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Abstract. This paper presents efficient algorithms for testing the fi-
nite, polynomial, and exponential ambiguity of finite automata with ǫ-
transitions. It gives an algorithm for testing the exponential ambiguity
of an automaton A in time O(|A|2E), and finite or polynomial ambigu-
ity in time O(|A|3E), where |A|E denotes the number of transitions of A.
These complexities significantly improve over the previous best complex-
ities given for the same problem. Furthermore, the algorithms presented
are simple and based on a general algorithm for the composition or in-
tersection of automata. We also give an algorithm to determine in time
O(|A|3E) the degree of polynomial ambiguity of a polynomially ambigu-
ous automaton A. Finally, we present an application of our algorithms to
an approximate computation of the entropy of a probabilistic automaton.

1 Introduction

The question of the ambiguity of finite automata arises in a variety of contexts.
In some cases, the application of an algorithm requires an input automaton to
be finitely ambiguous, in others, the convergence of a bound or guarantee relies
on finite ambiguity, or the asymptotic rate of increase of ambiguity as a function
of the string length. Thus, in all these cases, an algorithm is needed to test the
ambiguity, either to determine if it is finite, or to estimate its asymptotic rate
of increase.

The problem of testing ambiguity has been extensively analyzed in the past
[9, 7, 13, 3, 6, 15, 12, 14, 16]. The problem of determining the degree of ambigu-
ity of an automaton with finite ambiguity was shown by Chan and Ibarra to
be PSPACE-complete [3]. However, testing finite ambiguity can be achieved in
polynomial time using a characterization of exponential and polynomial ambi-
guity given by Ibarra and Ravikumar [6] and Weber and Seidel [15]. The most
efficient algorithms for testing polynomial and exponential ambiguity, thereby
testing finite ambiguity, were given by Weber and Seidel [14, 16]. The algorithms
they presented in [16] assume the input automaton to be ǫ-free, but they are
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extended by Weber to the case where the automaton has ǫ-transitions in [14]. In
the presence of ǫ-transitions, the complexity of the algorithms given by Weber
[14] is O((|A|E + |A|2Q)2) for testing the exponential ambiguity of an automaton

A and O((|A|E + |A|2Q)3) for testing polynomial ambiguity, where |A|E stands
for the number of transitions and |A|Q the number of states of A.

This paper presents significantly more efficient algorithms for testing finite,
polynomial, and exponential ambiguity for the general case of automata with ǫ-
transitions. It gives an algorithm for testing the exponential ambiguity of an au-
tomaton A in time O(|A|2E), and finite or polynomial ambiguity in time O(|A|3E).
The main idea behind our algorithms is to make use of the composition or in-
tersection of finite automata with ǫ-transitions [11, 10]. The ǫ-filter used in these
algorithms crucially helps in the analysis and test of the ambiguity. The algo-
rithms presented in this paper would not be valid and would lead to incorrect
results without the use of the ǫ-filter. We also give an algorithm to determine
in time O(|A|3E) the degree of polynomial ambiguity of a polynomially ambigu-
ous automaton A. Finally, we present an application of our algorithms to an
approximate computation of the entropy of a probabilistic automaton.

The remainder of the paper is organized as follows. Section 2 presents general
automata and ambiguity definitions. In Section 3, we give a brief description of
existing characterizations for the ambiguity of automata and extend them to
the case of automata with ǫ-transitions. In Section 4, we present our algorithms
for testing finite, polynomial, and exponential ambiguity, and the proof of their
correctness. Section 5 shows the relevance of the computation of the polynomial
ambiguity to the approximation of the entropy of probabilistic automata.

2 Preliminaries

Definition 1. A finite automaton A is a 5-tuple (Σ, Q, E, I, F ) where Σ is a
finite alphabet; Q is a finite set of states; I ⊆ Q the set of initial states; F ⊆ Q

the set of final states; and E ⊆ Q × (Σ ∪ {ǫ}) × Q a finite set of transitions,
where ǫ denotes the empty string.

