these two procedures lead to approximately the
same confidence intervals. We later show that this is the
case for our estimation problem.

In simple one-sample problems, bootstrapping proceeds by
taking random samples of size n with replacement from the
original n observations. In linear regression problems with
a model that fits the data well, it is common to re-sample
residuals from the fitted model instead of the raw observa-
tions themselves. The re-sampled residuals are then added
to the n fitted values from the original data to generate new
data, the model is fit to the newly generated data, and then
λ̂ is estimated from the re-fit model.

In the context of lift, we find the following formulation con-
venient. First, write

y = (1− z)(αb + βbx) + z(αa + βax) + e (6)

where z is a binary indicator denoting whether the outcome
was recorded in the before (z = 0) or after (z = 1) period,
and e denotes Gaussian noise with mean 0 and residual vari-
ance σ2. This model specifies a different intercept and slope
for the two periods and can be fit with any standard statis-
tical analysis system. If we fit this model to our data, we
derive fitted values ŷ and residuals r, which can be split into
two groups:

before: {ŷi : zi = 0} and {ri : zi = 0}

after: {ŷi : zi = 1} and {ri : zi = 1}.

Bootstrapping involves sampling from the before- and after-
distributions of the residuals, and adding these to their re-
spective fitted values. Thus, bootstrap values for the before-
and after- periods can be written as

before: y∗b = ŷb+ random draw from {ri : zi = 0}

after: y∗a = ŷa+ random draw from {ri : zi = 1}

Drawing separately from the before- and after- periods al-
lows the residual variance of the outcome to be different in
the two periods. When there is limited data, we would sac-
rifice this generality and randomly draw from the combined
residuals and fitted values to avoid sampling from a small
set. For the example data in this paper, we have either 14 or
35 observations in the before period and 28 observations in
the after- period, so that we feel comfortable with separate
draws.

Figure 7: Histograms of bootstrap estimates of λ.
1000 samples (with replacement) were drawn from
the distribution of before- and after- residuals.

Figure 7 is based on 1000 bootstrap samples derived from
the data from Section 2 and the generative model described
by Equation (6). The bootstrap distributions of λ̂ are uni-
modal and reasonably symmetric. In this case, confidence
intervals can be constructed using the standard deviation of
the bootstrap samples of λ̂.

Since bootstrapping applies to any statistic computed from
the data, we can compute bootstrap confidence intervals for
both δ̂ and λ̂. We reported these values in Table 1. We prefer
these, especially for λ̂, since those based on the first order
approximation are often overly conservative. Indeed in the
present study, several DMAs change from having significant
lift (using the bootstrap method) to insignificant lift (using
the first order approximation).

7. SUMMARY
This paper proposes two metrics for evaluating the effective-
ness of ad campaigns in traditional media like print, radio,
and TV:



δ: the incremental online activity that can be attributed
to the ad campaign, and

λ: the increase in online activity relative to the baseline
activity that would be expected without the campaign.

Both these parameters require estimating what would have
happened if the ad campaign had not run in the targeted
markets. We have provided simple estimates of the online
effectiveness metrics that allow us to estimate these coun-
terfactual outcomes, along with ways to compute confidence
intervals for the estimated effectiveness metrics. These esti-
mates accommodate strong seasonal effects, like those seen
in the illustrative example in this paper. We propose that
the generalized difference-in-difference method be used to
quantify effects in offline ad campaigns in general, and print
ad campaigns in particular. It is intuitive and relatively easy
to compute using off-the-shelf software.

Our method is premised on certain data requirements and
underlying assumptions. We require that online activity
data be available 2 to 4 weeks before the start of an of-
fline ad campaign. We also require that data be collected
outside the campaign markets, (i.e., not just in the targeted
DMAs). Both of these data sources are necessary in order to
predict what we would observe had the campaign not been
run.

Since the slope estimate accounts for any differences in the
units between the outcome and predictor variable, we do
not require that the “out of market” control match the tar-
geted DMA according to demographics or online interest in
the product before the campaign. Moreover, the predictor
variable (.e.g, number of visits to the advertiser’s website)
measured in the out-of-market control areas need not be the
same as the outcome used to evaluate the effectiveness of the
campaign. It is convenient to do so, but the only require-
ment is that there is a strong linear relationship between
the in-market outcome and the out-of-market predictor vari-
able. In some cases, it might be necessary to build more
complicated prediction models to get a model that fits the
pre-campaign data well. In that case, standard errors and
confidence intervals can still be obtained by bootstrapping,
although the closed form formula for the standard error of
δ̂ given in Section 6 may no longer apply.

Fitting a separate linear regression model in each targeted
DMA allows for an interaction between seasonal effects and
in-market and out-of-market outcomes, which means that it
is not necessary to assume that the same seasonality pattern
applies in all targeted DMAs. For example, suppose an ad
campaign for “Tom’s Tanning Booth” runs in both Seattle
and Miami and the weather changes over the study period
in Seattle but not in Miami. Then the seasonality will be
expected to be different in the two markets. Fitting a sep-
arate regression model in each targeted DMA also allows
the product awareness before the ad campaign to vary sub-
stantially across DMAs. Otherwise, the residual variance σ2

around the regression line may not be the same in all tar-
get DMAs. However if all the target DMAs have the same
seasonality patterns and market awareness, it is reasonable
to aggregate data across all targeted DMAs and construct
a single least squares model for predicting what would have

occurred had the campaign not been run. Our preference
is to build separate models in each targeted DMA, not only
for robustness to this strong assumption of no interaction,
but also to simplify computations in situations where the
campaigns do not all start and stop on the same day.

Finally, ad campaigns are often more complicated than the
one presented here. There may be two different versions
of an ad to compare. In a cross-over design, each targeted
DMA may see both ads, but half the targeted DMAs will
see ad A first and the remaining will see ad B first. Or,
the advertiser may want to decide when to stop running an
ad based on an ongoing analysis of its effectiveness. The
simple estimation method proposed here would need to be
extended to handle these situations, but the twin principles
of comparing what happened after a campaign to an esti-
mate of what would have happened had the campaign not
run and basing the estimate on a control DMA consisting of
markets where the campaign did not run should still apply.

8. REFERENCES
[1] B. Efron and R. Tibshirani. An Introduction to the

Bootstrap. CRC Press, 1993.

[2] R. Fisher. The Design of Experiments. Hafner
Publishing Company, 1935.

[3] M. jae Lee. Difference in generalized-differences with
panel data: Effects of moving from private to public
school on test scores. Discussion Paper Series: The
Institute of Economic Research, Korea University,
(07-21):1–30, 2007.

[4] B. Meyer. Natural and quasi-natural experiments in
economics. Journal of Business and Economic
Statistics, XII:151–162, 1995.

[5] D. B. Rubin. Estimating causal effects of treatments in
randomized and nonrandomized studies,. Journal of
Educational Psychology, 66:688–701, 1974.


