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Abstract. Automatically assigning keywords to images is of great interest as
it allows one to index, retrieve, and understand large collections of image data.
Many techniques have been proposed for image annotation in the last decade
that give reasonable performance on standard datasets. However, most of these
works fail to compare their methods with simple baseline techniques to justify
the need for complex models and subsequent training. In thiswork, we introduce
a new baseline technique for image annotation that treats annotation as a retrieval
problem. The proposed technique utilizes low-level image features and a simple
combination of basic distances to find nearest neighbors of agiven image. The
keywords are then assigned using a greedy label transfer mechanism. The pro-
posed baseline outperforms the current state-of-the-art methods on two standard
and one large Web dataset. We believe that such a baseline measure will provide
a strong platform to compare and better understand future annotation techniques.

1 Introduction

Given an input image, the goal of automatic image annotationis to assign a few relevant
text keywords to the image that reflect its visual content. Utilizing image content to
assign a richer, more relevant set of keywords would allow one to further exploit the fast
indexing and retrieval architecture of Web image search engines for improved image
search. This makes the problem of annotating images with relevant text keywords of
immense practical interest.

Image annotation is a difficult task for two main reasons: First is the well-known
pixel-to-predicate or semantic gap problem, which points to the fact that it is hard to
extract semantically meaningful entities using just low level image features, e.g. color
and texture. Doing explicit recognition of thousands of objects or classes reliably is cur-
rently an unsolved problem. The second difficulty arises dueto the lack ofcorrespon-
dence between the keywords and image regions in the training data.For each image, one
has access to keywords assigned to theentire image and it is not known which regions
of the image correspond to these keywords. This makes difficult the direct learning of
classifiers by assuming each keyword to be a separate class. Recently, techniques have
emerged to circumvent the correspondence problem under a discriminative multiple
instance learning paradigm [1] or a generative paradigm [2].

Image annotation has been a topic of on-going research for more than a decade and
several interesting techniques have been proposed [3,4,5,6,7,8,9,10,11,12,1,2]. Most of
these techniques define a parametric or non-parametric model to capture the relationship
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between image features and keywords. Even though some of these techniques have
shown impressive results, one thing that is sorely missing in the annotation literature is
comparison with very simple ‘straw-man’ techniques.

The goal of this work is to create a family of baseline measures against which new
image annotation methods should be compared to justify the need for more complex
models and training procedures. We introduce several simple techniques characterized
by minimal training requirements that can efficiently servethis purpose. Surprisingly,
we also show that these baseline techniques can outperform more complex state-of-the
art annotation methods on several standard datasets, as well as on a large Web dataset.

Arguably, one of the simplest annotation schemes is to treatthe problem of annota-
tion as that of image-retrieval. For instance, given a test image, one can find its nearest
neighbor (defined in some feature space with a pre-specified distance measure) from
the training set, and assign all the keywords of the nearest image to the input test im-
age. One obvious modification of this scheme would be to useK-nearest neighbors to
assign the keywords instead of relying on just the nearest one. In the multiple neighbors
case, as we discuss in Section3.3, one can easily assign the appropriate keywords to
the input image using a simple greedy approach. As we show in Section4, some simple
distance measures defined on even global image features perform similar to or better
than several popular image annotation techniques.

The K-nearest neighbor approach can be extended to incorporate multiple distance
measures, possibly defined over distinct feature spaces. Recently, combining different
distances or kernels has been shown to yield good performance in object recognition
task [13]. In this work, we explore two different ways of linearly combining different
distances to create the baseline measures. The first one simply computes the average of
different distances after scaling each distance appropriately. The second one is based
on selecting relevant distances using a sparse logistic regression method, Lasso [14]. To
learn the weights of Lasso, one needs a training set containing similar anddissimilar
images. A typical training set provided for the annotation task does not contain such
information directly. We show that one can train Lasso by creating a labeled set from
the annotation training data. Even such a weakly trained Lasso outperforms the state-
of-the-art methods in most cases. Surprisingly, however, the averaged distance performs
better or similar to the noisy Lasso.

The main contributions of our work are that it (1) introducesa simple method to
perform image annotation by treating it as a retrieval problem in order to create a new
baseline against which annotation algorithms can be measured, and (2) provides ex-
haustive experimental comparisons of several state-of-the-art annotation methods on
three different datasets. These include two standard sets (Corel and IAPR TC-12) and
one Web dataset containing about20K images.

