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The goal of a person authentication system is to authenticate the claimed identity of a user.
When this authentication is based on the voice of the user, without respect of what the user
exactly said, the system is called a text-independent speaker verification system.

Speaker verification systems are increasingly often used tosecure personal information,
particularly for mobile phone based applications. Furthermore, text-independent versions of
speaker verification systems are the most used for their simplicity, as they do not require
complex speech recognition modules. The most common approach to this task is based on
Gaussian Mixture Models (GMMs) (Reynolds et al. 2000), which do not take into account
any temporal information. GMMs have been intensively used thanks to their good perfor-
mance, especially with the use of the Maximum A Posteriori (MAP) (Gauvain and Lee
1994) adaptation algorithm. This approach is based on the density estimation of an impostor
data distribution, followed by its adaptation to a specific client data set. Note that the estima-
tion of these densities is not the final goal of speaker verification systems, which is rather to
discriminate the client and impostor classes; hence discriminative approaches might appear
good candidates for this task as well.

As a matter of fact, Support Vector Machine (SVM) based systems have been the sub-
ject of several recent publications in the speaker verification community, in which they
obtain similar to or even better performance than GMMs on several text-independent speaker
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verification tasks. In order to use SVMs or any other discriminant approaches for speaker
verification, several modifications from the classical techniques need to be performed. The
purpose of this chapter is to present an overview of discriminant approaches that have been
used successfully for the task of text-independent speakerverification, to analyze their differ-
ence and their similarities with each other and with classical generative approaches based on
GMMs. An open-source version of the C++ source code used to performed all experiments
described in this chapter can be found athttp://speaker.abracadoudou.com .

12.1 Introduction

Person authentication systems are in general designed in order to let genuine clients access
a given service while forbidding it to impostors. This can beseen as a 2-class classification
problem suitable for machine learning approaches.

A number of specificities make speaker verification different from a standard binary clas-
sification problem. First, the input data are sentences whose lengths depend on its phonetic
content and the speaking rate of the underlying speaker.

Second, only few client training examples are available: inmost real application, it is not
possible to ask a client to speak during several hours or daysin order to capture the entire
variability of his/her voice. There are typically between one and three utterances for each
client.

Third, the impostor distribution is not known and even not well defined: we have no idea
of what an impostor is in a “real” application. In order to simulate impostor accesses, one
usually considers other speakers in the database. This ignorance is somewhat remedied by
evaluating the models with impostor identities that are notavailable when creating the mod-
els. This incidentally means that plenty of impostor accesses are usually available, often more
than 1000 times the number of client accesses, which makes the problem highly unbalanced.

The distribution of impostors being only loosely defined, the prior probability of each
class is unknown, and the cost of each type of error is usuallynot known beforehand. Thus,
one usually selects a model that gives reasonable performance for several possible cost trade-
offs.

Finally, the recording conditions change over time. The speaker can be located in several
kinds of places: office, street, train station, etc. The device used to perform the authentica-
tion can also change between authentication attempts: landline phone, mobile phone, laptop
microphone, etc.

That being said, the problem of accepting or rejecting someone’s identity claim can be
formally stated as a binary classification task. LetS be a set of clients andsi ∈ S be thei-th
client of that set. We look for a discriminant functionf(·;ϑi) and a decision threshold∆
such that

f(x̄;ϑi) > ∆ , (12.1)

if and only if sentencēx was pronounced by speakersi.
The parametersϑi are typically determined by optimizing an empirical criterion com-

puted on a set ofLi sentences, either called the training or the learning setLi = {(x̄l, yl)}Li

l=1,
wherex̄l ∈ R

d×Tl is an input waveform sequence encoded asTl d-dimensional frames, and
yl ∈ {−1, 1} is the corresponding target, where1 stands for for a true client sequence and
−1 for an impostor access. The search space is defined as the set of functionsf : R

d×Tl 7→ R
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parameterized byϑi, andϑi is identified by minimizing the mean loss on the training set,
where the lossℓ(·) returns low values whenf(x̄;ϑi) is neary and high values otherwise:

ϑi = arg min
θ

∑

(x̄,y)∈Li

ℓ(f(x̄;θ), y) .

Note that the overall goal is not to obtain zero error onLi but rather on unseen examples
drawn from the same probability distribution. This objective is monitored by measuring the
classification performance on an independent test setTi, in order to provide an unbiased
estimate of performance on the population.

A standard taxonomy of machine learning algorithms sets apart discriminant models,
that directly estimate the functionf(·;ϑi), from generative models, wheref(·;ϑi) is defined
through the estimation of the conditional distribution of sequences knowing the speaker. We
briefly present hereafter the classical generative approach that encompasses the very popular
Gaussian Mixture Model (GMM), which will provide a baselinein the experimental section.
All the other methods presented in this chapter are kernel-based systems that belong to the
discriminative approach.

12.2 Generative Approaches

The state-of-the-art generative approaches for speaker verification use atypical models in the
sense that they do not model the joint distribution of inputsand outputs. This is due to the fact
that we have no clue of what the prior probability of having clientsi speaking should be, since
the distribution of impostors is only loosely defined and theproportion of client accesses in
the training set may not be representative of the proportionin future accesses. Although the
model is not complete, a decision function is computed usingthe rationale described below.

12.2.1 Rationale

The system has to decide whether a sentencex̄ was pronounced by speakersi or by any other
persons0. It should accept a claimed speaker as aclient if and only if:

P (si|x̄) > αiP (s0|x̄) , (12.2)

whereαi is a trade-off parameter that accounts for the loss of false acceptance of an impostor
access versus false rejection of a genuine client access.

Using Bayes theorem, we rewrite (12.2) as follows:

p(x̄|si)

p(x̄|s0)
> αi

P (s0)

P (si)
= ∆i = ∆ , (12.3)

where∆i is proportional to the ratio of the prior probabilities of being or not being the client.
This ratio being unknown,∆i is replaced by a client independent decision threshold∆. This
corresponds to having different (unknown) settings for thetrade-off parametersαi.

