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Abstract. Automatically assigning keywords to images is of greatriege as
it allows one to index, retrieve, and understand large ctiies of image data.
Many techniques have been proposed for image annotationeiast decade
that give reasonable performance on standard datasetevdovwnost of these
works fail to compare their methods with simple baselindntégues to justify
the need for complex models and subsequent training. Imwihik, we introduce
a new baseline technique for image annotation that treatstation as a retrieval
problem. The proposed technique utilizes low-level imaggdres and a simple
combination of basic distances to find nearest neighborsgifem image. The
keywords are then assigned using a greedy label transfenanisen. The pro-
posed baseline outperforms the current state-of-the-attieds on two standard
and one large Web dataset. We believe that such a baselirsiraesill provide
a strong platform to compare and better understand futuretation techniques.

1 Introduction

Given an input image, the goal of automatic image annotaitmassign a few relevant
text keywords to the image that reflect its visual conteniliding image content to

assign a richer, more relevant set of keywords would allogtorfurther exploit the fast
indexing and retrieval architecture of Web image searchnesgfor improved image
search. This makes the problem of annotating images widvaat text keywords of
immense practical interest.

Image annotation is a difficult task for two main reasonsstHs the well-known
pixel-to-predicate or semantic gap problem, which points to the fact that it is hard to
extract semantically meaningful entities using just lowelemage features, e.g. color
and texture. Doing explicit recognition of thousands ofealt$ or classes reliably is cur-
rently an unsolved problem. The second difficulty arisestduée lack ofcorrespon-
dencebetween the keywords and image regions in the training Bataach image, one
has access to keywords assigned todtftére image and it is not known which regions
of the image correspond to these keywords. This makes difftoel direct learning of
classifiers by assuming each keyword to be a separate clessnt®/, techniques have
emerged to circumvent the correspondence problem undescairdinative multiple
instance learning paradigm][or a generative paradign]

Image annotation has been a topic of on-going research fog than a decade and
several interesting techniques have been propdsed[5,7,8,9,10,11,12,1,2]. Most of
these techniques define a parametric or non-parametriclitmochgpture the relationship
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between image features and keywords. Even though some ¢ teehniques have
shown impressive results, one thing that is sorely missirige annotation literature is
comparison with very simple ‘straw-man’ techniques.

The goal of this work is to create a family of baseline measagainst which new
image annotation methods should be compared to justify éeel flor more complex
models and training procedures. We introduce several siteghniques characterized
by minimal training requirements that can efficiently setivis purpose. Surprisingly,
we also show that these baseline techniques can outperformeomplex state-of-the
art annotation methods on several standard datasets, lessvoel a large Web dataset.

Arguably, one of the simplest annotation schemes is to thegproblem of annota-
tion as that of image-retrieval. For instance, given a t@stge, one can find its nearest
neighbor (defined in some feature space with a pre-specifédnde measure) from
the training set, and assign all the keywords of the neamesgé to the input test im-
age. One obvious modification of this scheme would be toHiseearest neighbors to
assign the keywords instead of relying on just the neareastlarthe multiple neighbors
case, as we discuss in Secti®!3, one can easily assign the appropriate keywords to
the input image using a simple greedy approach. As we showdtidh4, some simple
distance measures defined on even global image featuresmpesimilar to or better
than several popular image annotation techniques.

The K-nearest neighbor approach can be extended to inaigpawltiple distance
measures, possibly defined over distinct feature spacegng combining different
distances or kernels has been shown to yield good performanabject recognition
task [L3]. In this work, we explore two different ways of linearly cbiming different
distances to create the baseline measures. The first onky siampputes the average of
different distances after scaling each distance apprgfyial he second one is based
on selecting relevant distances using a sparse logistiessign method, Lassd4]. To
learn the weights of Lasso, one needs a training set congpgitnilar anddissimilar
images. A typical training set provided for the annotatiasktdoes not contain such
information directly. We show that one can train Lasso byting a labeled set from
the annotation training data. Even such a weakly trainedd.asitperforms the state-
of-the-art methods in most cases. Surprisingly, howekheraveraged distance performs
better or similar to the noisy Lasso.