2 Prior work

A large number of techniques have been proposed in the last decade [15]. Most of
these treat annotation as translation from image instancesto keywords. The translation
paradigm is typically based on some model of image and text co-occurrences [16,3].
The translation approach of [3] was extended to models that ascertain associations in-
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directly, through latent topic/aspect/context spaces [4,8] . One such model, the Corre-
spondence Latent Dirichlet Allocation (CorrLDA) [4], considers associations through a
latent topic space in a generatively learned model. Despiteits appealing structure, this
class of models remains sensitive to the choice of topic model, initial parameters, prior
image segmentation, and more importantly the inference andlearning approximations
to handle the typically intractable exact analysis.

Cross Media Relevance Models (CMRM) [5], Continuous Relevance Model (CRM)
[7], and Multiple Bernoulli Relevance Model (MBRM) [9] assume different, nonpara-
metric density representations of the joint word-image space. In particular, MBRM
achieves robust annotation performance using simple imageand text representations:
a mixture density model of image appearance that relies on regions extracted from a
regular grid, thus avoiding potentially noisy segmentation, and the ability to naturally
incorporate complex word annotations using multiple Bernoulli models. However, the
complexity of the kernel density representations may hinder MBRM’s applicability to
large data sets. Alternative approaches based on graph representation of joint queries
[11], and cross-language LSI [12], offer means for linking the word-image occurrences,
but still do not perform as well as the non-parametric models.

Recent research efforts have focused on extensions of the translation paradigm that
exploit additional structure in both visual and textual domains. For instance, [17] uti-
lizes a coherent language model, eliminating independencebetween keywords. Hier-
archical annotations in [18] aim not only to identify specific objects in an image, but
also explicitly incorporate concept ontologies. The addedcomplexity, however, makes
the models applicable only to limited settings with small-size dictionaries. To address
this problem, [19] developed a real-time ALIPR image search engine which usesmul-
tiresolution 2D Hidden Markov Models to model concepts determined by a training set.
While this method successfully infers higher level semantic concepts based on global
features, identification of more specific categories and objects remains a challenge. In
an alternative approach, [2] relies on a hierarchical mixture representation of keyword
classes, leading to a method that demonstrates both computational efficiency and state-
of-the-art performance on several complex annotation tasks. However, the annotation
problem is treated as a set of one-vs-all binary classification problems, potentially fail-
ing to benefit from competition among models during the learning stage.

Even though promising results have been reported by many sophisticated annotation
techniques, they commonly lack a comparison with simple baseline measures across
diverse image datasets. In the absence of such a comparison,it is hard to understand
the gains and justify the need for complex models and training processes as required by
most of the current annotation methods. Our work addresses this issue by suggesting a
family of baseline measures, some of which surprisingly outperform the current state-
of-the-art in image annotation on several large real-worlddatasets.

3 Baseline Methods

We propose a family of baseline methods for image annotationthat are built on the
hypothesis that images similar in appearance are likely to share keywords. We treat
image annotation as a process of transferring keywords fromnearest neighbors. The
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neighborhood structure is constructed using simple low-level image features resulting
in a rudimentary baseline model. The details are given below.

3.1 Features and Distances

Color and texture are recognized as two important low-levelvisual cues for image rep-
resentation. The most common color descriptors are based oncoarse histograms, which
are frequently utilized within image matching and indexingschemes, primarily due to
their effectiveness and ease of computation. Image textureis commonly captured with
Wavelet features. In particular, Gabor and Haar wavelets have been shown to be quite
effective in creating sparse yet discriminative image features. To limit the influence and
biases of individual features, and to maximize the amount ofinformation extracted, we
choose to employ a number of simple and easy to compute features.

Color We generate features from images in three different color spaces: RGB, HSV,
and LAB. While RGB is the default color space for image capturing and display, both
HSV and LAB isolate important appearance characteristics not captured by RGB. For
example, the HSV (Hue, Saturation, and Value) colorspace encodes the amount of light
illuminating a color in the Value channel, and the Luminancechannel of LAB is in-
tended to reflect the human perception of brightness. The RGB, HSV, and LAB features
are 16-bin-per-channel histograms in their respective colorspaces. To determine the cor-
responding distance measures, we evaluated four measures commonly used for his-
tograms and distributions (KL-divergence,χ2 statistic,L1-distance, andL2-distance)
on the human-labeled training data from the Corel5K dataset. L1 performed the best for
RGB and HSV, whileKL-divergence was found suitable for LAB distances. Through-
out the remainder of the paper, RGB and HSV distances imply theL1 measure, and the
LAB distance impliesKL-divergence.