The left ratio in (12.3) plays the role off(x̄;ϑi) in (12.1), where the set of parameters
ϑi is decomposed as follows:

f(x̄;ϑi) =
p(x̄|si,θi)

p(x̄|s0,θ0)
,
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with ϑi = {θi,θ0}. The loss function used to estimateθ0 is the negative log-likelihood

θ0 = argmin
θ

∑

(x̄,y)∈L−
i

− log p(x̄|s0,θ) ,

whereL−i is the subset of pairs(x̄, y) in the learning setLi for whichy = −1. As generally
few positive examples are available, the loss function usedto estimateθi is based on a Max-
imum A Posteriori (MAP) adaptation scheme (Gauvain and Lee 1994) and can be written as
follows:

θi = arg min
θ

∑

(x̄,y)∈L+
i

− log

(
p(x̄|si,θ)p(θ)

)

whereL+
i is the subset of pairs(x̄, y) in Li for whichy = 1. This MAP approach puts some

prior on θ to constrain these parameters to some reasonable values. Inpractice, they are
constrained to be nearθ0, which represents reasonable parameters for any unknown person.
See for instance Reynolds et al. (2000) for a practical implementation.

12.2.2 Gaussian Mixture Models

State-of-the-art systems compute the density of a sentencex̄ by a rough estimate that assumes
independence of theT frames that encodēx. The density of the frames themselves is assumed
to be independent of the sequence length, and is estimated bya Gaussian Mixture Model
(GMM) with diagonal covariance matrices, as follows:

p(x̄|s,θ) = P (T ) p(x̄|T, s,θ)

= P (T )

T∏

t=1

p(xt|T, s,θ)

= P (T )

T∏

t=1

p(xt|s,θ)

= P (T )

T∏

t=1

M∑

m=1

πmN (xt|µm,σm) , (12.4)

whereP (T ) is the probability distribution1 of the length of sequencēx, xt is thet-th frame
of x̄, andM is the number of mixture components. The parametersθ comprise the means
{µm}Mm=1, standard deviations{σm}Mm=1, and mixing weights{πm}Mm=1 for all Gaussian
components. The Gaussian density is defined as follows:

N (x|µ,σ) =
1

(2π)
d
2 |Σ|

exp

(
−1

2
(x− µ)T Σ−2(x− µ)

)
,

whered is the dimension ofx, Σ is the diagonal matrix with diagonal elementsΣii = σi,
and|Σ| denotes the determinant ofΣ.

1Under the reasonable assumption that the distributions of sentence length are identical for each speaker, this
distribution does not play any discriminating role and can be left unspecified.
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As stated in the previous section, we first train an impostor model p(x̄|s0,θ0), called
world or universal background modelwhen it is common to all speakerssi. For this purpose,
we use the Expectation-Maximization (EM) algorithm to maximize the likelihood of the
negative examples in the training set. Note that in order to obtain state-of-the-art performance,
the variances of all Gaussian components are constrained tobe higher than some threshold,
normally selected on a separate development set. This process, often calledvariance flooring
(Melin et al. 1998), can be seen as a way to control the capacity of the overall model.

For each clientsi, we use a variant of MAP adaptation (Reynolds et al. 2000) to estimate
a client modelp(x̄|si,θi) that only departs partly from the world modelp(x̄|s0,θ0). In this
setting, only the mean parameters of the world model are adapted to each client, using the
following update rule:

µi
m = τi,m µ̂

i
m + (1− τi,m)µ0

m ,

whereµ0
m is the vector of means of Gaussianm of the world model,̂µi

m is the corresponding
vector estimated by maximum likelihood on the sequences available for clientsi, andτi is
the adaptation factor that represents the faith we have in the client data. The latter is defined
as follows (Reynolds et al. 2000):

where τi,m =
ni,m

ni,m + r
(12.5)

whereni,m is the effective number of frames used to computeµ̂
i
m, that is, the sum of mem-

berships to componentm for all the frames of the training sequence(s) uttered by clientsi

(see Section 12.5.2 for details). The MAP relevant factorr is chosen by cross-validation.
Finally, when all GMMs have been estimated, one can instantiate (12.3) to take a decision

for a given access as follows:

1

T

T∑

t=1

log

∑M
m=1 πm N (xt;µi

m,σm)
∑M

m=1 πm N (xt;µ0
m,σm)

> log ∆ ,

whereθ0 = {µ0
m,σm, πm}Mm=1 are the GMM parameters for the world model, andθi =

{µi
m,σm, πm}Mm=1 are the GMM parameters for the client model. Note that1

T does not
follow from (12.3) and is an empirical normalization factoradded to yield a threshold∆ that
is independent of the length of the sentence.

12.3 Discriminative Approaches

Support Vector Machines (SVMs) (Vapnik 2000) are now a standard tool in numerous appli-
cations of machine learning, such as in text or vision (Joachims 2002; Pontil and Verri 1998).
While GMM is the mainstream generative model in speaker verification, SVMs are prevail-
ing in the discriminative approach. This section provides abasic description of SVMs that
introduces the kernel trick that relates feature expansions to kernels, on which will focus in
Section 12.5.
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12.3.1 Support Vector Machines

In the context of binary classification problems, the SVM decision function is defined by the
sign of

f(x;ϑ) = w · Φ(x) + b , (12.6)

wherex is the current example,ϑ = {w, b} are the model parameters andΦ(·) is a mapping,
chosen “a priori”, that associates a possibly high dimensional feature to each input data.

The SVM training problem consists in solving the following problem:




(w∗, b∗) = arg min
(w,b)

1

2
‖w‖2 + C

L∑

l=1

ξl

s.t. yl(w · xl + b) ≥ 1− ξl ∀l

ξl ≥ 0 ∀l ,

(12.7)

whereL is the number of training examples, the target class labelyl ∈ {−1, 1} corresponds
to xl, andC is a hyper-parameter that trades off the minimization of classification error
(upper-bounded byξl) and the maximization of the margin, which provides generalization
guarantees (Vapnik 2000).