The main contributions of our work are that it (1) introdueesimple method to
perform image annotation by treating it as a retrieval pgobin order to create a new
baseline against which annotation algorithms can be medsand (2) provides ex-
haustive experimental comparisons of several stateefthannotation methods on
three different datasets. These include two standard Gereland IAPR TC-12) and
one Web dataset containing ab@0#s images.

2 Prior work

A large number of techniques have been proposed in the lasidde]l 5. Most of
these treat annotation as translation from image instandesywords. The translation
paradigm is typically based on some model of image and textccorrencesi6,3].

The translation approach of][was extended to models that ascertain associations in-
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directly, through latent topic/aspect/context spacgd [ One such model, the Corre-
spondence Latent Dirichlet Allocation (CorrLDAJ][ considers associations through a
latent topic space in a generatively learned model. Dedigigppealing structure, this
class of models remains sensitive to the choice of topic iodeal parameters, prior
image segmentation, and more importantly the inferencdearding approximations
to handle the typically intractable exact analysis.

Cross Media Relevance Models (CMRM][Continuous Relevance Model (CRM)
[7], and Multiple Bernoulli Relevance Model (MBRMY] assume different, nonpara-
metric density representations of the joint word-imagecspan particular, MBRM
achieves robust annotation performance using simple iraageext representations:
a mixture density model of image appearance that relies gioms extracted from a
regular grid, thus avoiding potentially noisy segmentatiand the ability to naturally
incorporate complex word annotations using multiple Betlhonodels. However, the
complexity of the kernel density representations may hiddBRM’s applicability to
large data sets. Alternative approaches based on grapdsespiation of joint queries
[11], and cross-language LS17], offer means for linking the word-image occurrences,
but still do not perform as well as the non-parametric madels

Recent research efforts have focused on extensions ofathgldtion paradigm that
exploit additional structure in both visual and textual dans. For instance, 1[7] uti-
lizes a coherent language model, eliminating independbatgeen keywords. Hier-
archical annotations inlf] aim not only to identify specific objects in an image, but
also explicitly incorporate concept ontologies. The adceaiplexity, however, makes
the models applicable only to limited settings with smatkdictionaries. To address
this problem, 19 developed a real-time ALIPR image search engine which maéds
tiresolution 2D Hidden Markov Models to model concepts deteed by a training set.
While this method successfully infers higher level senwatincepts based on global
features, identification of more specific categories anéaibjremains a challenge. In
an alternative approachy][relies on a hierarchical mixture representation of keydvor
classes, leading to a method that demonstrates both cotiomatieefficiency and state-
of-the-art performance on several complex annotationstadkwever, the annotation
problem is treated as a set of one-vs-all binary classifingiroblems, potentially fail-
ing to benefit from competition among models during the leaystage.

Even though promising results have been reported by marmistaated annotation
techniques, they commonly lack a comparison with simplesliras measures across
diverse image datasets. In the absence of such a compatishard to understand
the gains and justify the need for complex models and trgipnocesses as required by
most of the current annotation methods. Our work addrebsessue by suggesting a
family of baseline measures, some of which surprisinglyertform the current state-
of-the-art in image annotation on several large real-wddtasets.

3 Baseline Methods

We propose a family of baseline methods for image annotdtiahare built on the
hypothesis that images similar in appearance are likehhtoeskeywords. We treat
image annotation as a process of transferring keywords frearest neighbors. The
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neighborhood structure is constructed using simple loxgllanage features resulting
in a rudimentary baseline model. The details are given helow

3.1 Features and Distances

Color and texture are recognized as two important low-leiglal cues for image rep-
resentation. The most common color descriptors are basedarge histograms, which
are frequently utilized within image matching and indexaofpemes, primarily due to
their effectiveness and ease of computation. Image teidua@mmonly captured with

