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Abstract

We propose a generative model for melodies in a given musical genre, using sym-
bolic representation of musical data. We first compute melodic features that rep-
resent the plausibility of sequences of three consecutive notes. Their probabilis-
tic modeling is an interesting intermediate problem since the cardinality of such
features is much lower than the number of sequences of three notes. We then
introduce a probabilistic model of melodies given chords and rhythms based on
these features. This model leads to significantly higher prediction rates than a sim-
pler Input/Output Hidden Markov Model. Moreover, sampling this model given
appropriate musical contexts generates realistic melodies.

1 Introduction

In this paper, we present graphical models that capture melodic structures in a given musical style
using as evidence a limited amount of symbolic MIDI' data. Predictive models have already been
proposed for melodies [1, 2]. However, proper generative models would be desirable when modeling
melodies, since one would want to estimate the probability of any arbitrary melodic sequence in
most information retrieval applications. In this respect, models based on Markov random fields
[3] are very general, but would benefit from using more specific musical knowledge. On the other
hand, dictionary based predictors [4] generate subjectively impressive musical results, but we are
not aware of musicological evidence to support such modeling of melodic sequences. In contrast
to all of these approaches, we propose in Section 2.3 a melodic model based on constraints directly
derived from musicological substantiation [S]. Moreover, we are not aware of proper quantitative
comparisons between generative models of music, that is for instance in terms of out-of-sample
prediction accuracy, as we do in Section 3.

A chord is a group of three or more notes. A chord progression is simply a sequence of chords.
In probabilistic terms, the current chord in a song can be seen as a latent variable (local in time)
that conditions the probabilities of choosing particular notes in other music components, such as
melodies or accompaniments. Chord changes occur at fixed time intervals in most of the musical
genres, which makes them much simpler to detect [6] than beginnings and endings of musical notes,
which can happen almost everywhere in music signal. Thus, knowing the relations between such
chords and actual notes would certainly help to discover long-term musical structures in tonal music.

It is fairly easy to generate interesting chord progressions given melodies in a particular musical
genre [7, 8]. However, the dual problem that we address in this paper is much more difficult. Music
data contains very strong long-term dependencies, and these statistical relationship are very diffi-
cult to capture with traditional machine learning methods [9]. In Section 2.2, we describe melodic
features that put useful constraints on melodies based on musicological substantiation [5]. We then

'MIDI stands for Musical Instrument Digital Interface, an industry-standard interface used on electronic
musical keyboards and PCs for computer control of musical instruments and devices. In our work, we only
consider note onsets and offsets in the MIDI signal.
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Figure 1: Variant of an IOHMM model for MIDI notes given chords. The variables in level 1 are
always observed and correspond to chords. Variables in level 2 are hidden, while variables in level
3 correspond to melodic notes. All variables in grey are observed during training.

introduce in Section 2.3 a probabilistic model of melodies given chords and rhythms that leads to sig-
nificantly higher prediction rates than a simpler Markovian model, as shown in Section 3. Reliable
generative models for music could improve the poor performance of state-of-the-art transcription
systems; it could as well be included in genre classifiers, automatic composition systems [10], or
algorithms for music information retrieval [11].

2 Melodic Model

We propose a model for melody notes given chord progressions that is divided into two modules. We
first model features that represent the plausibility of sequences of notes. These so-called “Narmour”
features, introduced in Section 2.2, are computed for each sequence of three consecutive notes.
Their prediction is an interesting intermediate problem since the cardinality of such features is much
lower than the number of sequences of three notes. Moreover, Narmour features are descriptive of
the perceptual expectancy of a particular group of three notes. As stated in Section 1, chords can be
seen as latent variables (local in time) that condition the probabilities of choosing particular notes in
a melody. However, chords do not describe longer term melodic structure. This is why we propose
to use Narmour features as sequences of constraints on the choices of melody notes. In Section 2.3,
we describe a probabilistic model for melody notes given Narmour features and chord progressions.

Results reported in Section 3 show that using sequences of Narmour features as constraints leads
to much better prediction accuracy than the direct baseline approach using the IOHMM model de-
scribed in the following section.

