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Abstract

This paper describes a general methodology for extract-

ing attribute-value pairs from web pages. Attribute-value

extraction occurs in two phases: candidate generation, in

which syntactically likely attribute-value pairs are anno-

tated by scanning for common mark-up structures; and can-

didate filtering, in which semantically improbable annota-

tions are removed. We describe three types of candidate

generators and two types of candidate filtering techniques,

all of which are designed to be massively parallelizable and

to scale to the entire Web if desired. The best generation

and filtering combination in our experiments achieves 70%

F-measure on a hand-annotated corpus of 258 web pages.

1 Introduction

Lists of attribute-value pairs are a widespread and tra-

ditional way of displaying information in many fields, in-

cluding artificial intelligence [17] and linguistics [15]. A

simple example is given in Figure 1, which contains infor-

mation about Pittsburgh, Pennsylvania. The attributes are

the labels in the left-hand column, and the values are the

corresponding entries in the right-hand column. Other typ-

ical data records that use attribute-value pairs include the

specifications of many manufactured products (e.g., “Hard

Drive: 160 GB, Weight: 3.4 lb”), and lists of author, pub-

lisher, year values in bibliographic records.

Many formal and structured data representation meth-

ods use attribute-value pairs to specify information about

classes or objects. Much data in relational tables can use-

fully be thought of as attribute-value data, the attributes

being specified as the columns in a database schema, and

the values being the entries in individual table cells. In

a “subject-verb-object” model of entities (seen recently in

triple-stores such as the RDF graphs of the Semantic Web

[5], traceable also to Aristotle’s Categories), the verbs cor-

respond to attributes and the objects to values.

If this information is well-organized, it can be used to

serve many information needs: for example, given the at-

tribute values in Figure 1, and relatively simple processing

of numerical attributes, a query for “cities in Pennsylva-

nia founded before 1800” or “cities with population greater

Figure 1. Attributes of the City of Pittsburgh

Country United States

Commonwealth Pennsylvania

Founded November 25, 1758

Population (2000) 334,563

Source: Wikipedia

than 300,000” could be matched exactly against Pittsburgh,

whereas with keywords alone this match would be at best

approximate.

In this paper, we present a general framework for ex-

tracting attribute-value pairs from web pages. Specifically,

we restrict our attention to attribute-value pairs that are

expressed in structural contexts such as tables and colon-

delimited pairs. The main motivation is that a large number

of attribute-value pairs that exist on the Web are encoded

in such formats, and identifying these formats is relatively

straightforward. On the other hand, since structural clues

only provide weak indications of the presence of attribute-

value pairs, a separate candidate filtering step is needed

to identify attribute-value pairs that are semantically prob-

able. We describe two approaches to candidate filtering.

First, we use attribute whitelists to identify structural con-

texts that are rich in known attributes. Second, we treat can-

didate filtering as a binary classification task, and use the

passive-aggressive algorithm [7] to generalize across previ-

ously unseen attributes. All methods described in this paper

are designed to be massively parallelizable and to scale to

the entire Web if desired. On a hand-annotated corpus of

258 web pages, our best candidate generation and filtering

techniques achieve up to 70% F-score and up to 92% pre-

cision. Given a corpus of approximately 100 million web

pages, our techniques are able to extract 1 billion attribute-

value pairs from half of the documents at 70–75% precision.

2 Related Work

Information extraction (particularly relation extraction)

using fixed lexico-syntactic patterns to generate candidates

is a well-established technique in NLP, often traced to the

work of Hearst [9], and it was not long before such methods



for candidate generation became combined with statistical

analysis to help classify the candidates generated [10, 4, 2].

Most such work has been devoted to the acquisition of

WordNet-style relations between pairs of concepts. Work

specifically directed towards extracting attributes of con-

cepts was performed by Poesio and Almuhareb [14]. Their

system generates candidates using the pattern “the X of the

Y (is Z)”, the hypothesis being that X is an attribute of

the concept described by the noun phrase Y , and Z, if it

appears, is the corresponding value. This pattern also gen-

erates many examples that are not attributes, and like ours

leads to the problem of candidate filtering. However, be-

cause we focus on colon-delimited and table structures in

web pages, the false positives are less to do with linguistic

variation, which is almost boundless, and more to do with

formatting opportunism.