Wavelet features. In particular, Gabor and Haar wavelete baen shown to be quite
effective in creating sparse yet discriminative imageufezg. To limit the influence and
biases of individual features, and to maximize the amouirtfofmation extracted, we

choose to employ a number of simple and easy to compute &satur

Color We generate features from images in three different colacegt RGB, HSV,
and LAB. While RGB is the default color space for image capmwand display, both
HSV and LAB isolate important appearance characteristitcaptured by RGB. For
example, the HSV (Hue, Saturation, and Value) colorspacedss the amount of light
illuminating a color in the Value channel, and the Luminachannel of LAB is in-
tended to reflect the human perception of brightness. The, RISW, and LAB features
are 16-bin-per-channel histograms in their respectiversphaces. To determine the cor-
responding distance measures, we evaluated four measurenanly used for his-
tograms and distributiong{L-divergencey? statistic,L-distance, and.»-distance)
on the human-labeled training data from the Corel5K datdsgberformed the best for
RGB and HSV, whileK L-divergence was found suitable for LAB distances. Through-
out the remainder of the paper, RGB and HSV distances imply.thmeasure, and the
LAB distance impliesk L-divergence.

Texture We represent the texture with Gabor and Haar Wavelets. Baafd is filtered
with Gabor wavelets at three scales and four orientatioremFeach of the twelve
response images, a histogram over the response magnisuoigtt.i The concatenation
of these twelve histograms is a feature vector we refer tGabor’. The second feature
captures the quantized Gabor phase. The phase angle aespohse pixel is averaged
over16 x 16 blocks in each of the twelve Gabor response images. These phese
angles are quantized to 3 bits (eight values), and are cematetd into a feature vector
referred to as ‘GaborQ’.

Haar Wavelet responses are generated by block-convoloftiam image with Haar
filters at three different orientations (horizontal, diagh and vertical). Responses at
different scales were obtained by performing the convotutiith a suitably subsam-
pled image. After rescaling an image to 64x64 pixels, a Haatuire is generated by
concatenating the Haar response magnitudes (this featuegeirred to as ‘Haar’). As
with the Gabor features, we also consider a quantized wersibere the sign of the
Haar responses are quantized to three values (either 0-1,ifathe response is zero,
positive, or negative, respectively). Throughoutthe teistquantized feature is referred
to as ‘HaarQ. We usé.; distance for all the texture features.
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3.2 Combining distances

Joint Equal Contribution (JEC) . If labeled training data is unavailable, or the labels
are extremely noisy, the simplest way to combine distances flifferent descriptors
would be to allow each individual distance to contribute@tyu(after scaling the indi-
vidual distances appropriately). L&tbe thei-th image, and say we have extract¥d
featuresf;, ..., f{¥. Let us definelf; ,, as the distance betwegfi and f}. We would

like to combine the individual distancd%j)7 k =1,...,N to provide a comprehen-
sive distance between imaggandI;. Since, in JEC, each feature contributes equally
towards the image distance, we first need to find the appitemtaling terms for each
feature. These scaling terms can be determined easily ifedteres are normalized
in some way (e.g., features that have unit norm), but in pr@ac¢his is not always the
case. We can obtain estimates of the scaling terms by exagnine lower and upper
bounds on the feature distances computed on some trairirdysescale the distances
for each feature such that they are bounded by 0 and 1. If wetel¢ime scaled distance
asJ’(“i,j), we can define the comprehensive image distance betweershaandl; as

k
chvzl % We refer to this distance as Joint Equal Contribution (JEC)

L1-Penalized Logistic Regression (Lasso.f]). Another approach to combining fea-
ture distances would be to identify those features that anemelevant for capturing
image similarity. This is the well-known problem of featwedection. Since we are us-
ing different color (and texture) features that are not cletety independent, it is an
obvious question to ask: Which of these color (or texturajudees are redundant? Lo-
gistic regression withl; penalty, also known as Lass®/], provides a simple way to
answer this question.