2.1 IOHMMs

Let i/ = {u',...,u"} be a dataset of varying length monophonic melodies, where each melody
u’ has g; notes, u* = (uf,...,u} ). Each melodic line is composed of notes u; in the MIDI stan-
dard, v € {0,...,127}. Also, note indices correspond to the chronological order of the notes in

the songs. Hence, the only rhythmical information we consider in this particular model is the order

in which the notes are played. In addition, let v! = (4,..., gz) be the chord progressmn corre-

sponding to the [-th melody. Each v! represents the chord that is in effect while note u! is played.
Each ué takes a discrete value within the number of different chords in the dataset. Finally, let

= (h%,... hl)) be a sequence of states of discrete hidden variables synchronized with sequence
u’. The joint probability of each sequence u', its associated chord progression »!, and hidden states
h! can be modeled by

poman (0, ', ') = pi (1] )pr (B[] )po (1 | 1) sz vi)ps(hi|ht 1, v)po(ulhy) . (1)
t=2
This model, shown in Figure 1, is a specific Input/Output Hidden Markov Model (IOHMM) [12].

The model is described in the figure using the standard graphical model framework [13]. Usual
IOHMMs have additional links connecting directly the input variables (level 1) to the outputs (level
3). We removed these links to decrease to number of parameters in the model, and thus being less
prone to overfit the training data.



The probability distributions p., p;, ps, and p, are multinomials. The model is learned by the
standard EM algorithm [14]. Marginalization must be carried out in this model both for learning
(during the expectation step of the EM algorithm) and for evaluation. Exact marginalization with
the standard Junction Tree Algorithm [13] is usually tractable in IOHMMs because of their limited
complexity. Performance of the IOHMM in terms of melodic prediction accuracy given chords is
presented in Section 3.

2.2 Narmour Features

In this section, we introduce melodic features that will prove to be useful for melodic prediction. The
Implication-Realization (I-R) model [5, 15] has been developed as a theory of musical expectation.
This fairly complex musicological model was then simplified and implemented [16] as a formal
analysis of each sequence of three consecutive notes, according to five perceptual items: registral
direction, intervallic difference, registral return, proximity, and closure, as described later in this
section. The model returns five scores measuring expectancy according to these five criteria, and,
according to Narmour’s theory, high perceptual expectancy incurs high cumulative scores. This
model was empirically shown to be relevant in information retrieval applications [11].

In this paper, our goal is quite different. Instead of quantifying melodic expectancy, we design a
probabilistic model of melodic sequences given chords. We propose to collectively use the Nar-
mour principles as discrete features to characterize each sequence of three consecutive notes. In the
remainder of this paper, we refer to these features as Narmour features. There is much less possi-
ble Narmour features (108 in our implementation) than possible groups of three notes (128° if we
consider all MIDI notes). Given that observation, we expect that modeling sequences of Narmour
features should be easier than modeling actual sequences of notes. We describe in Section 2.3 how
we propose to generate actual melodies given sequences of Narmour features.

Our particular implementation of the Narmour features is mostly derived from [16]. We simply
define the interval v; between two notes u; and u;_; to be the difference v; = u;_1 — u; between
their MIDI note numbers. Interval has to be taken here in its musicological sense, which is not
related to the usual mathematical definition: an interval is an integer that counts the number of
semi-tones between two notes. Each Narmour principle can be computed for any sequence of three
consecutive notes, corresponding to two intervals. In Narmour’s theory, the first interval is referred
to as the Implication while the second interval corresponds to the Realization of a melodic pattern
of three notes. We define the sign function as

-1 ifx<O0
sgn(x){ (1) 1?9628
x>

The registral direction principle states that continuation in pitch direction is expected after small
intervals and that large intervals imply a change of direction. We define

0 if |vg_1| > 6 and sgn(vi_1) = sgn(vy)
m; =< 1 if jug_q] <6
2 if |v_1] > 6 and sgn(vi—1) # sgn(vy)

to be the Narmour feature scoring the registral direction principle computed on arbitrary MIDI notes
Ug_2, Us—1, and ug.

The intervallic difference principle says that small intervals imply similar-sized realized intervals
and that large implicative intervals imply relatively smaller realized intervals. Formally,

1 if Jup—q] < 6 and sgn(vi—1) # sgn(ve) and [|ve—1| — |ve]| < 3
1 if 1| < 6 and sgn(vi—1) = sgn(vs) and ||vp—1| — |v¢]] < 4
1 if Jop—q| > 6 and |vi_1| > |v]

0 otherwise

id; =

is the Narmour feature scoring the intervallic difference principle.