Texture We represent the texture with Gabor and Haar Wavelets. Each image is filtered
with Gabor wavelets at three scales and four orientations. From each of the twelve
response images, a histogram over the response magnitudes is built. The concatenation
of these twelve histograms is a feature vector we refer to as ‘Gabor’. The second feature
captures the quantized Gabor phase. The phase angle at each response pixel is averaged
over16 × 16 blocks in each of the twelve Gabor response images. These mean phase
angles are quantized to 3 bits (eight values), and are concatenated into a feature vector
referred to as ‘GaborQ’.

Haar Wavelet responses are generated by block-convolutionof an image with Haar
filters at three different orientations (horizontal, diagonal, and vertical). Responses at
different scales were obtained by performing the convolution with a suitably subsam-
pled image. After rescaling an image to 64x64 pixels, a Haar feature is generated by
concatenating the Haar response magnitudes (this feature is referred to as ‘Haar’). As
with the Gabor features, we also consider a quantized version, where the sign of the
Haar responses are quantized to three values (either 0, 1, or-1 if the response is zero,
positive, or negative, respectively). Throughout the textthis quantized feature is referred
to as ‘HaarQ.’ We useL1 distance for all the texture features.
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3.2 Combining distances

Joint Equal Contribution (JEC) . If labeled training data is unavailable, or the labels
are extremely noisy, the simplest way to combine distances from different descriptors
would be to allow each individual distance to contribute equally (after scaling the indi-
vidual distances appropriately). LetIi be thei-th image, and say we have extractedN

featuresf1
i , . . . , fN

i . Let us definedk
(i,j) as the distance betweenfk

i andfk
j . We would

like to combine the individual distancesdk
(i,j), k = 1, . . . , N to provide a comprehen-

sive distance between imageIi andIj . Since, in JEC, each feature contributes equally
towards the image distance, we first need to find the appropriate scaling terms for each
feature. These scaling terms can be determined easily if thefeatures are normalized
in some way (e.g., features that have unit norm), but in practice this is not always the
case. We can obtain estimates of the scaling terms by examining the lower and upper
bounds on the feature distances computed on some training set. We scale the distances
for each feature such that they are bounded by 0 and 1. If we denote the scaled distance
asd̃k

(i,j), we can define the comprehensive image distance between imagesIi andIj as
∑N

k=1

d̃k
(i,j)

N
. We refer to this distance as Joint Equal Contribution (JEC).

L1-Penalized Logistic Regression (Lasso [14]). Another approach to combining fea-
ture distances would be to identify those features that are more relevant for capturing
image similarity. This is the well-known problem of featureselection. Since we are us-
ing different color (and texture) features that are not completely independent, it is an
obvious question to ask: Which of these color (or texture) features are redundant? Lo-
gistic regression withL1 penalty, also known as Lasso [14], provides a simple way to
answer this question.

The main challenge in applying Lasso to image annotation lies in creating a training
set containing pairs of similar and dissimilar images. Typical training datasets for image
annotation contain images and associated text keywords, and there is no direct notion
of similarity between images. In this setting, we consider any pair of images that share
enough keywords to be a positive training example, and any pair with no keywords
in common to be a negative example. Clearly, the quality of such a training set will
depend on the number of keywords required to match before an image pair can be
called ‘similar.’ In this work, we obtained training samples from the designated training
set of the Corel5K benchmark (Section4). Images pairs that had at least four common
keywords were treated as positive samples for training, andthose with no common
keywords were used as negative samples (training samples are illustrated in Fig.1).

Combining basic distances using JEC or Lasso gives us a simple way to compute
distances between images. Using such composite distances,one can find theK nearest
neighbors of an image. In the next section, we present a labeltransfer algorithm that
assigns keywords to any test image given its nearest neighbors.

3.3 Label transfer

We propose a simple method to transfern keywords to a query imagẽI from the query’s
K nearest neighbors in the training set. LetIi, i = 1, . . . , K be theseK nearest neigh-
bors, ordered by increasing distance (i.e.,I1 is the most similar image). The number of
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Positive

Negative

Fig. 1. Pairs of images that were used as positive training examples(top row) and
negative training examples (bottom row) for Lasso. In positive pairs the images shared
at least 4 keywords, while in negative pairs they shared none.

keywords associated withIi is denoted by|Ii|. Following are the steps of our greedy
label transfer algorithm.