The past few years have seen a surge of interest in open-

domain information extraction, in which unrestricted rela-

tional tuples are extracted from heterogeneous corpora with

minimal human intervention. Shinyama and Sekine [16] de-

scribed an approach that involves clustering of documents

into topics. Within each cluster, named-entity recognition,

co-reference resolution and syntactic parsing are performed

in order to identify relations between entities. Since their

work requires document clustering and deep linguistic anal-

ysis, it is difficulit to apply in the Web scale.

TextRunner [1] is a system for extracting open-domain

relational tuples from free text. It employs a two-phase

approach that combines candidate generation and filtering.

For candidate generation, a noun-phrase chunker is used to

locate plausible entities and relations. Then a Naive-Bayes

classifier is used for candidate filtering, followed by addi-

tional filtering based on redundancy of tuples across the en-

tire test corpus. The Naive-Bayes classifier is trained using

documents that have been automatically labeled with tuples

using pattern-based heuristics. Compared to previous meth-

ods, TextRunner runs considerably faster, since the required

linguistic analysis is relatively lightweight (e.g. part-of-

speech tagging). Like our method, it is scalable and can

be massively parallelized. The main difference is that our

method considers attribute-value pairs occurring in struc-

tural contexts, not free text. Because these contexts are both

rich but are largely disjoint, our techniques should serve as

a useful complement to systems like TextRunner.

More recently, Pasca and Van Durme [12] presented a

method for extracting open-domain entity classes, along

with their associated class attributes, from both web pages

and query logs. It exploits the natural tendency of search

engine queries to be simple noun phrases such as “cast

selection for kill bill”, where class attributes (“cast selec-

tion”) are coupled with class instances (“kill bill”). Com-

pared to our method, their system is mainly focused on on-

tology building and does not annotate instances of entity-

attribute pairs in web pages. Our method also considers

attribute-value pairs (e.g. “Cast: Uma Thurman”), not

entity-attribute pairs.

There has been much work on the extraction of data from

highly structured text such as automatically generated web

pages. Most learning algorithms take advantage of the un-

derlying mark-up structures of such text and learn string- or

tree-based patterns (called wrappers) given a small set of

training documents. Examples of wrapper induction meth-

ods include Stalker [11], BWI [8], and WL2 [6]. While

the learned wrappers are often highly site-specific, similar

techniques have been used to extract large-scale knowledge

bases from the Web. An example is Grazer [18], where a

large number of site-specific wrappers are learned through

bootstrapping. Starting with a set of initial facts (entity-

attribute-value triples) scraped from Wikipedia1, Grazer

finds mentions of these facts in other web sites, for which

site-specific wrappers are learned. Additional facts are then

extracted using these site-specific wrappers and stored in a

knowledge base. These facts are used to learn wrappers for

yet other sites, from which more facts are extracted. In cor-

roborating facts, entity resolution and attribute-value nor-

malization are performed. These tasks can be very chal-

lenging. To maintain reasonable precision, heuristics are

applied at every stage of processing, which severely limits

the coverage of the knowledge base. Our method avoids

these difficulties by focusing on the extraction of instances

of attribute-value pairs, and ignoring entity-name recogni-

tion, which can be done as a separate task [3]. Our method

relies on a small set of known mark-up structures which

give good coverage. Hence no bootstrapping is required

and error propagation is minimized.

3 Attribute-Value Extraction

Our attribute-value extraction algorithm focuses on three

types of structural contexts that cover a large portion of the

attribute-value data observed on the Web, namely:

1. Two-column tables: Tables with exactly two columns,

with attributes in the left-hand column and values in

the right-hand column. A sample two-column table is

shown in Figure 1.

2. Relational tables: Two-dimensional tables that typi-

cally have many rows, with attribute across the first

row and a set of values associated with a particular en-

tity in each subsequent row. Figure 2 shows a sample

relational table.