We denote by |A|Q the number of states, by |A|E the number of transitions, and
by |A| = |A|E + |A|Q the size of an automaton A. Given a state q ∈ Q, E[q]
denotes the set of transitions leaving q. For two subsets R ⊆ Q and R′ ⊆ Q,
we denote by P (R, x, R′) the set of all paths from a state q ∈ R to a state
q′ ∈ R′ labeled with x ∈ Σ∗. We also denote by p[π] the origin state, by n[π] the
destination state, and by i[π] ∈ Σ∗ the label of a path π.

A string x ∈ Σ∗ is accepted by A if it labels an accepting path, that is a path
from an initial state to a final state. A finite automaton A is said to be trim if
all its states lie on some accepting path. It is said to be unambiguous if no string
x ∈ Σ∗ labels two distinct accepting paths; otherwise, it is said to be ambiguous.
The degree of ambiguity of a string x in A is denoted by da(A, x) and defined
as the number of accepting paths in A labeled by x. Note that if A contains an
ǫ-cycle, there exists x ∈ Σ∗ such that da(A, x) = ∞. Using a depth-first search
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Fig. 1. Illustration of the properties: (a) (EDA); (b) (IDA); and (c) (IDAd).

of A restricted to ǫ-transitions, it can be decided in linear time if A contains
ǫ-cycles. Thus, in the following, we will assume, without loss of generality, that
A is ǫ-cycle free.

The degree of ambiguity of A is defined as da(A) = supx∈Σ∗ da(A, x). A is said
to be finitely ambiguous if da(A) < ∞ and infinitely ambiguous if da(A) = ∞. It
is said to be polynomially ambiguous if there exists a polynomial h in N[X ] such
that da(A, x) ≤ h(|x|) for all x ∈ Σ∗. The minimal degree of such a polynomial
is called the degree of polynomial ambiguity of A and is denoted by dpa(A). By
definition, dpa(A) = 0 iff A is finitely ambiguous. When A is infinitely ambiguous
but not polynomially ambiguous, it is said to be exponentially ambiguous and
dpa(A) = ∞.

3 Characterization of infinite ambiguity

The characterization and test of finite, polynomial, and exponential ambiguity
of finite automata without ǫ-transitions are based on the following three funda-
mental properties [6, 15, 14, 16].

Definition 2. The properties (EDA), (IDA), and (EDA) for A are defined as
follows.

(a) (EDA): there exists a state q with at least two distinct cycles labeled by some
v ∈ Σ∗ (see Figure 1(a)) [6].

(b) (IDA): there exist two distinct states p and q with paths labeled with v from
p to p, p to q, and q to q, for some v ∈ Σ∗ (see Figure 1(b)) [15, 14, 16].

(c) (IDAd): there exist 2d states p1, . . . pd, q1, . . . , qd in A and 2d − 1 strings
v1, . . . , vd and u2, . . . ud in Σ∗ such that for all 1 ≤ i ≤ d, pi 6= qi and
P (pi, vi, pi), P (pi, vi, qi), and P (qi, vi, qi) are non-empty, and, for all 2 ≤
i ≤ d, P (qi−1, ui, pi) is non-empty (see Figure 1(c)) [15, 14, 16].

Observe that (EDA) implies (IDA). Assuming (EDA), let e and e′ be the first
transitions that differ in the two cycles at state p, then, since Definition 1 disal-
lows multiple transitions between the same two states with the same label, we
must have n[e] 6= n[e′]. Thus, (IDA) holds for the pair (n[e], n[e′]).

In the ǫ-free case, it was shown that a trim automaton A satisfies (IDA) iff
A is infinitely ambiguous [15, 16], that A satisfies (EDA) iff A is exponentially
ambiguous [6], and that A satisfies (IDAd) iff dpa(A) ≥ d [14, 16]. In the following
proposition, these characterizations are straightforwardly extended to the case
of automata with ǫ-transitions.
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Fig. 2. ǫ-filter and ambiguity : (a) Finite automaton A; (b) A∩A without using ǫ-filter,
which incorrectly makes A appear as exponentially ambiguous; (c) A ∩ A using an ǫ-
filter. Weber’s processing of ǫ-transitions: (d) Finite automaton B; (e) ǫ-free automaton
B′ such that dpa(B) = dpa(B′).