1. Rank the keywords ofI1 according to their frequency in the training set.
2. Of the|I1| keywords ofI1, transfer then highest ranking keywords to querỹI. If

|I1| < n, proceed to step 3.
3. Rank the keywords of neighborsI2 throughIK according to two factors: 1) co-

occurrence in the training set with the keywords transferred in step 2, and 2) local
frequency (i.e. how often they appear as keywords of imagesI2 throughIK ). Select
the highest rankingn − |I1| keywords to transfer tõI.

This transfer algorithm is somewhat different from other obvious choices. One can
imagine simpler algorithms where keywords are selected simultaneously from the en-
tire neighborhood (i.e., all the neighbors are treated equally), or where the neighbors
are weighted according to their distance from the test image. However, an initial evalua-
tion showed that these simple approaches underperform in comparison to our two-stage
transfer algorithm (see Section4).

In summary, our baseline annotation methods are comprised of a composite image
distance measure (JEC or Lasso) for nearest neighbor ranking, combined with our label
transfer algorithm. Is there any hope to achieve reasonableresults for image annota-
tion using such simplistic methods? To answer this question, we evaluate our baseline
methods on three different datasets as described in the following section.

4 Experiments and Discussion

Our experiments examined the performance and behavior of the proposed baselines for
image annotation on three collections of images.
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Fig. 2. Sample IAPR data. On the left are 25 randomly selected imagesfrom the dataset.
On the right is a single image and its associated annotation.Noun extraction from the
caption provides keywords for annotation.

– Corel5K [3] has become a de-facto evaluation benchmark in the image annotation
community. It contains 5,000 images collected from the larger Corel CD set, split
into 4,500 training and 500 test examples. Each image is annotated with an average
of 3.5 keywords, and the dictionary contains 260 words that appear in both the train
and the test set.

– IAPR TC-12 is a collection of 19,805 images of natural scenesthat include different
sports and actions, photographs of people, animals, cities, landscapes and many
other aspects of contemporary life3. Unlike other similar databases, images in IAPR
TC-12 are accompanied by free-flowing text captions. While this set is typically
used for cross-language retrieval, we have concentrated onthe English captions
and extracted keywords (nouns) using the TreeTagger part-of-speech tagger4. This
resulted in a dictionary size of 291 and an average of 4.7 keywords per image.
17,825 images were used for training, and the remaining 1,980 for testing. Samples
from IAPR are depicted in Fig.2.

– ESP Game consists of a set of 21,844 images collected in the ESP collaborative
image labeling task [20]5. In ESP game, two players assign labels to the same
image without communicating. Only common labels are accepted. As an image is
shown to more teams, a list of taboo words is accumulated, increasing the difficulty
for future players and resulting in a challenging dataset for annotation. The set we
obtained6 contains a wide variety of images annotated by 269 keywords,and is
split into 19,659 train and 2,185 test images. Each image is associated with up to
15 keywords, and on average 4.6 keywords. Examples are shownin Fig. 3.

3 http://eureka.vu.edu.au/∼grubinger/IAPR/TC12 Benchmark.html
4 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
5 http://www.espgame.org
6 http://hunch.net/∼jl/

http://eureka.vu.edu.au/~grubinger/IAPR/TC12_Benchmark.html
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
http://www.espgame.org
http://hunch.net/~jl/
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Fig. 3. Sample ESP data. On the left are 25 randomly selected images from the dataset,
while on the right are two images and their associated keywords. These images are quite
different in appearance and content, but share many of the same keywords.

For the IAPR TC-12 and ESP datasets, we have made public the dictionaries, as well
as the training and testing image set partitions, used in ourevaluations7. On all three
annotation datasets, we evaluated the performance of a number of baseline methods.
For comparisons on Corel5K, we summarized published results of several approaches,
including the most popular topic model (i.e. CorrLDA [4]), as well as MBRM [9] and
SML [2], which have shown state-of-the-art performance on Corel5K. On the IAPR TC-
12 and ESP datasets, where no published results of annotation methods are available,
we compared the performance of our baseline methods againstMBRM [9] which was
relatively easier to implement and had comparable performance to SML [2]8.