3. Colon-delimited pairs: Attribute-value pairs that ap-

pear in the stylized form “Attribute: Value”. The

1URL: http://en.wikipedia.org/
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Figure 2. A sample relational table

Course Location Type

Big Island Country Club Kailua Kona Semi

Hilo Municipal Golf Course Hilo Public

Hamakua Country Club Honokaa Semi

Figure 3. Sample colon-delimited pairs

Price: $3,060,000

Type: Single Family

SqFt: 4,849

Price/SqFt: $631.06

Bedrooms: 4

Full Baths: 3

colon is used to symbolize the fact that the attribute

name is a prompt for the value. Many web pages con-

tain attribute-value data of this kind. Figure 3 shows a

set of colon-delimited pairs associated with a house.

Obviously, these structural contexts are only weak in-

dications of the presence of attribute-value pairs. Not all

tables contain attribute-value data. Many of them are used

for formatting web pages. Not all instances of the colon are

used to separate attributes and values. They often appear

before quotations, in expressions of time (e.g. “2:00”),

and even in movie titles (e.g. “Star Wars: Episode III —

Revenge of the Sith”). These structural contexts provide a

huge number of candidate attribute-value pairs, but only a

small fraction of them are good attribute-value pairs.

For attribute-value pairs to be meaningful, there needs

to be a certain amount of consistency in the attribute-value

data. In particular:

1. There must be some consistency in attribute naming.

2. There must be some consistency in value representa-

tions for any given attribute.

Furthermore, attributes of the same entity often appear

in groups, such as tables and lists (see Figures 1–3). There-

fore, the fact that Price and Type are attributes of a house in

Figure 3 should be a strong indication that Price/SqFt is a

related attribute. Similarly, the fact that United States is not

an attribute in Figure 1 should strongly indicate that Fig-

ure 1 is not a relational table. In this work, we exploit these

types of consistency in order to identify attribute-value pairs

from structural contexts. Specifically, attribute-value ex-

traction is divided into the following two sub-tasks:

1. Candidate generation: Candidate attribute-value pairs

are found by using simple HTML-based extractors

called candidate generators. There is a candidate gen-

erator for each of the following types of structural con-

texts: two-column tables, relational tables, and colon-

delimited pairs.

2. Candidate filtering: Unwanted candidate attribute-

value pairs are filtered out by one of the following

methods: attribute whitelists and feature-based can-

didate filtering.

In the next few sections, we will describe each of these

components in detail.

3.1 Candidate Generators

The construction of candidate generators is relatively

straightforward. For relational tables, we wrote a candi-

date generator that analyzes every HTML table in a given

web page, and determines whether the table is used for for-

matting. For example, the code skips over table rows that

contain form elements such as text boxes — an indication

that the table is actually an HTML form. It also skips over

table rows that contain a nested table — an indication that

the outer table is used for page layout. Table rows contain-

ing cells that span across multiple columns are ignored. The

entire table is ignored when there are too few valid rows re-

maining. Then attributes are extracted from the first row of

the table, and values are extracted from all subsequent rows.

The candidate generator for two-column tables is similar,

except that attributes are extracted from the first column and

values from the second column. Only tables with exactly

two columns are considered. While it is possible to con-

struct a candidate generator for tables with many columns

where each non-header column corresponds to a distinct en-

tity, such tables are quite rare in practice, and therefore we

do not consider these cases. Note that all two-column tables

are also potential relational tables, in which case candidates

are generated using both candidate generators, and the bad

candidates are removed in the candidate filtering step.

For colon-delimited pairs, we wrote a simple list item

scraper that uses a set of regular expressions to identify

colon-delimited pairs. We use HTML line breaking tags

to separate a given web page into lines and extract colon-

delimited pairs that take a single line.

3.2 Attribute Whitelists

For candidate filtering, one simple approach is to match

the candidate attribute-value pairs against a list of known

attribute names. This list is known as an attribute whitelist

and can be obtained from a suitable ontology or knowledge

base, such as Freebase2. In this work, we use an open-

domain fact repository extracted from the Web by Grazer

2URL: http://www.freebase.com/
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[18]. In this repository, there are more than 123K unique

attributes, 8,747 of which appear in at least 10 facts. We

use this list of 8,747 attributes as an attribute whitelist.