Solving (12.7) leads to a discriminant function expressed as a linear combination of
training examples in the feature spaceΦ(·). We can thus rewrite (12.6) as follows:

f(x;ϑ) =

L∑

l=1

αlyl Φ(xl) ·Φ(x) + b ,

where most training examples do not enter this combination (αl = 0); the training examples
for whichαl 6= 0 are calledsupport vectors.

As the feature mappingΦ(·) only appears in dot products, the SVM solution can be
expressed as follows:

f(x;ϑ) =

L∑

l=1

αlyl k(xl,x) + b ,

wherek(·, ·) is the dot productΦ(·) ·Φ(·). More generally,k(·, ·) can be any kernel function
that fulfills the Mercer conditions (Burges 1998), which ensure that, for any possible training
set, the optimization problem is convex.

12.3.2 Kernels

A usual problem in machine learning is to extract features that are relevant for the classifica-
tion task. For SVMs, choosing the features and choosing the kernel are equivalent problems,
thanks to the so-called “kernel trick” mentioned above. Thelatter also permits to mapxl into
potentially infinite dimensional feature spaces by avoiding the explicit computation ofΦ(xl);
it also reduces the computational load for mappings in finitebut high dimension.

The two most well known kernels are the Radial Basis Function(RBF) kernel

k(xl,xl′ ) = exp

(−‖xl − xl′‖2
2σ2

)
(12.8)
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Speakers

Dev. SetD

{si}i∈D+

{L+
i }i∈D+ {T +

i }i∈D+

{si}i∈D−

{T −
i }i∈D+

WorldW

{si}i∈W

{L−i }i∈D+∪E+

Eval. SetE

{si}i∈E+

{L+
i }i∈E+ {T +

i }i∈E+

{si}i∈E−

{T −
i }i∈E+

Figure 12.1 Split of the speaker population in three subsets, with the final decomposition in
learning and test sets.

and the polynomial kernel

k(xl,xl′) = (axl · xl′ + b)p , (12.9)

whereσ, p, b, a are hyper-parameters that define the feature space.
Several SVM-based approaches have been proposed recently to tackle the speaker veri-

fication problem (Campbell et al. 2006a; Wan and Renals 2003). These approaches rely on
constructing an ad-hoc kernel for the problem at hand. Thesekernels will be presented and
evaluated after the following section that describes the details of the experimental methodol-
ogy and the data that will be used to compare the various methods.

12.4 Benchmarking Methodology

In this section, we describe the methodology and the data used in all the experiments reported
in this chapter. We first present the data splitting strategythat is used to imitate a realistic use
of speaker verification systems. Then, we discuss the measures evaluating the performances
of learning algorithms. Finally, we detail the database used to benchmark these algorithms,
and the pre-processing that builds sequences of frames fromwaveform signals.

12.4.1 Data Splitting for Speaker Verification

A speaker verification problem is not a standard classification problem, since the objective
is not to certify accesses from a pre-defined set of clients. Instead, we want to be able to
authenticate new clients when they subscribe to the service, that is, we want to learn how to
build new classifiers on the fly. Hence, a speaker verificationsystem is evaluated by its ability
to produce new classifiers with small test error. This is emulated by the data splitting process
depicted in Figure 12.1.

The root level gathers the population of speakers, which is split into three sub-
populations, defined by their role in building classifiers: the development setD, the world
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setW and the evaluation setE . All accesses from the speakers ofW will be used as the set of
negative examplesL−i for training the models responsible for authenticating clientsi, where
si may belong either to the development setD or to the evaluation setE . The setsD andE are
further split into clients (resp.D+ andE+) and impostors (resp.D− andE−) at the second
level of the tree. The clients and the test impostors hence differ between the development and
the evaluation sets.

The impostor accesses inD− andE− form the set of negative test examplesT −
i , that is,

“attempt data” from out-of-training impostors claiming identitysi, wheresi belongs respec-
tively to D+ and E+. Finally, at the third level of the tree, the accesses of client si are
split to form the positive examples of the training setL+

i (also known as the “enrollment
data”, usually a single access), and the set of positive “attempt data”T +

i that play the role of
out-of-training client accesses requiring authentication.

To summarize, the development setD is used jointly withW to train models and select
their various hyper-parameters (such as the number of Gaussians, the MAP adaptation factor,
kernel parameters, etc.). For each hyper-parameter, we define a range of possible values, and
for each value, each client model is trained using the enrollment dataL+

i and the world data
L−i , before being evaluated with the positive and negative attempt dataT +

i andT −
i . We then

select the value of the hyper-parameters that optimizes a given performance measure (the
Equal Error Rate described below) on{T +

i ∪ T −
i }. Finally, the evaluation setE is used to

train new client models using these hyper-parameters, and to measure the performance of the
system on these new clients.

12.4.2 Performance Measures

The classification error rate is the most common performancemeasure in the machine learn-
ing literature, but it is not well suited to the type of problems encountered in speaker verifi-
cation, where class priors are unknown and misclassification losses are unbalanced. Hence, a
weighted version of the misclassification rate is used, where one distinguishes two kinds of
errors:False Rejection(FR) which consists in rejecting a genuine client, andFalse Accep-
tance(FA) which consists in accepting an impostor. All the measures used in this chapter
are based on the corresponding error rates: theFalse Acceptance Rate(FAR) is the number
of FAs divided by the number of client accesses, and theFalse Rejection Rate(FRR) is the
number of FRs divided by the number of impostor accesses.

As stated in the previous section, in practice, we aim at building a single system that is
able to take decisions for all future users. The performanceis measured globally, on the set
of speakers of the evaluation set, by averaging the performance over all trials independently
of the claimed identity.

In the speaker verification literature, a point often overlooked is that most of the results
are reported with “a posteriori” measures, in the sense thatthe decision threshold∆ in
Equation (12.1) is selected such that it optimizes some criterion on the evaluation set. We
believe that this is unfortunate, and, in order to obtain unbiased results, we will use “a priori”
measures, where the decision threshold∆ is selected on a development set, before seeing the
evaluation set, and then applied to the evaluation data.