When evaluating performance of baseline methods, we focused on three different
settings: 1) performance of individual distance measures,2) performance of the learned
weighted distance model (Lasso), and 3) performance of the Joint Equal Contribution
(JEC) model, where all features contributed equally to the global distance measure. In
the Corel setting, we also examined the impact of leaving-out one distance measure at
a time in the JEC model.

Performance of all models was evaluated using five measures following the method-
ology used in [2,9]. We report mean precision (P%) and mean recall (R%) rates obtained
by different models, as well as the number of total keywords recalled (N+). Precision
and recall are defined in the standard way: the annotation precision for a keyword is
defined as the number of images assigned the keyword correctly divided by the total
number of images predicted to have the keyword. The annotation recall is defined as
the number of images assigned the keyword correctly, divided by the number of images
assigned the keyword in the ground-truth annotation. Similar to other approaches, we
assign top 5 keywords to each image using label transfer. Additionally, we report two
retrieval performance measures based on top 10 images retrieved for each keyword:
mean retrieval precision (rP%) and mean retrieval precision for only the recalled key-
words (rP+%) [2].

7 http://www.cis.upenn.edu/∼makadia/annotation/
8 No implementation of SML [2] was publicly available.

http://www.cis.upenn.edu/~makadia/annotation/
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Table 1.Results on three datasets for different annotation algorithms. Corel5K contains
5,000 images and 260 keywords, IAPR-TC12 has 19,805 images and 291 keywords, and
ESP has 21,844 images and 268 keywords. P% and R% denote the mean precision and
the mean recall, respectively, over all keywords in percentage points. N+ denotes the
number of recalled keywords. rP%, and rP+% denote the mean retrieval precision for
all keywords and the mean retrieval precision for recalled keywords only, respectively.
Note that the proposed simple baseline technique (JEC) outperforms state-of-the-art
techniques in all datasets. CorrLDA1 and JEC1 correspond to models built on a reduced
168 keyword dictionary, as in [4].

(a) Corel5K

Method P% R% N+ rP% rP+
%

CRM[7] 16 19 107 - -
InfNet [11] 17 24 112 - -
NPDE [21] 18 21 114 - -
MBRM [9] 24 25 122 30 35
SML [2] 23 29 137 31 49

CorrLDA[4]1 6 9 59 27 37

RGB 20 23 110 24 49
HSV 18 21 110 23 45
LAB 20 25 118 25 47
Haar 6 8 53 12 33

HaarQ 11 13 87 16 35
Gabor 8 10 72 11 31

GaborQ 5 6 52 7 26

Lasso 24 29 127 30 51
JEC 27 32 139 33 52
JEC1 32 40 113 35 48

(b) IAPR-TC12 & ESP

IAPR-TC12 ESP
MethodP% R% N+ rP% rP+

% P% R% N+ rP% rP+
%

MBRM 24 23 223 24 30 18 19 209 18 24

RGB 24 24 233 23 29 20 22 212 19 25
HSV 20 20 215 18 24 18 20 212 17 21
LAB 24 25 232 23 29 20 22 221 20 24
Haar 20 11 176 21 32 21 18 205 21 27

HaarQ 19 16 189 18 28 18 19 207 18 24
Gabor 15 15 183 14 22 15 16 186 15 21

GaborQ 8 9 137 9 18 14 15 193 13 19

Lasso 28 29 246 26 31 21 24 224 21 25
JEC 28 29 250 27 31 22 25 224 21 25

4.1 Corel

The results of experiments on the Corel set are summarized inTable1(a). The top por-
tion of the table displays published results of a number of standard and top-performing
methods that approach the annotation problem from different perspectives, using dif-
ferent image representations: CRM [7], InfNet [11], NPDE [21], MBRM [ 9], SML [2],
and CorrLDA [4]. The middle part of the table shows results of using only thedis-
tance measures induced by individual features. Finally, the bottom rows list results of
the baseline methods that rely on combinations of distancesfrom multiple features.
Individual feature distances show a wide spread in performance scores, ranging from
high-scoring LAB and RGB color measures to the potentially less effective Haar and
GaborQ. It is interesting to note that some of the best individual measures perform on
par or better than several more complex published methods. More surprising, however,
is that the measures which arise from combinations of individual distances (Lasso and
JEC) perform significantly better than most other publishedmethods. In particular, JEC,
which emphasizes equal contribution of all the feature distances, shows domination in
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Predicted
keywords

sky, jet,
plane, smoke,

formation

grass, rocks,
sand, valley,

canyon

sun, water, sea,
waves, birds

water, tree,
grass, deer,
white-tailed

bear, snow,
wood, deer,
white-tailed

Human
annotation

sky, jet,
plane, smoke

rocks,sand,
valley, canyon

sun, water,
clouds, birds

tree, forest,
deer, white-tailed

tree, snow,
wood, fox

Fig. 4. Predicted keywords using JEC versus the human annotations for a sampling of
images in the Corel5K dataset (using all 260 keywords).