The main challenge in applying Lasso to image annotatiarifiereating a training
set containing pairs of similar and dissimilar images. €gpiraining datasets forimage
annotation contain images and associated text keywordsthane is no direct notion
of similarity between images. In this setting, we consider jpair of images that share
enough keywords to be a positive training example, and aiyvwgth no keywords
in common to be a negative example. Clearly, the quality chsai training set will
depend on the number of keywords required to match beforenage pair can be
called ‘similar.’ In this work, we obtained training samgliegom the designated training
set of the Corel5K benchmark (Sectién Images pairs that had at least four common
keywords were treated as positive samples for training,thode with no common
keywords were used as negative samples (training sam@étuatrated in Figl).

Combining basic distances using JEC or Lasso gives us aewwgy to compute
distances between images. Using such composite distaoreesan find thé({ nearest
neighbors of an image. In the next section, we present a tedredfer algorithm that
assigns keywords to any test image given its nearest neighbo

3.3 Label transfer

We propose a simple method to transfeeywords to a query imagefrom the query’s
K nearest neighbors in the training set. Lgti = 1,..., K be these( nearest neigh-
bors, ordered by increasing distance (ilg.is the most similar image). The number of
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Positive

Fig.1l. Pairs of images that were used as positive training exan{esrow) and
negative training examples (bottom row) for Lasso. In pesipairs the images shared
at least 4 keywords, while in negative pairs they shared none

keywords associated with is denoted by;|. Following are the steps of our greedy
label transfer algorithm.

1. Rank the keywords af; according to their frequency in the training set.

2. Of the|I,| keywords ofI,, transfer the: highest ranking keywords to quefy If
|I1| < n, proceed to step 3.

3. Rank the keywords of neighbofs through/x according to two factors: 1) co-
occurrence in the training set with the keywords transteimestep 2, and 2) local
frequency (i.e. how often they appear as keywords of imagdsoughl ). Select
the highest ranking — |1, | keywords to transfer té.

This transfer algorithm is somewhat different from othewiohs choices. One can
imagine simpler algorithms where keywords are selectedltameously from the en-
tire neighborhood (i.e., all the neighbors are treated lguar where the neighbors
are weighted according to their distance from the test imdgeever, an initial evalua-
tion showed that these simple approaches underperfornmipanson to our two-stage
transfer algorithm (see Sectidi

In summary, our baseline annotation methods are comprise@¢@mposite image
distance measure (JEC or Lasso) for nearest neighbor iggrdambined with our label
transfer algorithm. Is there any hope to achieve reasomnabldts for image annota-
tion using such simplistic methods? To answer this questi@nevaluate our baseline
methods on three different datasets as described in tlenfioly section.

4 Experiments and Discussion

Our experiments examined the performance and behavioegfrbposed baselines for
image annotation on three collections of images.
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/
NO>annotation: S/08/8000 eng</DOCHD>
<TITLEAt the Sun Gate</TITLE=
up iz =guatting at a lookout with 2
tain in the background; </DESCRIPTIONS.

ied slope an
<NOTES></NOTES>

<LOCATIONAguas Calientes, Peru </LOCATION>
<DATE>15 July 2003 </DATE >
<IMAGE>images/08/8000.jpg </IMAGE>

</D0Cs

Fig. 2. Sample IAPR data. On the left are 25 randomly selected infagethe dataset.
On the right is a single image and its associated annotdtioan extraction from the
caption provides keywords for annotation.

— Corel5K [3] has become a de-facto evaluation benchmark in the imagetation
community. It contains 5,000 images collected from thedai@orel CD set, split
into 4,500 training and 500 test examples. Each image istatetbwith an average
of 3.5 keywords, and the dictionary contains 260 words thpear in both the train
and the test set.