Common a posteriori measures include the Equal Error Rate (EER), where the thresh-
old ∆ is chosen such that (FAR=FRR), and the Detection Error Tradeoff (DET) curve
(Martin et al. 1997), which depicts FRR as a function of FAR when ∆ varies. Note that
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the DET curve is is a non-linear transformation of the Receiver Operating Characteristic
(ROC) curve (Van Trees 1968). The non-linearity is in fact a normal deviate, coming from
the hypothesis that the scores of client accesses and impostor accesses follow a Gaussian
distribution. These measures are perfectly legitimate forexploratory analysis or for tuning
hyper-parameters on the development set and they are used inthis purpose here. To avoid
confusion with proper test results, we will only report DET curves computed on the devel-
opment set. For test performance, we will use a priori measures: the Half Total Error Rate (
HTER = 1

2 (FAR(∆) + FRR(∆)) ) and the Expected Performance Curve (EPC) (Bengio et
al. 2005), which depicts the evaluation set HTER as a function of a trade-off parameterα.
The latter defines a decision threshold, computed on the development set, by minimizing the
following convex combination of development FAR and FRR:

∆∗ = argmin
∆

(
α · FAR(∆) + (1− α) · FRR(∆)

)
. (12.10)

We will provide confidence intervals around HTER and EPC. In this chapter, we report
confidence intervals computed at the 5% significance level, using an adapted version of the
standard proportion test (Bengio and Mariéthoz 2004).

12.4.3 NIST Data

The NIST database is a subset of the database that was used forthe NIST 2005 and 2006
Speaker Recognition Evaluation, which comes from the second release of the cellular switch-
board corpus (Switchboard Cellular - Part 2) of the Linguistic Data Consortium. This data
was used as development and evaluation sets while the training (negative) examples come
from previous NIST campaigns. For both development and evaluation clients, there are about
2 minutes of telephone speech available to train the models and each test access was less than
1 minute long. Only male speakers were used. The developmentpopulation consisted of 264
speakers, while the evaluation set contained 349 speakers.219 different records were used as
negative examples for the discriminant models. The total number of accesses in the develop-
ment population is 13596 and 22131 for the evaluation set population with a proportion of
10% of true target accesses.

12.4.4 Pre-Processing

To extract input features, the original waveforms are sampled every 10ms with a window
size of 20ms. Each sentence is parameterized using 24 triangular band-pass filters with a
DCT transformation of order 16, complemented by their first derivative (delta) and the10-
th second derivative (delta-delta), the log-energy, the delta-log-energy and delta-delta-log-
energy, for a total of 51 coefficients. The NIST database being telephone-based, the signal is
band-pass filtered between 300 and 3400 Hz.

A simple silence detector, based on a two-components Gaussian mixture model, is used
to remove all silence frames. The model is first learned on a random recording with land line
microphone and adapted for each new sequence using the MAP adaptation algorithm. The
sequences are then normalized in order to have zero mean and unit variance on each feature.

While the log-energy is important in order to remove the silence frames, it is known to be
inappropriate to discriminate between clients and impostors. This feature is thus eliminated
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after silence removal, while its first derivative is kept. Hence, the speaker verification models
are trained with 50 (51-1) features.

12.5 Kernels for Speaker Verification

One particularity of speaker verification is that patterns are sequences. An SVM based
classification thus requires a kernel handling variable size sequences. Most solutions pro-
posed in the literature use a procedure that converts the sequences into fixed size vectors
that are processed by a linear SVM. Other sequence kernels allow embeddings in infinite-
dimensional feature spaces (Mariéthoz and Bengio 2007). However, compared to the main-
stream approach, this type of kernels is computationally too demanding for long sequences.
It will not be applied here, since the NIST database containslong sequences.

In the following we describe several approaches using sequence kernels. The most
promising are then compared in Section 12.8.

12.5.1 Mean Operator Sequence Kernels

For kernel methods, a simple approach to tackle variable length sequences considers the
following kernel between two sequences:

K(x̄i, x̄j) =
1

TiTj

Ti∑

t=1

Tj∑

u=1

k(xt
i,x

u
j ) , (12.11)

where we denote byK(·, ·) a sequence kernel,̄xi is a sequence of sizeTi andxt
i is a frame

of x̄i. We thus apply a frame-based kernelk(·, ·) to all possible pairs of frames coming from
the two input sequences̄xi andx̄j .

As the kernelK represents the average similarity between all possible pairs of frames, it
will be referred to as the mean operator sequence kernel. This kind of kernel has been applied
successfully in other domains such as object recognition (Boughorbel et al. 2004). Provided
thatk(·, ·) is positive-definite, the resulting kernelK(·, ·) is also positive-definite.

The sequences in the NIST database typically consist of several thousands of frames,
hence the double summation in (12.11) is very costly. As the number of operations for
each sequence kernel evaluation is proportional to the product of sequence lengths, such
a computation typically requires an order of the million of operations. We thus will con-
sider factorizable kernelsk(·, ·), such that the mean operator sequence kernel (12.11) can be
expressed as follows:

K(x̄i, x̄j) =
1

TiTj

Ti∑

t=1

Tj∑

u=1

φ(xt
i) · φ(xu

j )

=

[
1

Ti

Ti∑

t=1

φ(xt
i)

]
·
[

1

Tj

Tj∑

u=1

φ(xu
j )

]
. (12.12)

When the dimension of the feature space is not too large, computing the dot product explicitly
is not too demanding, and replacing the double summation by two single ones may result in
a significant reduction of computing time.
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Explicit polynomial expansions have been used in Campbell (2002); Campbell et al.
(2006a); Wan and Renals (2003). In practice, the average feature vectors within brackets
in (12.12) are used as input to a linear SVM. The GLDS (Generalized Linear Discriminant
Sequence) kernel of Campbell departs slightly from a raw polynomial expansion, by using a
normalization in the feature space:

K(x̄i, x̄j) =
1

TiTj
Φ(x̄i)Γ

−1Φ(x̄j) , (12.13)

whereΓ defines a metric in the feature space. Typically, this is a diagonal approximation of
the Mahalanobis metric, that is,Γ is a diagonal matrix whose diagonal elementsγk are the
empirical variances2 for each feature, computed over the training data.