Proposition 1. Let A be a trim ǫ-cycle free finite automaton.

(i) A is infinitely ambiguous iff A satisfies (IDA).
(ii) A is exponentially ambiguous iff A satisfies (EDA).
(iii) dpa(A) ≥ d iff A satisfies (IDAd).

Proof. The proof is by induction on the number of ǫ-transitions in A. If A does
not have any ǫ-transition, then the proposition holds as shown in [15, 16] for (i),
[6] for (ii) and [16] for (iii).

Assume now that A has n+1 ǫ-transitions, n ≥ 0, and that the statement of
the proposition holds for all automata with n ǫ-transitions. Select an ǫ-transition
e0 in A, and let A′ be the finite automaton obtained after application of ǫ-removal
to A limited to transition e0. A′ is obtained by deleting e0 from A and by adding a
transition (p[e0], l[e], n[e]) for every transition e ∈ E[n[e0]]. It is clear that A and
A′ are equivalent and that there is a label-preserving bijection between the paths
in A and A′. Thus, (a) A satisfies (IDA) (resp. (EDA), (IDAd)) iff A′ satisfies
(IDA) (resp. (EDA), (IDAd)) and (b) for all x ∈ Σ∗, da(A, x) = da(A′, x). By
induction, Proposition 1 holds for A′ and thus, it follows from (a) and (b) that
Proposition 1 also holds for A. ⊓⊔

These characterizations have been used in [14, 16] to design algorithms for testing
infinite, polynomial, and exponential ambiguity, and for computing the degree
of polynomial ambiguity in the ǫ-free case.

Theorem 1 ([14, 16]). Let A be a trim ǫ-free finite automaton.

1. It is decidable in time O(|A|3E) whether A is infinitely ambiguous.
2. It is decidable in time O(|A|2E) whether A is exponentially ambiguous.
3. The degree of polynomial ambiguity of A, dpa(A), can be computed in O(|A|3E).

The first result of Theorem 1 has also been generalized by [14] to the case of
automata with ǫ-transitions but with a significantly worse complexity.

Theorem 2 ([14]). Let A be a trim ǫ-cycle free finite automaton. It is decidable
in time O((|A|E + |A|2Q)3) whether A is infinitely ambiguous.
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The algorithms designed for the ǫ-free case cannot be readily used for finite
automata with ǫ-transitions since they would lead to incorrect results (see Fig-
ure 2(a)-(c)). Instead, [14] proposed a reduction to the ǫ-free case. First, [14]
gave an algorithm to test if there exist two states p and q in A with two dis-
tinct ǫ-paths from p to q. If that is the case, then A is exponentially ambiguous
(complexity O(|A|4Q + |A|E)). Otherwise, [14] defined from A an ǫ-free automa-
ton A′ over the alphabet Σ ∪ {#} such that A is infinitely ambiguous iff A′ is
infinitely ambiguous, see Figure 2(d)-(e).3 However, the number of transitions
of A′ is |A|E + |A|2Q. This explains why the complexity in the ǫ-transition case
is significantly worse than in the ǫ-free case. The same approach can be used to
test the exponential ambiguity of A in time O((|A|E + |A|2Q)2) and to compute

dpa(A) when A is polynomially ambiguous in O((|A|E + |A|2Q)3). Note that we
give tighter estimates of the complexity of the algorithms of [14, 16] where the
authors gave complexities using the loose inequality: |A|E ≤ |Σ| |A|2Q.

4 Algorithms

Our algorithms for testing ambiguity are based on a general algorithm for the
composition or intersection of automata, which we briefly describe in the follow-
ing section.