This attribute whitelist is very short. In order to ex-

tract attributes that are not on the list, we use the follow-

ing strategy: Assume that all candidate attribute-value pairs

come in groups. For two-column tables and relational ta-

bles, attribute-value pairs from the same table are treated

as a group. Also colon-delimited pairs with no intervening

spaces are treated as a group. Attribute-value pairs from

different candidate generators are in different groups. Then

for each group of candidate attribute-value pairs, if more

than a certain fraction of the attributes are in the attribute

whitelist, then we assume that all of the candidate attribute-

value pairs are good. For example, in Figure 1, if Country,

Commonwealth and Founded are in the attribute whitelist,

and the minimum fraction is 66%, then Population (2000)

would be recognized as a good attribute as well, because

75% > 66% of the attributes are in the attribute whitelist.

On the other hand, if the minimum fraction is 80%, then all

attribute-value pairs from this table would be discarded.

This simple strategy turns out to be quite effective, even

though only attributes are involved in the filtering process,

not values. A possible explanation is that for tables (or other

table-like representations such as lists of colon-delimited

pairs), if the first row or column looks like a header, then it

is likely that the rest of the table contains actual data. This

assumption might not hold for other types of structural con-

texts.

3.3 Expanded Attribute Whitelists

The grouping information generated by the candidate ex-

tractors can also be used to expand or refine existing at-

tribute whitelists. The basic idea is to find all candidate at-

tributes in a corpus (e.g. the Web), and then count the num-

ber of times each candidate attribute appears in the same

group as a known attribute. Specifically, for each candidate

attribute a, compute the following score f(a):

f(a) =
∑

g∈G

n(a, g) · n′(A, a, g) (1)

where G is the set of groups of candidate attributes in the en-

tire corpus, A is an attribute whitelist, n(a, g) is the number

of times a appears in group g, and n′(A, a, g) is the num-

ber of times any attribute in A except a appears in group

g. If f(a) is large, then a is a frequent attribute that co-

occurs with known attributes frequently. A new attribute

whitelist is formed by collecting all attributes a with suf-

ficiently high f(a). As we will see in Section 4, this new

attribute whitelist tends to be of higher quality than the at-

tribute whitelist derived from the fact repository alone.

3.4 Feature-Based Candidate Filtering

There are two main weaknesses in the attribute whitelist

approach. First, despite the use of grouping information

to identify unknown attributes, the matching of known at-

tributes is done using exact match, which can be quite frag-

ile. Slight variations of known attributes can be treated

as completely unknown (e.g. Population vs Population

(2000)), and this can hurt the coverage of the attribute-

value extractor. Second, the attribute whitelist approach

completely ignores value representations, which can be ex-

tremely useful in identifying non-attribute-value pairs (e.g.

Population is usually associated with numbers but not the

word Country). This information is especially important

when there is no strong signal from the structural context,

as is the case with an isolated colon-delimited pair.

We tackle these problems using feature-based candidate

filtering. Each candidate attribute-value pair is turned into a

real-valued feature vector, x = (x1, x2, . . . , xn). Each fea-

ture xi encodes a certain aspect of the attribute-value pair,

such as the frequency of a certain token in the attribute. This

feature vector x is then mapped to either +1 or −1: +1
means the candidate is a good attribute-value pair, and −1
means it is bad. This mapping can be done using any suit-

able binary classifier, which is learned using a set of training

examples, i.e. candidate attribute-value pairs coupled with

gold-standard labels (+1 or −1). We will describe the train-

ing process in more detail later in this section.

We use the following feature set in candidate filtering.

Note that none of these features are language- or domain-

specific. Knowledge about languages and domains will be

injected through the training data. For brevity, we assign a

unique identifier to each feature type. These identifiers are

shown in brackets (e.g. [id]). A feature x of type [id] is

written as id:x.