The polynomial expansion sendsd-dimensional frames to a feature space of dimension
(d+ p)!/d!p!− 1, wherep is the degree of the polynomial. With our50 input features,
and for a polynomial of degreep = 3, the dimension of the feature space is23426. For
higher polynomial degrees and for other feature space of higher dimension, the computational
advantage of the decomposition (12.12) disappears, and it is better to use explicit kernel in
the form (12.11). We empirically show below that, for the usual representation of frames
described in Section 12.4.4, the GLDS normalization in (12.13) is embedded in the standard
polynomial kernel.

Let us definek(xi,xj) as a polynomial kernel of the form(xi · xj + 1)p, wherep is
the degree of the polynomial. After removing the constant term, the explicit expansion of
this standard polynomial kernel involves(d+ p)!/d!p!− 1 terms that can be indexed by
r = (r1, r2, ..., rd), such that

φr(x) =
√
crx

r1
1 x

r2
2 ...x

rd

d ,

where
d∑

i=1

ri = p , ri ≥ 0 , and cr =
p!

r1!r2!...rd+1!
.

In the above equations,
√
cr has exactly the same role as the1/

√
γk coefficients on the

diagonal ofΓ−1/2 in Equation (12.13). In Figure 12.2, we compare these coefficient values,
where the normalization factors1/

√
γk are estimated on two real datasets, after a polyno-

mial expansion of degree 3. The values are very similar, withhighs and lows on the same
monomial. In fact, the performance of the two approaches obtained on the development set
of NIST are about the same, as shown by the DET curves given in Figure 12.3.

Even if this approach is simple and easy to use, the accuracy can be improved by intro-
ducing priors. In fact, to train a client model very few positive examples are available. Thus,
if we can put pieces of information collected on large set of speakers into the SVM model,
as done for the GMM system, we can expect an improvement. One can for example try to
include the world model in the kernel function as proposed inthe next Section.

12.5.2 Fisher Kernels

Jaakkola and Haussler proposed a principled means for building kernel functions from gen-
erative models: the Fisher kernel (Jaakkola and Haussler 1998). In this framework, which

2The constant feature is removed from the feature space priorto normalization.
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Figure 12.2 Coefficient values of polynomial terms, as computed on two different datasets
(Banca and PolyVar), compared to theck polynomial coefficients.

has been applied to speaker verification by Wan and Renals (2005a), the generative model is
used to specify the similarity between pairs of examples, instead of the usual practice where
it is used to provide a likelihood score, which measures how well the example fits the model.
Put it another way, a Fisher kernel utilizes a generative model to measure the differences
in the generative process between pairs of examples insteadof the differences in posterior
probabilities.

The key ingredient of the Fisher kernel is the vector of Fisher scores:

ux̄ = ∇θ log p(x̄|θ) ,

whereθ denotes here the parameters of the generative model, and∇θ is the gradient with
respect toθ . The Fisher scores quantify how much each parameter contributes to the gener-
ation of examplēx.

The Fisher kernel itself is given by:

K(x̄i, x̄j) = ux̄i

T I(θ)−1ux̄j
, (12.14)

whereI(θ) is the Fisher information matrix atθ , that is, the covariance matrix of Fisher
scores:

I(θ) = Ex̄(ux̄ux̄
T ) , (12.15)

where we used thatEx̄(ux̄) = 0. The Fisher kernel (12.14) can thus be interpreted as a
Mahalanobis distance between two Fisher scores.
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Figure 12.3 DET curves on the development set of the NIST database comparing the explicit
polynomial expansion (noted as “GLDS kernelp = 3 in the legend), and the principled poly-
nomial kernel (noted “Polynomial kernelp = 3”).

Another interpretation of the Fisher kernel is based on the representation of a parametric
class of generative models as a Riemannian manifold (Jaakkola and Haussler 1998). Here, the
vector of Fisher scores defines a tangent direction at a givenlocation, that is, at a given model
parameterized byθ. The Fisher information matrix is the local metric at this given point,
which defines the distance between the current modelp(x̄|θ) and its neighborsp(x̄|θ + δ).
The (squared) distanced(θ ,θ + δ) = 1

2δ
T Iδ approximates the Kullback-Leibler divergence

between the two models. Note that, unlike the Kullback-Leibler divergence, the Fisher kernel
(12.14) is symmetric. It is also positive-definite since theFisher information matrixI(θ) is
obviously positive-definite atθ .

Fisher Kernels for GMMs

In the MAP framework, the family of generative models we consider is the set of Gaus-
sian mixtures (12.4) that differ in their mean vectorsµm. Hence, a relevant dissimilar-
ity between examples will be measured by the Fisher scores computed on these vectors
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ux̄ = (∇T
µ1

log p(x̄|θ), . . . ,∇T
µM

log p(x̄|θ))T , where

∇µm
log p(x̄|θ) =

T∑

t=1

∇µm
log

M∑

m′=1

πm′ N (xt|µm′ ,σm′)

=
T∑

t=1

P (m|xt)∇µm

(
−1

2
(xt − µm)T Σ−2

m (xt − µm)

)

=
T∑

t=1

P (m|xt)Σ−2
m (xt − µm) . (12.16)

Using definition (12.15), the Fisher information matrix canbe expressed block-wise, with
M ×M blocks of sized× d:

I = (Im,m′)1≤m≤M,1≤m′≤M ,

with

Im,m′ = Ex̄

[ T∑

t=1

T∑

u=1

P (m|xt)P (m′|xu)Σ−2
m (xt − µm)(xu − µm′)T Σ−2

m′

]
. (12.17)

There is no simple analytical expression of this expectation, due, among other things, to the
productP (m|xt)P (m′|xu). Hence, several options are possible:

I. ignore the information matrix in the computation of the Fisher kernel (12.14). This
option, mentioned by Jaakkola and Haussler as a simpler suitable substitute, is often
used in the application of Fisher kernels;

II. approximate the expectation in the definition of Fisher information by Monte Carlo
sampling.

III. approximate the productP (m|xt)P (m′|xu) by a simpler expression in (12.17). For
example, if we assume that the considered GMM performs hard assignments of
frames to mixture components, thenP (m|xt)P (m′|xu) is null if m 6= m′. Further-
more, this product is also null form = m′ whenxt or xu is generated from another
component of the mixture distribution, otherwise, we haveP (m|xt)P (m′|xu) = 1.
Let gm denote the function such thatgm(x,y) = Σ−2

m (x− µm)(y − µm′)TΣ−2
m′ if

P (m|x) = P (m|y) = 1 andgm(x,y) = 0 otherwise. With this notation and the above
approximations, (12.17) reads

Im,m′ ≃ 0 if m 6= m′

Im,m ≃ Ex̄

[ T∑

t=1

T∑

u=1

gm(xt,xu)
]

≃ Ex [gm(x,x)] ET [T ]

≃ Σ−2
m ET [T ] .