4.1 Intersection of finite automata

The intersection of finite automata is a special case of the general composition
algorithm for weighted transducers [11, 10]. States in the intersection A1 ∩ A2

of two finite automata A1 and A2 are identified with pairs of a state of A1

3 Observe that A′ is not the result of applying the classical ǫ-removal algorithm to
A, since ǫ-removal does not preserve infinite ambiguity and would lead be an even
larger automaton. Instead [14] used a more complex algorithm where ǫ-transitions
are replaced by regular transitions labeled with a special symbol while preserving
infinite ambiguity, dpa(A) = dpa(A′), even though A′ is not equivalent to A. States
in A′ are pairs (q, i) with q a state in A and i ∈ {1, 2}. There is a transition from
(p, 1) to (q, 2) labeled by # if q belongs to the ǫ-closure of p and from (p, 2) to (q, 1)
labeled by σ ∈ Σ if there was such a transition from p to q in A.



and a state of A2. The following rule specifies how to compute a transition
of A1 ∩ A2 in the absence of ǫ-transition from appropriate transitions of A1

and A2: (q1, a, q′1) and (q2, a, q′2) =⇒ ((q1, q2), a, (q′1, q
′

2)). Figure 3 illustrates the
algorithm. A state (q1, q2) is initial (resp. final) when q1 and q2 are initial (resp.
final). In the worst case, all transitions of A1 leaving a state q1 match all those
of A2 leaving state q2, thus the space and time complexity of composition is
quadratic: O(|A1||A2|), or O(|A1|E |A2|E) when A1 and A2 are trim.

4.2 Epsilon-filtering

A straightforward generalization of the ǫ-free case would generate redundant
ǫ-paths. This is a crucial issue in the more general case of the intersection of
weighted automata over a non-idempotent semiring, since it would lead to an
incorrect result. The weight of two matching ǫ-paths of the original automata
would then be counted as many times as the number of redundant ǫ-paths gener-
ated in the result, instead of once. It is also a crucial problem in the unweighted
case since redundant ǫ-paths can affect the test of infinite ambiguity, as we shall
see in the next section. A critical component of the composition algorithm of
[11, 10] consists however of precisely coping with this problem using an epsilon-
filtering mechanism.

Figure 4(c) illustrates the problem just mentioned. To match ǫ-paths leaving
q1 and those leaving q2, a generalization of the ǫ-free intersection can make the
following moves: (1) first move forward on an ǫ-transition of q1, or even a ǫ-
path, and remain at the same state q2 in A2, with the hope of later finding a
transition whose label is some label a 6= ǫ matching a transition of q2 with the
same label; (2) proceed similarly by following an ǫ-transition or ǫ-path leaving
q2 while remaining at the same state q1 in A1; or, (3) match an ǫ-transition of
q1 with an ǫ-transition of q2.

Let us rename existing ǫ-labels of A1 as ǫ2, and existing ǫ-labels of A2 ǫ1,
and let us augment A1 with a self-loop labeled with ǫ1 at all states and simi-
larly, augment A2 with a self-loop labeled with ǫ2 at all states, as illustrated by
Figures 4(a) and (b). These self-loops correspond to remaining at the same state
in that machine while consuming an ǫ-label of the other transition. The three
moves just described now correspond to the matches (1) (ǫ2 : ǫ2), (2) (ǫ1 : ǫ1),
and (3) (ǫ2 : ǫ1). The grid of Figure 4(c) shows all the possible ǫ-paths between
intersection states. We will denote by Ã1 and Ã2 the automata obtained after
application of these changes.

For the result of intersection not to be redundant, between any two of these
states, all but one path must be disallowed. There are many possible ways of
selecting that path. One natural way is to select the shortest path with the
diagonal transitions (ǫ-matching transitions) taken first. Figure 4(c) illustrates
in boldface the path just described from state (0, 0) to state (1, 2). Remarkably,
this filtering mechanism itself can be encoded as a finite-state transducer such
as the transducer M of Figure 4(d). We denote by (p, q) � (r, s) to indicate that
(r, s) can be reached from (p, q) in the grid.
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Fig. 4. Marking of automata, redundant paths and filter. (a) Ã1: self-loop labeled
with ǫ1 added at all states of A1, regular ǫs renamed to ǫ2. (b) Ã2: self-loop labeled
with ǫ2 added at all states of A2, regular ǫs renamed to ǫ1. (c) Redundant ǫ-paths: a
straightforward generalization of the ǫ-free case could generate all the paths from (0, 0)
to (2, 2) for example, even when composing just two simple transducers. (d) Filter
transducer M allowing a unique ǫ-path.