• Attribute tokens [at]: The value of the feature at:s is

the frequency of the token s in the attribute. For exam-

ple, for the attribute-value pair Length x Width: 50 cm

x 30 cm, the value of at:length is 1.

• Attribute prefix [ap]: The value of the feature ap:s is 1

if s is the first token of the attribute; 0 otherwise. For

example, for the attribute-value pair Length x Width:

50 cm x 30 cm, the value of ap:length is 1.

• Attribute suffix [au]: The value of the feature au:s is 1

if s is the last token of the attribute; 0 otherwise.

• Attribute signatures [as]: The value of the feature

as:s’ is the frequency of s’ being the case signature

of the attribute tokens. The case signature of a token

is the concatenation of its character types (e.g. letters,

digits), with repeated types conflated into a single in-

stance.
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• Attribute prefix signature [aps]: The value of the fea-

ture aps:s’ is 1 if s’ is the case signature of the first

token of the attribute; 0 otherwise.

• Attribute suffix signature [aus]: Similar to [aps], but

for the last token of the attribute.

• Attribute length [al]: The value of the feature al:n is 1

if the attribute consists of n tokens; 0 otherwise.

• Value tokens [vt]: Similar to [at], but for the value to-

kens. For example, for the attribute-value pair Length

x Width: 50 cm x 30 cm, the value of vt:cm is 2.

• Value prefix [vp]: Similar to [ap], but for the first token

of the value.

• Value suffix [vu]: Similar to [au], but for the last token

of the value.

• Value signatures [vs]: Similar to [as], but for the value

tokens.

• Value prefix signature [vps]: Similar to [aps], but for

the first token of the value.

• Value suffix signature [vus]: Similar to [aus], but for

the last token of the value.

• Value length [vl]: Similar to [al], but for the length of

the value.

• Group attribute prefix [apg]: The value of the feature

apg:s is the frequency of s being the first token of any

other attribute in the same group.

• Group attribute suffix [aug]: The value of the feature

aug:s is the frequency of s being the last token of any

other attribute in the same group.

The last two feature types, [apg] and [aug], capture the

tendency that good attributes often appear in groups, so that

less common attributes would be recognized when good at-

tributes are nearby.

We also introduce feature conjunctions. The value of

the feature conjunction &:x,y (read: x and y) is the prod-

uct of the values of the features x and y. For example, for

the attribute-value pair Length x Width: 50 cm x 30 cm, the

value of &:au:width,vu:cm is 1. If two features are con-

joined, then one of them must be attribute-related and the

other one value-related. The purpose of these feature con-

junctions is to associate attributes with values in a linear

classifier.

One advantage of this feature-vector representation of

attribute-value pairs is that, for two attribute-value pairs that

look similar, their feature-vector representations should be

similar as well. So any belief that a certain attribute-value

pair is good or bad should generalize across other attribute-

value pairs with similar feature-vector representations. This

gives us better robustness compared to exact match in the

attribute whitelist approach.

To learn a binary classifier, we use the online passive-

aggressive algorithm with the linear kernel [7]. The result-

ing binary classifier is a linear classifier, sign(w · x + b),
where w ∈ R

n and b ∈ R. The learning algorithm performs

iterative updates to the linear classifier so that the new clas-

sifier remains as close as possible to the current one while

achieving at least a unit margin on the most recent train-

ing example. This learning algorithm is chosen because it

allows overlapping features (e.g. [at], [ap]), has good gen-

eralization properties, and is very fast in practice.

3.5 Training Feature-Based Filters

This section describes the training process of the feature-

based candidate filter in more detail. Learning a binary clas-

sifier requires a set of training examples with gold-standard

labels (+1 or −1), and there need to be both good attribute-

value pairs and bad attribute-value pairs in the training set.

While good attribute-value pairs can be obtained from a

suitable knowledge base, bad attribute-value pairs can be

hard to come by, since we need to know that they are bad.

We construct the training set using the same fact repos-

itory used for extracting attribute whitelists (Section 3.2).

Each fact in the fact repository has at least one source URLs.