Fig. 5. Retrieval results using JEC on Corel5K. Each row displays the first seven images
retrieved for a query. From top to bottom, the queries are:sky, street, mare, train.

all five performance measures. One reason for this exceptional performance may be due
to the use of a wide spectrum of different features, contributing along different “orthog-
onal” factors. This also points to the well-understood inadequacies and limitations of
most image representation models that rely on individual orsmall subsets of features.
Figure4 shows some images annotated using the JEC baseline. Additionally, we show
some retrieval examples using the JEC baseline in Fig.5.

It should be noted that most top-performing methods in literature rely on instance-
based representations (such as MBRM, CRM, InfNet, and NPDE)which are closely
related to our baseline approach. While generative parametric models such as Cor-
rLDA [ 4] have significant modeling appeal due to the interpretability of the learned
models, they fail to stack up to the nonparametric representations on this difficult task.
Table1 confirms that the gap between the two paradigms remains large.

Another interesting result is revealed by comparing JEC with Lasso. One may ex-
pect the learned weights through Lasso to perform better than the equal contributions in
JEC. However, this is not the case, in part, because of the different requirements posed
by the two models. Lasso relies on the existence of sets of positive (similar) and neg-
ative (dissimilar) pairs of images, while JEC is a learning-free model. Since the Lasso
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Table 2.(a) All-but-one testing of the JEC scheme. In each row, a different feature was
left out of JEC. It is clear from these results that all seven features make some positive
contribution to the combined distances. The last row shows the JEC results for the full
set of features for reference. (b) Texture vs. color resultsfor 260 keywords in Corel5K.
The texture feature is a weighted average of all four texturefeatures, and the color
feature is a weighted average of all three color features. The third row shows the full
JEC results with all the texture and color features.

(a) All-but-one

Feature
held out

P% R% N+ rP% rP+%

RGB 27 31 134 32 53
HSV 27 31 137 32 52
LAB 27 32 134 33 53
Haar 26 31 133 32 54

HaarQ 26 30 130 31 53
Gabor 25 29 128 30 53

GaborQ 26 31 134 33 53
None 27 32 139 33 52

(b) Texture & Color

Feature
Class

P% R% N+ rP% rP+%

Texture 16 19 101 24 45
Color 23 26 120 27 51

Texture +
Color

27 32 139 33 52

training set was created artificially from the annotation training set, the effect of noisy
labels undoubtedly reflects on the model’s performance.

We further contrast the role of individual features and examine their contribution
to the combined baseline models in experiments summarized in Tables2(a)and2(b).
Performance of individual features shown in Table1 may tempt one to leave out the
low-performing features, such as the texture-based Haar and Gabor descriptors. How-
ever, Table2(a) suggests that this is not a wise thing to do. Correlated features, such
as HSV and LAB may contribute little jointly and could potentially be left out. While
the texture-based descriptors lead to individually inferior annotation performance, they
complement the color features. A similar conclusion may be reached when consider-
ing joint performance of all color and all texture features separately, as depicted in
Table2(b): either of the two groups alone results in performance inferior to the JEC
combined model.

Finally, as mentioned earlier, the greedy label transfer algorithm utilized in JEC is
not immediately obvious. One straightforward alternativeis to transfer all keywords si-
multaneously from the entire neighborhood while optionally weighting the neighbors
according to their distance from the test image. Additionally, by evaluating the labels
transferred from a single neighbor, we can estimate the average “quality” of neighbors
in isolation. These results are summarized in Table3. The simple alternative of selecting
all keywords simultaneously from the entire neighborhood (with and without weighting
the neighbors) underperforms our proposed label transfer algorithm. Regarding individ-
ual neighbors, the difference in performance between the first two neighbors is greater
than the difference between the second and fifth neighbor. This observation led us to
treat the first neighbor specially.
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Table 3. Evaluation of alternative label transfer schemes on Corel5K. In (a), we as-
sess two simple methods.All neighbors equal simultaneously selects keywords from
all 5 nearest neighbors. Keywords are ranked by their frequency in the neighborhood.
All neighbors weighted applies an additional weighting relative to the distance ofthe
neighbor from the test image. In (b), we evaluate the individual neighbors in isolation
(i.e. all keywords transferred from a single neighbor).