Proposition 2. Let M be the transducer of Figure 4(d). M allows a unique
path between any two states (p, q) and (r, s), with (p, q) � (r, s).

Proof. The full proof of this proposition is given in [2]. ⊓⊔

Thus, to intersect two finite automata A1 and A2 with ǫ-transitions, it suffices
to compute Ã1 ◦ M ◦ Ã2, using the ǫ-free rules of composition. States in the
intersection are now identified with triplets made of a state of A1, a state of M ,
and a state of A2. A transition (q1, a1, q

′

1) in Ã1, a transition (f, a1, a2, f
′) in M ,

and a transition (q2, a2, q
′

2) in Ã2 are combined to form the following transition
in the intersection: ((q1, f, q2), a, (q′1, f

′, q′2)), with a = ǫ if {a1, a2} ⊆ {ǫ1, ǫ2} and
a = a1 = a2 otherwise. In the rest of the paper, we will assume that the result of
intersection is trimmed after its computation, which can be done in linear time.

Theorem 3. Let A1 and A2 be two finite automata with ǫ-transitions. To each
pair (π1, π2) of accepting paths in A1 and A2 sharing the same input label x ∈ Σ∗

corresponds a unique accepting path π in A1 ∩ A2 labeled with x.

Proof. This follows straightforwardly from Proposition 2. ⊓⊔

4.3 Ambiguity Tests

We start with a test of the exponential ambiguity of A. The key is that the
(EDA) property translates into a very simple property for A2 = A ∩ A.

Lemma 1. Let A be a trim ǫ-cycle free finite automaton. A satisfies (EDA) iff
there exists a strongly connected component of A2 = A ∩ A that contains two
states of the form (p, p) and (q, q′), where p, q and q′ are states of A with q 6= q′.



Proof. Assume that A satisfies (EDA). There exist a state p and a string v such
that there are two distinct cycles c1 and c2 labeled by v at p. Let e1 and e2

be the first edges that differ in c1 and c2. We can then write c1 = πe1π1 and
c2 = πe2π2. If e1 and e2 share the same label, let π′

1 = πe1, π′

2 = πe2, π′′

1 = π1

and π′′

2 = π2. If e1 and e2 do not share the same label, exactly one of them must
be an ǫ-transition. By symmetry, we can assume without loss of generality that
e1 is the ǫ-transition. Let π′

1 = πe1, π′

2 = π, π′′

1 = π1 and π′′

2 = ǫ2π2. In both
cases, let q = n[π′

1] = p[π′′

1 ] and q′ = n[π′

2] = p[π′′

2 ]. Observe that q 6= q′. Since
i[π′

1] = i[π′

2], π′

1 and π′

2 are matched by intersection resulting in a path in A2

from (p, p) to (q, q′). Similarly, since i[π′′

1 ] = i[π′′

2 ], π′′

1 and π′′

2 are matched by
intersection resulting in a path from (q, q′) to (p, p). Thus, (p, p) and (q, q′) are
in the same strongly connected component of A2.

Conversely, assume that there exist states p, q and q′ in A such that q 6= q′

and that (p, p) and (q, q′) are in the same strongly connected component of A2.
Let c be a cycle in (p, p) going through (q, q′), it has been obtained by matching
two cycles c1 and c2. If c1 were equal to c2, intersection would match these two
paths creating a path c′ along which all the states would be of the form (r, r),
and since A is trim this would contradict Theorem 3. Thus, c1 and c2 are distinct
and (EDA) holds. ⊓⊔

Observe that the use of the ǫ-filter in composition is crucial for Lemma 1 to
hold (see Figure 2). The lemma leads to a straightforward algorithm for testing
exponential ambiguity.