The basic idea is to find all documents that are sources of

known facts, collect all candidate attribute-value pairs from

these documents, then label these attribute-value pairs as

+1 if they match any known facts, or −1 otherwise.

Since the fact repository is quite sparse, this basic ap-

proach can lead to many false negatives. Also for a given

known fact, there may not be any exact match in any of its

source documents because of attribute-value normalization

or content drift. We alleviate these problems by doing the

following:

1. Allow partial matching.

2. If an attribute-value pair is labeled positive, then label

the entire group as positive as well.

3. Use the attribute whitelist described in Section 3.2 to

identify additional positive examples.

The resulting training set consists of 17M positive ex-

amples and 28M negative examples. The positive examples

are estimated to be 95% clean (i.e. 5% of them are misla-

beled), and the negative examples are estimated to be 70%

clean. We further reduce the false negative rate by removing

negative examples that have similar feature-vector represen-

tations as the positive examples, based on average cosine
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similarity. Specifically, we remove all negative examples x

with their similarity score, s(x), below a certain threshold:

s(x) =
1

|P (x)|

∑

x
′∈P (x)

sim(x′,x) (2)

where P (x) is the set of positive examples with non-zero

cosine similarity with x, and sim(x′,x) is the cosine sim-

ilarity between x′ and x. This removes 5M negative ex-

amples from the training set, making the negative training

examples 85% clean.

To better handle labeling noise in the training data, we

use a soft-margin version of the passive-aggressive update

with a low aggressiveness parameter [7]. To avoid overfit-

ting, we also remove from the feature set any features that

occur less than 200 times in the training set. If two fea-

tures are conjoined, then each one of them must occur at

least 1000 times in the training set. There are about 289K

features in the resulting feature set.

4 Experiments

Our experiments were run over a web repository con-

sisting of approximately 100 million HTML documents in

English. Since running our extractors over 100 million doc-

uments can be time-consuming, we created the following

data sets for quick experimentation:

1. Development set: From the web repository, we ran-

domly sampled 343,217 documents. We call this unan-

notated data set the development set.

2. Evaluation set: From the development set, we ran-

domly sampled 258 documents. A human annota-

tor then hand-labeled all attribute-value pairs in these

documents in any structural contexts (i.e. not in free

text). All attribute-value pairs must be about some

entities (i.e. “Can you say the X of the Y is Z?”

[14]). However, the entities can be implicit and were

not annotated. There are 3,088 annotated attribute-

value pairs in this evaluation set. The annotation task

was relatively straightforward. An experiment that in-

volved three human annotators with minimal instruc-

tions showed that the inter-annotator agreement was

quite high, with 80% average pairwise F-score.

We evaluated our attribute-value extractors using pre-

cision and recall. Precision is the fraction of extracted

attribute-value pairs that are correct, and Recall is the frac-

tion of gold-standard attribute-value pairs that are extracted.

Partial credit is given for partially correct extractions as fol-

lows. Given an attribute-value pair p1 = (a1, v1), and a

gold-standard attribute-value pair p2 = (a2, v2), the partial

Figure 4. Precision-recall curves for attribute-

value extractors on the evaluation set

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
re

c
is

io
n
 (

%
)

Recall (%)

Candidate generators
Attribute whitelist

Expanded attribute whitelist
Feature-based filter

overlap score between p1 and p2 is defined as:

|a1∩a2|+|v1∩v2|
|a1∪a2|+|v1∪v2|

if |a1 ∩ a2| > 0 and |v1 ∩ v2| > 0

0 otherwise

which is the number of overlapping non-HTML characters

divided by the total number of non-HTML characters. Both

attributes and values need to be matched for a non-zero

score. Note that the score is 1.0 for exact match.

Figure 4 shows the precision-recall curves for various

attribute-value extractors on the evaluation set. Candidate

generators shows the performance of all three candidate

generators combined without candidate filtering (precision:

35%, recall: 77%). Attribute whitelist shows the perfor-

mance of the candidate generators with candidate filtering

using the attribute whitelist extracted from the Grazer fact

repository. The curve was obtained by varying the size of

the whitelist, i.e. removing attributes that are less common.