(a) Alternative label transfer methods

P% R% N+ rP% rP+%
All neighbors

equal
23 24 113 39 56

All neighbors
weighted

25 31 135 32 50

Proposed method
(Section3.3)

27 32 139 33 52

(b) Single-neighbor performance

1 2 3 4 5
0

5

10

15

20

25

30

Neighbor

Pe
rc

en
t

 

 

Precision
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Predicted
keywords

clothes, jean,
man, shop,

square

edge, front,
glacier, life,

tourist

court, player,
sky, stadium,

tennis

brick, grave,
mummy, stone,

wall

desert, grass,
mountain, sky,

slope

Human
annotation

clothes, jean,
man, pavement,

shop, square

glacier, jacket,
life, rock,
sky, water,

woman

court, player,
sky, stadium,
man, tennis

brick, grave,
mummy, wall

desert, grey
mountain, round,

stone

Fig. 6. Predicted keywords using JEC versus human annotations for sample images in
the IAPR dataset.

4.2 IAPR TC-12

The Corel set has served as a common evaluation platform for many annotation meth-
ods. Nevertheless, it if often criticized for its bias due toinsufficiently varying appear-
ance and contrived annotations. We therefore measure performance of our baseline
models, JEC and Lasso, as well as that of individual featureson a more challenging
IAPR set. Table1(b) depicts performance of different methods on this set. Figure 6
shows some examples of annotated images using the JEC baseline.

Trends similar to those observed on the Corel set carry over to the IAPR setting: the
JEC baseline leverages multiple, potentially “orthogonal” factors, to retrieve neighbor-
ing images most relevant for predicting reasonable annotation of queries. The baseline
also shows performance superior to that of the MBRM. While color features contribute
consistently more than the texture descriptors, we observeimproved individual perfor-
mance of Gabor and Haar measures. This can be due to the presence of a larger number
of images exhibiting textured patterns in IAPR compared to the Corel set. It is also
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Predicted
keywords

bikini, girl,
grass, hair,

woman

bear, black,
brown, nose,

white

band, light,
man, music,

play

man, old,
picture, red,

wall

cloud, grass,
green, hill, red

Human
annotation

bed, girl,
woman

animal, bear,
black, brown,

head, nose

band, light,
man, music,
red, wheel

black, man,
old, red,

sit

cloud, gray, green,
mountain, picture,

rock, sky, stone

Fig. 7. Predicted keywords using JEC versus human annotations for sample images in
the ESP dataset.

interesting to note that selection of relevant features using Lasso exhibits performance
on par with JEC in two out of the five measures. This is a potential indicator that the
selection criterion for determining the Lasso training setmay be more reflective of the
true image similarities in IAPR than in Corel.

4.3 ESP

ESP game set has arisen from an experiment in collaborative human computing—
annotation of images in this case [20]. An advantage of this set, compared to Corel and
IAPR, lies in the fact that its human annotation elicits a collective semantic agreement
among annotators, leading to annotations with less individual bias. Table1(b) depicts
results of MBRM and our baseline methods on this set. Figure7 shows some examples
of annotated images using JEC.

Even though JEC again gives the best performance, the overall low precision and
recall rates for this dataset indicate its difficult nature.Also, more so than in other sets,
the texture features play a critical role in the process. Forinstance, the Haar and Gabor
distances fall not far behind the color features.

4.4 Discussion

To be able to solve the image annotation problem at the human level, perhaps one needs
to first solve the problem of scene understanding. However, identifying objects, events,
and activities in a scene is still a topic of intense researchwith limited success. The goal
of our work was not to develop a new annotation method but to create a family of very
simple and intuitive baseline methods. Experiments on three different datasets reaffirm
the enormous importance of considering multiple sources ofevidence to bridge the gap
between the pixel representations of images and the semantic meanings. It is clear that
a simple combination of basic distance measures defined overcommonly used image
features can effectively serve as a baseline method to provide a solid test-bed for devel-
oping future annotation methods.

Acknowledgments: Our thanks to Ni Wang for the Lasso training code and Henry
Rowley for helpful discussions on feature extraction.
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