Theorem 4. Let A be a trim ǫ-cycle free finite automaton. It is decidable in
time O(|A|2E) whether A is exponentially ambiguous.

Proof. The algorithm proceeds as follows. We compute A2 and, using a depth-
first search of A2, trim it and compute its strongly connected components. It
follows from Lemma 1 that A is exponentially ambiguous iff there is a strongly
connected component that contains two states of the form (p, p) and (q, q′) with
q 6= q′. Finding such a strongly connected component can be done in time linear
in the size of A2, i.e. in O(|A|2E) since A and A2 are trim. Thus, the complexity
of the algorithm is in O(|AE |2). ⊓⊔

Testing the (IDA) property requires finding three paths sharing the same label
in A. As shown below, this can be done in a natural way using the automaton
A3 = (A ∩ A) ∩ A, obtained by applying twice the intersection algorithm.

Lemma 2. Let A be a trim ǫ-cycle free finite automaton. A satisfies (IDA) iff
there exist two distinct states p and q in A with a non-ǫ path in A3 = A∩A∩A

from state (p, p, q) to state (p, q, q).

Proof. Assume that A satisfies (IDA). Then, there exists a string v ∈ Σ∗ with
three paths π1 ∈ P (p, v, p), π2 ∈ P (p, v, q) and π3 ∈ P (q, v, p). Since these
three paths share the same label v, they are matched by intersection result-
ing in a path π in A3 labeled with v from (p[π1], p[π2], p[π3]) = (p, p, q) to
(n[π1], n[π2], n[π3]) = (p, q, q).



Conversely, if there is a non-ǫ path π form (p, p, q) to (p, q, q) in A3, it has
been obtained by matching three paths π1, π2 and π3 in A with the same input
v = i[π] 6= ǫ. Thus, (IDA) holds. ⊓⊔

This lemma appears already as Lemma 5.10 in [8]. Finally, Theorem 4 and
Lemma 2 can be combined to yield the following result.

Theorem 5. Let A be a trim ǫ-cycle free finite automaton. It is decidable in
time O(|A|3E) whether A is finitely, polynomially, or exponentially ambiguous.

Proof. First, Theorem 4 can be used to test whether A is exponentially ambigu-
ous by computing A2. The complexity of this step is O(|A|2E).

If A is not exponentially ambiguous, we proceed by computing and trimming
A3 and then testing whether A3 verifies the property described in Lemma 2. This
is done by considering the automaton B on the alphabet Σ′ = Σ∪{#} obtained
from A3 by adding a transition labeled by # from state (p, q, q) to state (p, p, q)
for every pair (p, q) of states in A such that p 6= q. It follows that A3 verifies
the condition in Lemma 2 iff there is a cycle in B containing both a transition
labeled by # and a transition labeled by a symbol in Σ. This property can be
checked straightforwardly using a depth-first search of B to compute its strongly
connected components. If a strongly connected component of B is found that
contains both a transition labeled with # and a transition labeled by a symbol
in Σ, A verifies (IDA) but not (EDA) and thus A is polynomially ambiguous.
Otherwise, A is finitely ambiguous. The complexity of this step is linear in the
size of B: O(|B|E) = O(|AE |3 + |AQ|2) = O(|AE |3) since A and B are trim.

The total complexity of the algorithm is O(|A|2E + |A|3E) = O(|A|3E).

When A is polynomially ambiguous, we can derive from the algorithm just de-
scribed one that computes dpa(A).

Theorem 6. Let A be a trim ǫ-cycle free finite automaton. If A is polynomially
ambiguous, dpa(A) can be computed in time O(|A|3E).

Proof. We first compute A3 and use the algorithm of Theorem 5 to test whether
A is polynomially ambiguous and to compute all the pairs (p, q) that verify the
condition of Lemma 2. This step has complexity O(|A|3E).