— IAPR TC-12is a collection of 19,805 images of natural scéhatinclude different
sports and actions, photographs of people, animals, claesiscapes and many
other aspects of contemporary fif&nlike other similar databases, images in IAPR
TC-12 are accompanied by free-flowing text captions. WHile set is typically
used for cross-language retrieval, we have concentratatdeinglish captions
and extracted keywords (nouns) using the TreeTagger pagieech taggér This
resulted in a dictionary size of 291 and an average of 4.7 keysvper image.
17,825 images were used for training, and the remainingif@&esting. Samples
from IAPR are depicted in Fig.

— ESP Game consists of a set of 21,844 images collected in tRecBifaborative
image labeling taskZ0]°. In ESP game, two players assign labels to the same
image without communicating. Only common labels are a@mkbpis an image is
shown to more teams, a list of taboo words is accumulatetkasing the difficulty
for future players and resulting in a challenging dataseafmotation. The set we
obtained contains a wide variety of images annotated by 269 keywandd, is
split into 19,659 train and 2,185 test images. Each imagsse@ated with up to
15 keywords, and on average 4.6 keywords. Examples are shdvig. 3.

Shttp://eureka. vu. edu. au/ ~gr ubi nger/ | APR/ TC12_Benchmar k. ht m
“http://ww.ins.uni-stuttgart.de/ projekte/ corpl ex/ TreeTagger
Shttp://ww. espgane. org

Shttp://hunch.net/~j1/


http://eureka.vu.edu.au/~grubinger/IAPR/TC12_Benchmark.html
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
http://www.espgame.org
http://hunch.net/~jl/
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il :
W animal, black, animal, brown,
P X brown, ear, eye, ear, eye, nose

Y - horse, nose

Fig. 3. Sample ESP data. On the left are 25 randomly selected imegagtie dataset,
while on the right are two images and their associated kegsvdihese images are quite
different in appearance and content, but share many of the kaywords.

Forthe IAPR TC-12 and ESP datasets, we have made publicttierdiries, as well
as the training and testing image set partitions, used irevaluationé. On all three
annotation datasets, we evaluated the performance of aemuofibaseline methods.
For comparisons on Corel5K, we summarized published etikeveral approaches,
including the most popular topic model (i.e. CorrLDA]), as well as MBRM p] and
SML [2], which have shown state-of-the-art performance on Cérelin the IAPR TC-
12 and ESP datasets, where no published results of annotagthods are available,
we compared the performance of our baseline methods addBRM [ 9] which was
relatively easier to implement and had comparable perfoo@éo SML P]8.

When evaluating performance of baseline methods, we focosehree different
settings: 1) performance of individual distance meas@gserformance of the learned
weighted distance model (Lasso), and 3) performance ofdlmt Equal Contribution
(JEC) model, where all features contributed equally to fbeaj distance measure. In
the Corel setting, we also examined the impact of leavingeoe distance measure at
atime in the JEC model.

Performance of all models was evaluated using five measolfewing the method-
ology used in?,9]. We report mean precision (P%) and mean recall (R%) ratesrodd
by different models, as well as the number of total keywortslied (N°). Precision
and recall are defined in the standard way: the annotatiarigiwa for a keyword is
defined as the number of images assigned the keyword cgriieitied by the total
number of images predicted to have the keyword. The anoatagicall is defined as
the number of images assigned the keyword correctly, diMidethe number of images
assigned the keyword in the ground-truth annotation. @im@ other approaches, we
assign top 5 keywords to each image using label transferitidddlly, we report two
retrieval performance measures based on top 10 imagesvestrior each keyword:
mean retrieval precision (rP%) and mean retrieval precifo only the recalled key-
words (rP %) [7].

"http://ww. cis.upenn. edu/ ~makadi a/ annot at i on/
8 No implementation of SMLJ] was publicly available.
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Table 1.Results on three datasets for different annotation algoist Corel5K contains
5,000 images and 260 keywords, IAPR-TC12 has 19,805 imagk3H keywords, and
ESP has 21,844 images and 268 keywords. P% and R% denotedhepneeision and
the mean recall, respectively, over all keywords in pe@gatpoints. N denotes the
number of recalled keywords. rP%, and"#8 denote the mean retrieval precision for
all keywords and the mean retrieval precision for recallegiWords only, respectively.
Note that the proposed simple baseline technique (JECedotms state-of-the-art
techniques in all datasets. CorrLDAnd JEC correspond to models built on a reduced
168 keyword dictionary, as inf].