The unknown constantET [T ] is not relevant and can been dropped from the imple-
mentation of this approximation to the Fisher kernel.
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We now introduce some definitions with the following scenario. Suppose that we
trained the GMM world model on a large set of speakers, resulting in parametersθ0 =
{µ0

m,σm, πm}Mm=1. We then use this GMM as an initial guess for the model for client si.
If, as in the MAP framework, the client model differs from theworld model in the mean
vector only, then, after one EM update, the training sequence x̄i will result in the following
estimates

µi
m =

1

ni,m

Ti∑

t=1

xt
iP (m|xt

i) ,

where ni,m =

Ti∑

t=1

P (m|xt
i) .

Hence,ni,m is the effective number of frames used to computeµi
m, that is, the sum of the

membership of all frames of̄xi to componentm. These definitions ofµi
m andni,m are

convenient for expressing Fisher scores, when the reference generative model is the world
model parameterized byθ0

∇µm
log p(x̄i|θ)

∣∣
θ=θ0

= Σ−2
m

Ti∑

t=1

P (m|xt
i) (xt

i − µm)

= ni,mΣ−2
m (µi

m − µ0
m) . (12.18)

With the approximations of the Fisher information discussed above, the kernel is
expressed as:

I. for the option where the Fisher information matrix is ignored:

K(x̄i, x̄j) = uT
x̄i

ux̄j

=

M∑

m=1

(
ni,mΣ−2

m (µi
m − µ0

m)
)T (

nj,mΣ−2
m (µj

m − µ0
m)
)

II. for the option where the Fisher information matrix is approximated by Monte Carlo
integration: here, for computational reasons, we only consider a block-diagonal
approximation̂I, where

Î = (̂Im,m′)1≤m≤M,1≤m′≤M ,

with

Îm,m′ = 0 if m 6= m′

Îm,m =
1

n

∑

t

P (m|xt)2Σ−2
m (xt − µ0

m)(xt − µ0
m)TΣ−2

m ,

wheren is the number of random draws ofxt generated from the world model.

We then have:

K(x̄i, x̄j) =

M∑

m=1

(
ni,mΣ−2

m (µi
m − µ0

m)
)T

Î−1
m,m

(
nj,mΣ−2

m (µj
m − µ0

m)
)
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Figure 12.4 DET curves on the development set of the NIST database comparing the three
different approximations of the Fisher information matrix.

III. for the option where the Fisher information matrix is approximated analytically

K(x̄i, x̄j) =
M∑

m=1

(
ni,mΣ−1

m (µi
m − µ0

m)
)T (

nj,mΣ−1
m (µj

m − µ0
m)
)

These three variants of the Fisher kernel are compared in Figure 12.4, which compares
the DET curves obtained on the development set of the NIST database. The three curves
almost overlap, confirming that ignoring the information matrix in the Fisher kernel is not
harmful in our setup.

12.5.3 Beyond Fisher Kernels

The previous experimental results confirm that the main ingredient of the Fisher kernel is the
Fisher score. The latter is based on a probabilistic model viewed through the log-likelihood
function. We can depart from the original setup described above, by using other models
and/or score. Some alternative approaches has been alreadyinvestigated, for example Wan
and Renals (2005b), uses scores based on a log likelihood ratio between the world model
and the adapted client model. We describe below a very simplemodification of the scoring
function that brings noticeable improvements in performances.
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Table 12.1 EERs (the lower the better) on the development set
of the NIST database, comparing Fisher kernel (approximation
3), the normalized Fisher kernel.

Fisher Normalized Fisher

EER (%) 9.3 8.2
95% confidence ±0.9 ±0.8
# Support Vectors 37 32

Normalized Fisher Scores

We saw in Section 12.2.2 that the scores used for classifyingexamples are normalized, in
order to counterbalance the exponential decrease of likelihoods with sequence lengths. Using
the normalized likelihood leads to the following Fisher-like kernel

K(x̄i, x̄j) =
1

Ti Tj
uT

x̄i
ux̄j

=

M∑

m=1

(
ni,m

Ti
Σ−2

m (µi
m − µ0

m)

)T (
nj,m

Tj
Σ−2

m (µj
m − µ0

m)

)

Here also, one may consider several options for approximating the Fisher information matrix,
but the results displayed in Figure 12.4 suggest it is not worth pursuing this road further.
Table 12.1 and Figure 12.5 compare empirically the Fisher kernel (approximation 3) with
the normalized Fisher kernel. Including a normalization seems have a positive impact on the
accuracy. Thus other kind of scores should be explored.

GMM Supervector Linear Kernel

The Fisher kernel is a similarity based on the differences inthe generation of examples. In this
matter, it is related to the GMM Supervector Linear Kernel (GSLK) proposed by Campbell
et al. (2006b).

The GSLK approximates the Kullback-Leibler divergence that measures the dissimilarity
between two GMMs, each of one being obtained by adapting the world model to one example
of the pair(x̄i, x̄j). Hence, instead of looking at how a single generative process differs for
each example of the(x̄i, x̄j) pair, GSLK looks at the difference between pairs of generative
models. The GSLK is given by:

K(x̄i, x̄j) =

M∑

m=1

(√
πmΣ−1

m

(
τi,mµ

i
m + (1− τi,m)µ0

m

))T ·

(√
πmΣ−1

m

(
τj,mµ

j
m + (1 − τj,m)µ0

m

))
,

whereτi,m is the adaptation factor for the mixture componentm adapted with sequencēxi,
as defined in Equation (12.5). The MAP relevant factorr is chosen by cross-validation, as in
GMM based text-independent speaker verification systems (Reynolds et al. 2000).
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Figure 12.5 DET curves on the development set of the NIST database for Fisher kernel
(approximation 3) and normalized Fisher kernel.