The registral return principle states that the second tone of a realized interval is expected to be very
similar to the original pitch (within 2 semi-tones). Thus, we define the following scoring function

_ 1 if"l}t-f-’l]t,]_‘ SQ
=193 0 otherwise.



Then, the closure principle states that either melody changes direction, or that large intervals are
followed by a relatively smaller interval. This feature is scored by

2 if sgn(ve—1) # sgn(vy) and |vi_1| — [ve| > 2

ol, = 1 if sgn(ve—1) # sgn(ve) and |vp—q| — v <3
1 if sgn(vi—1) = sgn(vy) and |vg_1| — |vg] > 3
0 otherwise.

Finally, the proximity principle favors small realized intervals. We define

prt:{l if 3< |yl <5
2 o< | <2.

We define this feature with less possible states than in [16] in order to limit the dimensionality of the
Narmour representation. Besides, the actual numerical values for each of the Narmour features do
not correspond to those of [16], where the goal was to quantify numerically the subjective melodic
expectation. In the context of this paper, these values only correspond to discrete ordered values
summarizing triplets of notes.

From these definitions, the Narmour features for the note triplet (w2, us—1,us) are defined as
Y: = (rmy, idy, 114, Clg, pry)
Such features have 108 possible different discrete states.

As an example, the sequence of MIDI notes (w1, us, us,us) = (71,74,72,84) would lead to the
Narmour features v3 = (1,1,1,1,2) and 4 = (1,0,0,1,0).

2.3 Melodic Model

In this section, we describe a probabilistic model for melodies given rhythms and chord progressions.
While the IOHMM in Section 2.1 was directly modeling the choice of notes given chords, the model
described here proceeds in two steps. We first model sequences of Narmour features given rhythm.
Then, we model the actual choice of melodic notes, given sequences of Narmour features generated
in the last step and chord progressions.

2.3.1 IOHMM for Narmour Features

An IOHMM like the one presented in Section 2.1 can be used to model sequences of Narmour
features given rhythms. We first compress the rhythms in the dataset in a form that is synchronized
with Narmour features: we define a! = (ab, ..., aél _4) to be the I-th sequence of note lengths in the
dataset, ignoring the first and last note lengths a} and al, . Also, we denote by ' = (4,...,7})
the sequence of Narmour features associated to the /-th melody. This sequence starts with index 3

because each Narmour feature spans three notes.

The joint probability of each sequence of Narmour feature !, its associated sequence of note lengths
a', and hidden states h! can be modeled by

Pnionmm (al» VZ» hl) = D (alz )p‘n' (hl1 |a12 )Po ('Yé ‘ hl1)
g1
Hpi(ai_l)pa(hi_zlhi_gaai_l)po(%lhi_z) . 2

t=4

This model is shown in Figure 2. As in Equation (1), the probability distributions p, p;, ps, and p,
are multinomials, and the model is learned by the standard EM algorithm.

As can be seen in Equation (2), we arbitrarily chose to condition the Narmour features on the pre-
vious note length. This is due to the empirical observation that greater intervals tend to occur after
long notes while smaller intervals tend to occur after short notes. Other models of Narmour features
given current length, a longer past context, or even no note length at all could be considered. We let
this exploration for future work.
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Figure 2: Variant of an IOHMM model for Narmour features given note lengths. The variables in
level 1 are always observed and correspond to previous note lengths. Variables in level 2 are hidden,
while variables in level 3 correspond to Narmour features. All variables in grey are observed during
training.

2.3.2 Notes Model

We introduce in this section a model for MIDI notes given Narmour features and chord progressions.
The combination of this model with the IOHMM for Narmour features introduced in the last section
leads to a complete generative model of melodies given chord progressions.

We first decompose the chord representation defined in Section 2.1 into two parts: v} = (nl,7}),
where 7! is the structure of the chord and 7} is the root pitch class. Chord structures are just the
chord definitions aside of the name of the root (e.g. “m7b5” is the chord structure in the chord
“Bm7b5”). Each different chord structure is mapped to a specific state of the variables n!. The
sequences 7' = (nt,...,7 ) and 7' = (7{,...,7.) are respectively the chord structure and the

. . g
root progressions of the [-th song in the dataset.

Let @i} be an arbitrary MIDI note played at time ¢. We define
o(il, mh) = ((4, mod 12) — 7}) mod 12

to be the representation of the pitch class associated to the MIDI note i}, relative to the root of the
current chord. For instance, let ﬂi = 65 (note F) be played over the D minor chord. In that case, we
have 7} = 2, meaning that the pitch class of the root of the chord is D. Hence, ¢(65,2) = 3 for that
particular example, meaning that the current melody note pitch class is 3 semi-tones higher than the
root of the current chord.