(a) Corel5K (b) IAPR-TC12 & ESP
[ Method [Pu[Ru[NT[rPu]rP IAPR-TC12 ESP
CRM[7] [16[19]107 - - Method Pu| Re N+|rP% P 5| P/ Res N+|rP% rPTo
InfNet [11] [17/24[112 - | - | [MBRM][24[23[223 24] 30 [[18]19]209 18] 24 ]
NPDE [21] |18)21]114 - | - RGB [24]24]239 23] 29 [[20[22]219 19] 25

MBRM [9] |24/25/122 30| 35 HSV [20[20|219 18] 24 |[18/20[212 17| 21
SML[?] ]23/29|13731] 49 LAB [24]25|237 23] 29 [[20[22[221 20| 24
CorrLDA[4]'[ 6] 9[59]27] 37 Haar |20[11]176 21| 32 |[21/18[205 21| 27
RGB [20[23[110 24 49 | |HaarQ[19[16|189 18| 28 |[18[19[207 18| 24
HSV  |18/21|110 23] 45 | | Gabor|15[15|183 14| 22 ||15/16|186 15| 21
LAB  |20[25(118 25| 47 | |[GaborQ8] 9 (137 9 | 18 ||14/15/193 13| 19

Haar |6]8|53|12| 33 Lasso|28[29[246 26] 31 [[21]24]224 21 25

HaarQ |[11)13/87|16] 35 JEC [28[29|250 27| 31 [|22[25|224 21| 25
Gabor | 8110/ 72|11 31

GaborQ |5|6|52| 7| 26
Lasso |24/29(127 30| 51
JEC 27|32[139 33| 52
JEC 32|40|113 35| 48

4.1 Corel

The results of experiments on the Corel set are summarizeahie1(a) The top por-
tion of the table displays published results of a numberaridgard and top-performing
methods that approach the annotation problem from diffgperspectives, using dif-
ferent image representations: CRI,[InfNet [11], NPDE [21], MBRM [ 9], SML [Z],
and CorrLDA []. The middle part of the table shows results of using only die
tance measures induced by individual features. Finalgybibitom rows list results of
the baseline methods that rely on combinations of distafroes multiple features.
Individual feature distances show a wide spread in perfooaacores, ranging from
high-scoring LAB and RGB color measures to the potentiahsleffective Haar and
GaborQ. It is interesting to note that some of the best iddial measures perform on
par or better than several more complex published methodse Burprising, however,
is that the measures which arise from combinations of iddiai distances (Lasso and
JEC) perform significantly better than most other publisimethods. In particular, JEC,
which emphasizes equal contribution of all the featureadistés, shows domination in
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. sky, jet, | grass, rocks water, tree, | bear, snow,
Predicted sun, water, sea,
keywords plane, smoke, sand, valley, waves. birds|  9"aSS: deer, | wood, deer,
formation canyon ' white-tailed | white-tailed
Human sky, jet, rocks,sand,| sun, water, tree, forest, | tree, snow,
annotatiorpplane, smokevalley, canyon clouds, birds|deer, white-tailed wood, fox

Fig. 4. Predicted keywords using JEC versus the human annotatiomssampling of
images in the Corel5K dataset (using all 260 keywords).

Fig. 5. Retrieval results using JEC on Corel5K. Each row displagditbt seven images
retrieved for a query. From top to bottom, the queries sk street, mare, train.

all five performance measures. One reason for this excepp@nformance may be due
to the use of a wide spectrum of different features, contirigialong different “orthog-
onal” factors. This also points to the well-understood Emghacies and limitations of
most image representation models that rely on individuainoall subsets of features.
Figure4 shows some images annotated using the JEC baseline. Addijiove show
some retrieval examples using the JEC baseline inF=ig.