Expanded attribute whitelist is the corresponding curve for

the attribute whitelist expanded using co-occurrence statis-

tics derived from the web repository. Feature-based filter

shows the performance of the candidate generators with the

learned feature-based candidate filter. The curve was ob-

tained by shifting the learned linear separator, i.e. varying

the value of b.

Figure 4 shows that out of all attribute-value pairs that

occur in any structural contexts, our candidate generators

capture 77% of them. All of our candidate filters provide

better precision than the candidate generators. In particular,

the expanded attribute whitelist provides the best recall at

82% precision or above, and the feature-based candidate fil-

ter provides the best recall at lower levels of precision. The

feature-based candidate filter also achieves the best overall

F-score (precision: 74%, recall: 67%, F-score: 70%), and

can be tuned to achieve the best overall precision (92%).
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Figure 5. Number of extractions from the development set at 80% overall precision

Attribute whitelist Expanded attribute whitelist Feature-based filter

Two-column tables 23,554 102,596 77,217

Relational tables 206,955 687,640 640,935

Colon-delimited pairs 348,408 578,041 447,897

Total 578,917 1,368,277 1,166,049

Figure 6. Sample extractions

Rider: Catherine Cheatley

Team: CRW

Time: 1.00’ 13”

Web host established on: 1999

Phone support availability: 631.495.xxxx

Web hosting plan name: Starter

Hosting platform: RedHat Linux

Address: 2xxx, rue de Lorimier, Longueuil, QC

Telephone: 450-463-xxxx

Category: Tile ceramic mfrs & distrs, granite

Both the expanded attribute whitelist and the feature-based

candidate filter outperform the original attribute whitelist at

80% precision.

We obtained similar results from the development set.

Figure 5 shows the number of attribute-value pairs extracted

from the development set at 80% overall precision. Both

the expanded attribute whitelist and the feature-based candi-

date filter provide better coverage than the original attribute

whitelist. Relational tables account for about half of the ex-

tracted attribute-value pairs, and colon-delimited pairs ac-

count for about 40%. Figure 6 shows some sample extracted

attribute-value pairs.

The recall of our attribute-value extractors is compara-

ble to that of TextRunner [1]. From a corpus of 9 million

web pages, TextRunner extracts 7.8 million facts of which

80% are correct. From a corpus of 0.3 million web pages

(the development set), both the expanded attribute whitelist

and the feature-based candidate filter extract more than 1

million facts of which 80% are correct. Note that there

is probably little overlap between extractions from struc-

tured contexts and from free text. In Figure 6, we see that

much of the extracted data comes from phone books and

catalogs, which seldom appear in the form of free text. On

the other hand, facts like “President Bush – flew to – Texas”

are commonly found in free text (e.g. news articles), but not

in tables. However, the recall figures indicate that there is

plenty of attribute-value data encoded in structural contexts

on the Web, and extraction from such contexts is relatively

straightforward compared to extraction from free text.

Figure 7. Features with large weights

au: OOV −0.001884
&:aus:0,vps:0 −0.001014
&:aus:Aa,vp:the −0.000395
&:au:number,vus:0 0.000187
&:au:name,vps:Aa 0.000278
aug:date 0.001328

Using the learned feature-based candidate filter, we ex-

tracted 1.01 billion attribute-value pairs from the repository

of 100 million web pages. The precision is estimated to

be 70–75%. Of the 100 million web pages, 50.3 million

contain extracted attribute-value pairs, or about half of the

repository. The running time is less than 6 hours with 100

machines, or about 575 CPU hours. This again compares

favorably with TextRunner, which takes 85 CPU hours to

process 9 million web pages.

Figure 7 shows some of the most important features (i.e.

large absolute feature weights) in the feature-based candi-

date filter. Among the most undesirable features are:

• The last token of the attribute being an out-of-

vocabulary word.

• Both the last token of the attribute and the first token

of the value being numbers (e.g. “10:30 a.m.”).

• The last token of the attribute being a capitalized word

and the first token of the value being the word the (e.g.