We then compute the component graph G of A, and for each pair (p, q)
found in the previous step, we add a transition labeled with # from the strongly
connected component of p to the one of q. If there is a path in that graph
containing d edges labeled by #, then A verifies (IDAd). Thus, dpa(A) is the
maximum number of edges marked by # that can be found along a path in G.
Since G is acyclic, this number can be computed in linear time in the size of G,
i.e. in O(|A|2Q). Thus, the overall complexity of the algorithm is O(|A|3E). ⊓⊔

5 Application to Entropy Approximation

In this section, we describe an application in which determining the degree of
ambiguity of a probabilistic automaton helps estimate the quality of an approxi-
mation of its entropy. Weighted automata are automata in which each transition



carries some weight in addition to the usual alphabet symbol. The weights are
elements of a semiring, that is a ring that may lack negation. The following is a
more formal definition.

Definition 3. A weighted automaton A over a semiring (K,⊕,⊗, 0, 1) is a 7-
tuple (Σ, Q, I, F, E, λ, ρ) where Σ is a finite alphabet, Q a finite set of states, I ⊆
Q the set of initial states, F ⊆ Q the set of final states, E ⊆ Q×Σ∪{ǫ}×K×Q

a finite set of transitions, λ : I → K the initial weight function mapping I to K,
and ρ : F → K the final weight function mapping F to K.

Given a transition e ∈ E, we denote by w[e] its weight. We extend the weight
function w to paths by defining the weight of a path as the ⊗-product of the
weights of its constituent transitions: w[π] = w[e1] ⊗ · · · ⊗ w[ek]. The weight
associated by a weighted automaton A to an input string x ∈ Σ∗ is defined by
[[A]](x) =

⊕

π∈P (I,x,F ) λ[p[π]]⊗w[π]⊗ρ[n[π]]. The entropy H(A) of a probabilistic
automaton A is defined as:

H(A) = −
X

x∈Σ∗

[[A]](x) log([[A]](x)). (1)

The system (K,⊕,⊗, (0, 0), (1, 0)) with K = (R∪{+∞,−∞})×(R∪{+∞,−∞})
and ⊕ and ⊗ defined as follows defines a commutative semiring called the entropy
semiring [4]: for any two pairs (x1, y1) and (x2, y2) in K, (x1, y1) ⊕ (x2, y2) =
(x1 + x2, y1 + y2) and (x1, y1) ⊗ (x2, y2) = (x1x2, x1y2 + x2y1). In [4], the au-
thors showed that a generalized shortest-distance algorithm over this semir-
ing correctly computes the entropy of an unambiguous probabilistic automa-
ton A. The algorithm starts by mapping the weight of each transition to a
pair where the first element is the probability and the second the entropy:
w[e] 7→ (w[e],−w[e] log w[e]). The algorithm then proceeds by computing the
generalized shortest-distance defined over the entropy semiring, which computes
the ⊕-sum of the weights of all accepting paths in A.

Here, we show that the same shortest-distance algorithm yields an approxi-
mation of the entropy of an ambiguous probabilistic automaton A, where the ap-
proximation quality is a function of the degree of polynomial ambiguity, dpa(A).
Our proofs make use of the standard log-sum inequality [5], a special case of
Jensen’s inequality, which holds for any positive reals a1, . . . , ak, and b1, . . . , bk:

k
X

i=1

ai log
ai

bi

≥

 

k
X

i=1

ai

!

log

P

k

i=1
ai

P

k

i=1
bi

. (2)

Lemma 3. Let A be a probabilistic automaton and let x ∈ Σ+ be a string
accepted by A on k paths π1, . . . , πk. Let w[πi] be the probability of path πi.

Clearly, [[A]](x) =
∑k

i=1 w[πi]. Then,
∑k

i=1 w[πi] log w[πi] ≥ [[A]](x)(log[[A]](x) −
log k).