It should be noted that most top-performing methods indiigre rely on instance-
based representations (such as MBRM, CRM, InfNet, and NRitgh are closely
related to our baseline approach. While generative paraamabdels such as Cor-
rLDA [ 4] have significant modeling appeal due to the interpretigbdf the learned
models, they fail to stack up to the nonparametric represiemis on this difficult task.
Tablel confirms that the gap between the two paradigms remains large

Another interesting result is revealed by comparing JE® Wwisso. One may ex-
pect the learned weights through Lasso to perform bettartth@equal contributions in
JEC. However, this is not the case, in part, because of therelift requirements posed
by the two models. Lasso relies on the existence of sets dfiy@ésimilar) and neg-
ative (dissimilar) pairs of images, while JEC is a learnireg model. Since the Lasso
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Table 2.(a) All-but-one testing of the JEC scheme. In each row, ahffit feature was
left out of JEC. It is clear from these results that all seveatires make some positive
contribution to the combined distances. The last row shb@sEC results for the full
set of features for reference. (b) Texture vs. color resait260 keywords in Corel5K.
The texture feature is a weighted average of all four texteegures, and the color
feature is a weighted average of all three color features.thiid row shows the full
JEC results with all the texture and color features.

(a) All-but-one (b) Texture & Color
Feature  pod N+ [rPod P 0| | T8N e pod Roe| N+ |rPYG P %
held ou Class

RGB |27|31|134 32| 53 Texture | 16| 19|10 24 | 45
HSV |27|31(137 32| 52 Color |23|26(120 27| 51
LAB [27|32|134 33| 53 | |Texture +
Haar |26|31(133 32| 54 Color 271321139 33 52
HaarQ| 26| 30|13Q0 31| 53
Gabor| 25| 291|128 30| 53
GaborQ 26| 31|134 33| 53
None | 27| 321|139 33| 52

training set was created artificially from the annotati@irting set, the effect of noisy
labels undoubtedly reflects on the model’s performance.

We further contrast the role of individual features and exantheir contribution
to the combined baseline models in experiments summanz&dbles2(a) and2(b).
Performance of individual features shown in Tablenay tempt one to leave out the
low-performing features, such as the texture-based HahGador descriptors. How-
ever, Table2(a) suggests that this is not a wise thing to do. Correlated feafisuch
as HSV and LAB may contribute little jointly and could potitly be left out. While
the texture-based descriptors lead to individually irdfieaéinnotation performance, they
complement the color features. A similar conclusion maydsehed when consider-
ing joint performance of all color and all texture featureparately, as depicted in
Table 2(b): either of the two groups alone results in performance iofgo the JEC
combined model.

Finally, as mentioned earlier, the greedy label transfgorgthm utilized in JEC is
not immediately obvious. One straightforward alternaisvi® transfer all keywords si-
multaneously from the entire neighborhood while optionaleighting the neighbors
according to their distance from the test image. Additipnaly evaluating the labels
transferred from a single neighbor, we can estimate theagegiquality” of neighbors
in isolation. These results are summarized in T&blehe simple alternative of selecting
all keywords simultaneously from the entire neighborhawith(and without weighting
the neighbors) underperforms our proposed label trankferithm. Regarding individ-
ual neighbors, the difference in performance between thetfio neighbors is greater
than the difference between the second and fifth neighbas. ditservation led us to
treat the first neighbor specially.
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Table 3. Evaluation of alternative label transfer schemes on Cételb (a), we as-
sess two simple methodall neighbors equal simultaneously selects keywords from
all 5 nearest neighbors. Keywords are ranked by their frequen the neighborhood.
All neighbors weighted applies an additional weighting relative to the distancé¢hef
neighbor from the test image. In (b), we evaluate the indigldheighbors in isolation
(i.e. all keywords transferred from a single neighbor).