Table 12.2 EERs (the lower the better) on the development
set of the NIST database, comparing GSLK and the normalized
Fisher kernel.

GSLK Normalized Fisher

EER (%) 7.9 8.2
95% confidence ±0.8 ±0.8
# Support Vectors 34 32

The Fisher kernel and GSLK are somewhat similar scalar products, with the most notice-
able difference being that the Fisher similarity is based ondifference from the referenceµ0

whereas the GSLK kernel above is based on a convex combination of the observations and the
referenceµ0 that has no obvious interpretation. Both are an approximation of the KL diver-
gence as mentioned in Section 12.5.2. The difference is thatGSLK compare two adapted
distributions when the Fisher kernel compare the world model to the updated model using
the access data.

Table 12.2 and Figure 12.6 compare empirically GSLK with thenormalized Fisher ker-
nel. There is no significant difference between GSLK and the normalized Fisher kernel.
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Figure 12.6 DET curves on the development set of the NIST database for GSLK and nor-
malized Fisher kernel.

12.6 Parameter Sharing

The text-independent speaker verification problem is actually a set of several binary clas-
sification problems, one for each client of the system. Although few positive examples are
available for each client, the overall number of available positive examples may be large.
Hence, techniques that share information between classification problems should be benefi-
cial. We already mentioned such a technique: the MAP adaptation scheme that trains a single
world model on a common data set, and uses it as a prior distribution over the parameters to
train a GMM for each client. Here, the role of the world model is to bias each client model
towards a reference speaker model. This bias amounts to a soft sharing of parameters.

Additional parameter sharing techniques are now used in discriminant approaches. In the
following, we discuss one of them, theNuisance Attribute Projection(NAP).

12.6.1 Nuisance Attribute Projection

The Nuisance Attribute Projection(NAP) approach (Solomonoff et al. 2004) looks for a
linear subspace such that similar accesses (that is, accesses coming from the same client or
from the same channel, etc) are near each others. In order to refrain from finding an obvious
bad solution, the dimension of the target subspace is controlled by cross-validation. This
transformation is learned on a large set of clients (similarly to learning a generic GMM in the
generative approach). After this step is performed, a standard linear SVM is usually trained
for each new client over the transformed access data. This approach provided very good
performance in recent NIST evaluations.
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More specifically, assume each access sequencex̄ is mapped into a fixed-size feature
space through some transformationΦ(x̄) such as the one used in the GLDS kernel. Let
Wc be a proximity matrix encoding, for each pair of accesses(x̄i, x̄j), that these sequences
were recorded over the same channel (W c

i,j = 0) or not (W c
i,j = 1). The NAP approach then

consists in finding a projection matrixP⋆ such that

P⋆ = argmin
P

∑

i,j

W c
i,j‖P(Φ(x̄i)− Φ(x̄j))‖2 (12.19)

among orthonormal projection matrices of a given rank. Hence P⋆ minimizes the average
difference between accesses from differing channels, in the feature space. Similarly, a sec-
ond matrixWs could encode the fact that two accesses come from the same speaker. A
combination between these prior knowledge could be encodedas follows

W = αWc − γWs , (12.20)

with α andγ hyper-parameters to tune, andP⋆ found to minimize equation (12.19) withW
instead ofWc.

As stated earlier,P⋆ is then used to project each accessΦ(x̄) into a feature subspace
where, for each client, a linear SVM is used to discriminate client and impostor accesses. As
shown in Table 12.3 and Figure 12.7, NAP brings significant improvement when combined
with the GSLK kernel. On the other hand, the number of supportvectors grows also signifi-
cantly. This can be interpreted that now all accesses are in the same space and are independent
to the channel and thus more training impostors are good candidates.

Table 12.3 EERs (the lower the better) on the development
set of the NIST database, comparing an SVM classifier with
GSLK with and without NAP (polynomial kernel of degree
3).

GSKL GSLK with NAP

EER (%) 7.9 5.8
95% confidence ±0.8 ±0.6
# Support Vectors 34 59

Although the approach has shown to yield very good performance results, we believe
that there is still room for improvements, sinceP⋆ is not selected using the criterion that is
directly related to the task. Minimizing the average squared distance between accesses of the
same client (or accesses of different channel) is likely to help classification, but it would also
be relevant to do something about accesses from different clients, such as moving them away
for instance.
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Figure 12.7 DET curves on the development set of the NIST database with GSLK with and
without NAP.

12.6.2 Other Approaches

Another recent approach that also goes in the same directionand that obtains state-of-the-art
performance similar to the NAP approach is the Bayesian Factor Analysis approach (Kenny
et al. 2005). In this case, one assumes that the mean vector ofa client model is a linear
combination of a generic mean vector, the mean vector of the available training data for that
client, and the mean vector of the particular channel used inthis training data. Once again,
the linear combination parameters are trained on a large amount of access data, involving a
large amount of clients. While this approach is nicely presented theoretically (and obtains
very good empirical performance), it still does not try to find the optimal parameters of client
models and linear combination by taking into account the global cost function.

Another very promising line of research that has emerged in machine learning relates
to the general problem of learning a similarity metric (Chopra et al. 2005; Lebanon 2006;
Weinberger et al. 2005). In this setting, where the learningalgorithm relies on the comparison
of two examples, one can set aside some training examples to actually learn what would be
a good metric to compare pairs of examples. Obviously, in theSVM world, this relates to
learning the kernel itself (Crammer et al. 2002; Lanckriet et al. 2004).

In the context of discriminant approaches to speaker verification, none of these tech-
niques have been tried, to the best of our knowledge. Using a large base of accesses for
which one knows the correct identity, one could for instancetrain a parametric similarity
measure that would assess whether two accesses are coming from the same person or not.
That could be done efficiently by stochastic gradient descent using a scheme similar to the
so-calledSiamese neural network(Chopra et al. 2005) and a margin criterion with proximity
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constraints.