It is easy to estimate p(ni|il,7!) with a multinomial distribution conditioned on the values of
#(at, 7}). This distribution can be estimated by maximum likelihood over a training set. Hence, we
learn a simple distribution of the chord structures 7 for each possible pitch classes of the melodies
relative to the roots of the corresponding chords. For instance, this distribution could learn the fact
that we often observe a minor seventh chord when playing a minor third over the tonic in the melody.

Let 71 (ul_5,ul_;,l) be the extracted Narmour feature when notes u!_,, and u!_, are followed by
the arbitrary note ﬁé Also, let F@i be an arbitrary random variable such that

=l =l l l 0y — 1 if /yilt = ’?é(ui72a uéflﬂli)
PRy = iy, g, 1, ;) = { 0 otherwise.

In words, &} is equal to 1 if and only if the Narmour feature produced when playing arbitrary note
! is equal to the given Narmour feature ~y, given the two previous notes.

We define a factorization of the joint probability of the variables @k, ul , ul_,,nl, 7}, ~l, and &l
with

p(af‘,vué—laué—l%niﬂ—tlz’%aii)%: ; . N ; Ll (3)
pug1)p(uyo)p(ve)P(Rel e, wy gy 1, )P (U )p(Ty )p (i, 77)

at each time ¢. This factorization is shown by the graphical model in Figure 3.

We want to estimate the probability of playing any arbitrary MIDI note @' at time ¢ in the [-th song
of the dataset given the two previous observed notes ul_, and u!_, the current Narmour feature 7,
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Figure 3: Graphical model representation of the factorization of the joint probability defined in
Eq. (3).

and the current chord v/} = (5!, 7}). Given the factorization in Equation (3), we have that

~1|,,1 l [ A R4 _
p]\/[EL(ut|ut—’17 ut—l2al7]t7 Tgv%v”’% T 1) Lf L
P(Ry=1]Ty,uy_o,uy_q,7)P(A3)p(ng|Ts,7() (4)
St p(RI=1a]u) 0l Dp@)p(iflag, )

where p(i}) is the prior probability of observing .. The distribution p(@!) is a multinomial that can
be simply estimated by maximum likelihood on the training set.

Hence, a simple strategy to find the most likely MIDI note @} given ul |, ul 5 0!, 7}, and 4! is to
solve
oy s gl |
{at|Rl=1,ul_ ul_,~!}

since the denominator in the right-hand side of Equation (4) is the same for all values of @. In other
words, we search for the most likely melodic note (with respect to the current chord) among all the
possible notes given the current Narmour constraint and the current chord. Despite the fact that this
model only predicts one note at a time, it is able to take into account longer term melodic shapes
through the constraints imposed by the sequences of Narmour features.

Melodic prediction without observing Narmour features can be done with this model in two steps.
We first generate the most likely sequence of Narmour features given rhythms with the IOHMM
model described in Section 2.3.1. Then, we can use the melodic prediction model described in the
current section to predict MIDI notes given chord progressions. Such a model is shown in Section 3
to have much better prediction accuracy than using a simpler [OHMM model alone.

One can listen the the audio examples provided with this submission as additional material. Even
for the non musician, it should be obvious that the sequences generated by sampling the melodic
model introduced in this section are much more realistic than sequences generated by sampling the
IOHMM model described in Section 2.1. Both models generate notes that are coherent with the
current chord. However, the sequences generated by the IOHMM model do not have any coherent
temporal structure. On the other hand, melodies generated by the melodic model presented here
tend to follow the same melodic shapes than the songs in the training sets. These melodic shapes are
constrained by the conditioning sequences of Narmour features used as inputs.

3 Melodic Prediction Experiments

Two databases from different musical genres were used to evaluate the proposed model. Firstly,
47 jazz standards melodies [17] were interpreted and recorded by the first author in MIDI format.
The complexity of the melodies and chord progressions found in this corpus is representative of
the complexity of common jazz and pop music. We used the last 16 bars of each song to train the
models, with four beats per bar. We also used a subset of the Nottingham database? consisting of 53
traditional British folk dance tunes called “hornpipes”. In this case, we used the first 16 bars of each
song to train the models, with four beats per bar.