(a) Alternative label transfer methods (b) Single-neighbor performance
PYIR%NT[rPYUrPT % 30 e
i [ JRecall
All neighbors 231241114 39| 56 25
equal
Allneighbors | 5| 54 |135 32| 50
weighted

Proposed methg

(Section3.3) %7 32|139 33| 52

. clothes, jean,| edge, front, |court, player, brick, grave,| desert, grass,
Predicted S . .
man, shop, | glacier, life, |sky, stadiummummy, stone, mountain, sky,
keywords . .
square tourist tennis wall slope
. glacier, jacket,
clothes, jean . court, player, , . desert, gre
Human Jean, life, rock, » Playet, brick, grave, L orey
._Iman, pavement, sky, stadium, mountain, round,
annotatio sky, water, . " mummy, wall
shop, square woman man, tennig stone

Fig. 6. Predicted keywords using JEC versus human annotationaraple images in
the IAPR dataset.

4.2 IAPRTC-12

The Corel set has served as a common evaluation platformdaymnnotation meth-
ods. Nevertheless, it if often criticized for its bias duertsufficiently varying appear-
ance and contrived annotations. We therefore measurerpe@e of our baseline
models, JEC and Lasso, as well as that of individual featarea more challenging
IAPR set. Tablel(b) depicts performance of different methods on this set. Edgur
shows some examples of annotated images using the JEOeaseli
Trends similar to those observed on the Corel set carry ovbietIAPR setting: the

JEC baseline leverages multiple, potentially “orthogbfeadtors, to retrieve neighbor-
ing images most relevant for predicting reasonable aniootaf queries. The baseline
also shows performance superior to that of the MBRM. Whilercfeatures contribute
consistently more than the texture descriptors, we obsepeoved individual perfor-
mance of Gabor and Haar measures. This can be due to the ggedenlarger number
of images exhibiting textured patterns in IAPR comparedh®s Corel set. It is also
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&

band, light,

. bikini, girl,| bear, black, man, old,
Predicted ; . . cloud, grass,
grass, haif,brown, nose}, man, music| picture, red, ‘
keywords ' green, hill, red
woman white play wall

Human | bed, girl, animal, bear, band, Ilgh.t, black, man,|cloud, g.ray, gree

. black, brown, man, music| old, red, |mountain, picture
annotation woman .

head, nose| red, wheel sit rock, sky, stone

13

Fig. 7. Predicted keywords using JEC versus human annotationaiaple images in

the ESP dataset.

interesting to note that selection of relevant featuresgikasso exhibits performance
on par with JEC in two out of the five measures. This is a pateitdicator that the

selection criterion for determining the Lasso trainingreely be more reflective of the
true image similarities in IAPR than in Corel.

4.3 ESP

ESP game set has arisen from an experiment in collaboraticeah computing—
annotation of images in this cas&]. An advantage of this set, compared to Corel and
IAPR, lies in the fact that its human annotation elicits dexilve semantic agreement
among annotators, leading to annotations with less indalithias. Tablel(b) depicts
results of MBRM and our baseline methods on this set. Figsteows some examples
of annotated images using JEC.
Even though JEC again gives the best performance, the bl@xaprecision and
recall rates for this dataset indicate its difficult natukso, more so than in other sets,
the texture features play a critical role in the process.ifgtance, the Haar and Gabor
distances fall not far behind the color features.

4.4 Discussion

To be able to solve the image annotation problem at the huevah perhaps one needs
to first solve the problem of scene understanding. Howedtentifying objects, events,
and activities in a scene is still a topic of intense reseuaiittlimited success. The goal
of our work was not to develop a new annotation method butdatera family of very
simple and intuitive baseline methods. Experiments oretdifferent datasets reaffirm
the enormous importance of considering multiple sourcewvinfence to bridge the gap
between the pixel representations of images and the seamaatinings. It is clear that
a simple combination of basic distance measures definedcowemonly used image
features can effectively serve as a baseline method toge@vsolid test-bed for devel-
oping future annotation methods.

Acknowledgments: Our thanks to Ni Wang for the Lasso training code and Henry
Rowley for helpful discussions on feature extraction.
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