12.7 Is the Margin Useful for this Problem?

The scarcity of positive training examples in speaker verification explains the great improve-
ments that pertain to parameter sharing techniques. In thissection, we question whether this
specificity also hinders large margin methods to improve upon more simple approaches.

The K-Nearest Neighbors (KNN) algorithm (Duda and Hart 1973) is probably the sim-
plest and the most known non-parametric classifier. Insteadof learning a decision bound-
ary, decisions are computed on-the-fly for each test access,by using thek nearest labelled
sequences in the database as “experts”, whose votes are aggregated to make up the decision
on the current access.

In the weighted KNN (Dudani 1986) variant, the votes of the nearest neighbors are
weighted according to their distance to the query:

f(x̄j) =
k∑

i=1

yiwi ,with wi =

{
1 if d(j, k) = d(j, 1)
d(j,k)−d(j,i)
d(j,k)−d(j,1) otherwise,

(12.21)

where the sum runs over thek neighbors of the querȳxj , yi ∈ {−1, 1} determines whether
the neighbor’s access is from a client (yi = 1) or an impostor (y1 = −1), andd(j, i) is the
distance from̄xj to its i-th neighbor.

One can then use kernels to define distances, as follows:

d(i, j) =
√
K(x̄i, x̄i)− 2K(x̄i, x̄j) +K(x̄j , x̄j) , (12.22)

but it is often better to normalize the data also in the feature space so that they have unit
norm, as follows,

Knorm(x̄i, x̄j) =
K(x̄i, x̄j)√

K(x̄i, x̄i) K(x̄j , x̄j)
, (12.23)

which leads to the final distance measure used in the experiments:

dnorm(i, j) =

√
2− 2

K(x̄i, x̄j)√
K(x̄i, x̄i) K(x̄j , x̄j)

. (12.24)

Table 12.4 and Figure 12.8 compares the normalized Fisher score with NAP approach
followed by either an SVM or a KNN, and as can be seen, the KNN approach yields sim-
ilar if not better performance than the SVM approach. Furthermore, the KNN has several
advantages with respect the SVMs: there is no training session, KNN can easily approximate
posterior probabilities and do not rely on potentially constraining Mercer conditions to work.
On the other hand, the test session might be longer as finding nearest neighbors needs to be
efficiently implemented.
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Figure 12.8 DET curves on the development set of the NIST database comparing Fisher
normalized kernel with NAP for KNN and SVM.

Table 12.4 EERs (the lower the better) on the development
set of the NIST database, comparing the Fisher normalized
kernel with NAP (250) for KNN and SVM.

SVM KNN

EER (%) 6.7 5.3
95% confidence ±0.7 ±0.7
# Support Vectors 47 -

12.8 Comparing All Methods

As a final experiment, we have compared all the proposed approaches and now report the
results on the evaluation set. Figure 12.9 compares a state-of-the-art diagonal GMM with an
SVM using a GSLK kernel with NAP, and also with a KNN based on the normalized Fisher
kernel with NAP.

In this experiment, the following set of hyper-parameters were tuned according to the
EER obtained on the development set:

• the number of neighborsK in the KNN approach, was varied between 20 and 200,
with optimal value: 100;
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• the size ofP, the transformed space in NAP for the GSLK kernel, was variedbetween
40 and 250, with optimal value: 64;

• the size ofP, the transformed space in NAP for the Fisher kernel, was varied between
40 and 400, with optimal value: 250;

• the number of Gaussians in the GMM used for the GSLK and Fisherkernel approaches
was varied between 100 and 500, with optimal value: 200;

• all other parameters of the state-of-the-art diagonal GMM baseline were taken from
previously published experiments.

The GMM yields the worst performance, probably partly because no channel compensa-
tion method is used (while the others use NAP). KNN and SVM performances do not differ
significantly, hence the margin does not appear to be at all necessary for speaker verification.

Figure 12.9 Expected Performance Curve (the lower, the better) on the evaluation set of the
NIST database comparing GMM with T-norm, SVM with a GSLK kernel and NAP, SVM
Fisher normalized kernel with NAP and KNN with a Fisher normalized kernel with NAP.
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Table 12.5 Final results on the evaluation set of the NIST database

GMM SVM GSKL NAP KNN Normalized
Fisher NAP

HTER (%) 10.2 5.4 5.5
95% Conf. ±0.7 ±0.5 ±0.5

12.9 Conclusion

In this chapter, we have presented the task of text independent speaker verification. We have
shown that the traditional method to approach this task is through a generative approach
based on Gaussian Mixture Models.

We have then presented a discriminative framework for this task, and presented several
recent approaches in this framework, mainly based on Support Vector Machines. We have
presented various kernels adapted to the task, including the GLDS, GSLK and Fisher kernels.
While many of the proposed kernels in the literature were proposed in some heuristic way,
including the GLDS and GSLK kernels, we have shown the relation between the principled
polynomial kernel and the GLDS kernel, as well as the relation between the principled Fisher
kernel and the GSLK kernel. We have then shown that in order for SVMs to perform at a
state-of-the-art level, parameter sharing in one way or another was necessary. Approaches
such as NAP or Bayesian Factor Analysis were designed for that purpose and indeed helped
SVMs to reach better performance.

Finally, we have questioned the main purpose of using SVMs, which maximize the mar-
gin in the feature space. We have tried instead a plain KNN approach, which yielded similar
performance. This simple experiment shows that future research should concentrate more on
better modelling of the distance measure, rather than on maximizing the margin.

A drawback of the current approaches is that they are made of various blocks (fea-
ture extraction, feature normalization, distance measure, etc) which were all trained using
a separate ad-hoc criterion. Ultimately, a system that would train all these steps in a sin-
gle framework to optimize the final objective should performbetter, but more research is
necessary to reach that goal.

In order to foster more research in this domain, an open-source version of the C++ source
code used to performed all experiments described in this chapter have been made available
at http://speaker.abracadoudou.com .
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