“Star Wars: The Force Unleashed”).

Among the most desirable features are:

• The last token of the attribute being the word number

and the last token of the value being a number (e.g.

“Serial number: 013209”).

• The last token of the attribute being the word name and

the first token of the value being a capitalized word

(e.g. “First name: John”).

• The word date being the last token of some attribute

within the same group.
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Figure 8. Precision-recall curves for the

feature-based filter on the evaluation set
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Note that the feature conjunctions essentially form

attribute-specific value models that associate certain types

of values with certain types of attributes. These feature con-

junctions turn out to be fairly useful, as shown in Figure

8, which compares the performance of the feature-based

candidate filter using different feature sets. The group-

based features ([apg], [aug]) are also useful at lower preci-

sion levels, but are not as useful at higher precision, where

the expanded attribute whitelist outperforms (see Figure 4).

There are two possible reasons for this:

1. The expanded attribute whitelist makes use of attribute

co-occurrence information from the web repository.

This extra information is important because it allows

frequent, but previously unknown, attributes to be rec-

ognized. Interestingly, only the top 1,726 attributes of

the expanded attribute whitelist were used in the 80%

precision setting — almost one-fifth of the size of the

original attribute whitelist.

2. For the attribute whitelist approach, filtering decisions

are made based on groups, whereas for the feature-

based approach, decisions are made for each candidate

attribute-value pair. The latter approach may have un-

desirable consequences. For example, Figure 9 shows

a table from which overlapping extractions were pro-

duced by the feature-based filter. Extractions overlap

because the table was treated simultaneously as a two-

column table and a relational table, and the feature-

based filter was unable to tell whether “Entry level:

employee” is a good attribute-value pair based on the

fact that “Career level: entry level” was classified as

good, and “Career level: job type” was classified as

bad. Also note that the extractions are incomplete.

The last two rows were not extracted even though it

Figure 9. A two-column table with overlap-

ping and incomplete extractions

Career Level: Entry Level

Job Type: Employee

Job Status: Full Time

Job Shift: First Shift

Salary: From 35,000.00 to 45,000.00 USD

Extractions:

• Career level: entry level

• Job type: employee

• Job status: full time

• Entry level: employee ∗

• Entry level: full time ∗

is clear that the table is a two-column table. This in-

dicates that the current feature-based model may not

be the most effective way to utilize grouping informa-

tion. A way to incorporate grouping information into

the model is to add an extra hidden variable to each

group of candidates, and then use this group variable

to influence individual filtering decisions in this group,

and vice versa. Intuitively, this group variable indi-

cates whether this group is valid or not. Variables for

overlapping groups may also interact such that only

one of them will be identified as valid. In other words,

the candidate filtering problem would be solved using

a tree-like graphical model, in which filtering decisions

within groups are inter-dependent [13, 3].

5 Conclusions

This paper describes a general framework for extracting

attribute-value pairs from web pages. Our work is focused

on three types of structural contexts in which attribute-

value pairs frequently occur: two-column tables, relational

tables, and colon-delimited pairs. Atribute-value extrac-

tion is divided into two sub-tasks: candidate generation, in

which potential attribute-value pairs occurring in the above

structural contexts are identified, and candidate filtering,

in which unlikely candidates are removed using attribute

whitelists and feature-based candidate filtering. We have

demonstrated the scalability of our methods by extracting

from an extensive web repository, which results in 1 billion

extracted attribute-value pairs within a few hundred CPU

hours. On a smaller, fully-annotated evaluation set, we have

shown that our methods can achieve up to 70% F-score and

up to 92% precision.
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This work can be seen as a basic component of the larger

goal of extracting knowledge repositories from the Web in a

bottom-up fashion. Under this goal, the immediate next task

would be associating extracted attribute-value pairs with en-

tities, forming entity-attribute-value triples. These triples

would then be normalized using various entity resolution

and attribute alignment and normalization techniques. All

of these tasks are mutually dependent, so devising algo-

rithms that are robust, accurate and scalable would be a very

interesting challenge.
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