The goal of the proposed models is to predict or generate melodies given chord progressions and
thythms. Let v/ = (u] ,uzj) be a test sequence of MIDI notes and @ to be the output of

http://www.cs.nott.ac.uk/ ef/music/database.htm.



Table 1: Accuracies (the higher the better) achieved by both models on the two databases, for various
prediction starting bars s (all the songs contain 16 bars in the experiments).

Jazz Hornpipes
S IOHMM Narmour | IOHMM  Narmour
5 | 2.0% 8.9% 2.5% 4.6%
9 | 1.7% 8.1% 2.6% 4.8%
13 | 2.2% 8.3% 2.6% 4.9%
the evaluated prediction model on the i-th position when given (u],...,u]_;) and the associated
rhythm sequence x?. Assume that the dataset is divided into K folds 77, ..., Tk (each containing

different sequences), and that the k-th fold 7}, contains ny, test sequences. Finally, let s be the first
bar from which the evaluated model try to guess what would be the next notes in each test songs.
When using cross-validation, we define the “prediction accuracy” Acc of an evaluated model to be

9

Acc = Z Z Cs - Z & &)

kjer, 9i — i=cd

where 53 =1if 4 AJ = uJ, and 0 otherwise, and (7 is the smallest note index in bar s of the j-th
song. Hence predlctlon models have access to all the previously observed notes when trying to
guess what would be the next note. This rate of success is averaged on the last 16 — s + 1 bars of
each song (which correspond to the last g; — ¢ + 1 notes of each song.)

Between 2 to 20 possible hidden states were tried in the reported experiments for the baseline
IOHMM model of Section 2.1 and the “Narmour” IOHMM of Section 2.3.1. Both models try to
predict out-of-sample melody notes, given chord progressions and complete test rhythm sequences
x7. The same chord representations are used as input for both models. 5-fold cross-validation was
used to compute prediction accuracies. We report results for the choices of parameters that pro-
vided the highest accuracies for each model. The IOHMM model of notes given chords is a stronger
contender than would be a simpler HMM trained on melodies, because the prediction given by the
IOHMM takes advantage of the current input.

Results in Table 1 for the jazz standards database show that generating Narmour features as an
intermediate step greatly improves prediction accuracy. Since there is 128 different MIDI notes, a
completely random predictor would have a local accuracy of 0.8%. Both models take into account
chord progressions when trying to predict the next MIDI note. However, the Narmour model favors
melodic shapes similar to the ones found in the training set.

The Narmour model still provides consistently better prediction accuracy on the hornpipes database,
as can be seen in the same table. However, prediction accuracies are lower on the hornpipes database
than on the jazz database for the Narmour model. Note onsets occur on most rhythm positions in this
database. This means that rhythm sequences in this database have relatively low entropy. Hence,
rhythm sequences are less informative when used as conditioning inputs to generate sequences of
Narmour features. Another observation is that the chord structures in this database are almost always
the same (i.e. simple triads). The melodic model of Section 2.3 is directly modeling the distribution
p(nt|rl, @l) of relative MIDI notes given chord structures. This distribution was probably more
helpful for melodic prediction in the jazz database than in the hornpipes database. Despite these
two drawbacks, the melodic model of Section 2.3 has a prediction accuracy twice as good as what
is obtained with the simpler IOHMM model in the hornpipes database.

While the prediction accuracy is simple to compute and to apprehend, other performance criteria,
such as ratings provided by a panel of experts, could be more appropriate to evaluate the relevance
of music models. The fact that the Narmour model accurately predict “only” about 8% of the notes
on out-of-sample sequences does not mean that it is not performing well when generating the other
“wrong” notes. Many realistic melodies can be generated on the same chord progression in a given
musical genre. Moreover, some mistakes are more harmful than others. For most applications, a
model that would have very low prediction accuracy, but that would generate realistic melodies,
would be preferable to a model with 50% prediction accuracy, but that would generate unrealistic
notes the other half of the time.



4 Conclusion

The main contribution of this paper is the design and evaluation of a generative model for melodies.
While a few generative models have already been proposed for music in general [4, 1], we are
not aware of quantitative comparisons between generative models of music. We first described
melodic features [S] that put useful constraints on melodies based on musicological substantiation.
We then defined a probabilistic model of melodies that provides significantly higher prediction rates
than a simpler, yet powerful, Markovian model. Furthermore, sampling the proposed model given
appropriate musical contexts generates realistic melodies.
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