Proof. The result follows straightforwardly from the log-sum inequality, with
ai = w[πi] and bi = 1:

k
X

i=1

w[πi] log w[πi] ≥

 

k
X

i=1

w[πi]

!

log

P

k

i=1
w[πi]

k
= [[A]](x)(log[[A]](x) − log k). (3)



⊓⊔

Let S(A) be the quantity computed by the generalized shortest-distance algo-
rithm over the entropy semiring or a probabilistic automaton A. When A is
unambiguous, it is shown by [4] that S(A) = H(A).

Theorem 7. Let A be a probabilistic automaton and let L denote the expected
length of the strings accepted by A (i.e. L =

∑

x∈Σ∗ |x|[[A]](x)). Then,

1. if A is finitely ambiguous with da(A) = k for some k ∈ N, then H(A) ≤
S(A) ≤ H(A) + log k;

2. if A is polynomially ambiguous with dpa(A) = k for some k ∈ N, then
H(A) ≤ S(A) ≤ H(A) + k log L.

Proof. The lower bound S(A) ≥ H(A) follows from the observation that for a
string x that is accepted in A by k paths π1, . . . , πk,

k
X

i=1

w[πi] log(w(πi)) ≤

(

k
X

i=1

w[πi]

)

log

(

k
X

i=1

w[πi]

)

. (4)

Since the quantity −
∑k

i=1 w[πi] log(w[πi]) is string x’s contribution to S(A) and

the quantity −(
∑k

i=1 w[πi]) log(
∑k

i=1 w[πi]) its contribution to H(A), summing
over all accepted strings x, we obtain H(A) ≤ S(A).

Assume that A is finitely ambiguous with degree of ambiguity k. Let x ∈ Σ∗

be a string that is accepted on lx ≤ k paths π1, . . . , πlx . By Lemma 3, we have
∑lx

i=1 w[πi] log w[πi] ≥ [[A]](x)(log[[A]](x) − log lx) ≥ [[A]](x)(log[[A]](x) − log k).

Thus, S(A) = −
∑

x∈Σ∗

∑lx
i=1 w[πi] log w[πi] ≤ H(A) +

∑

x∈Σ∗(log k)[[A]](x) =
H(A) + log k. This proves the first statement of the theorem.

Next, assume that A is polynomially ambiguous with degree of polynomial

ambiguity k. By Lemma 3, we have
∑lx

i=1 w[πi] log w[πi] ≥ [[A]](x)(log[[A]](x) −
log lx) ≥ [[A]](x)(log[[A]](x) − log(|x|k)). Thus,

S(A) ≤ H(A) +
X

x∈Σ∗

k[[A]](x) log |x| = H(A) + kEA[log |x|] (5)

≤ H(A) + k log EA[|x|] = H(A) + k log L, (by Jensen’s inequality)

which proves the second statement of the theorem. ⊓⊔

The theorem shows in particular that the quality of the approximation of the en-
tropy of a polynomially ambiguous probabilistic automaton can be estimated by
computing its degree of polynomial ambiguity, which can be achieved efficiently
as described in the previous section. This also requires the computation of the
expected length L of an accepted string. L can be computed efficiently for an
arbitrary probabilistic automaton using the entropy semiring and the general-
ized shortest-distance algorithms, using techniques similar to those described in
[4]. The only difference is in the initial step, where the weight of each transition
in A is mapped to a pair of elements by w[e] 7→ (w[e], w[e]).



6 Conclusion

We presented simple and efficient algorithms for testing the finite, polynomial, or
exponential ambiguity of finite automata with ǫ-transitions. We conjecture that
the time complexity of our algorithms is optimal. These algorithms have a vari-
ety of applications, in particular to test a pre-condition for the applicability of
other automata algorithms. Our application to the approximation of the entropy
gives another illustration of their usefulness. Our algorithms also demonstrate
the prominent role played by the intersection or composition of automata and
transducers with ǫ-transitions [11, 10] in the design of testing algorithms. Com-
position can be used to devise simple and efficient testing algorithms. We have
shown elsewhere how it can be used to test the functionality of a finite-state
transducer, or the twins property for weighted automata and transducers [1].
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