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The goal of a person authentication system is to autheattbatclaimed identity of a user.
When this authentication is based on the voice of the usénpwi respect of what the user
exactly said, the system is called a text-independent speakification system.

Speaker verification systems are increasingly often useddore personal information,
particularly for mobile phone based applications. Furnthene, text-independent versions of
speaker verification systems are the most used for theirlisitypas they do not require
complex speech recognition modules. The most common apipttoathis task is based on
Gaussian Mixture Models (GMMs) (Reynolds et al. 2000), whilo not take into account
any temporal information. GMMs have been intensively usethks to their good perfor-
mance, especially with the use of the Maximum A PosterioriA@ (Gauvain and Lee
1994) adaptation algorithm. This approach is based on thsitgeestimation of an impostor
data distribution, followed by its adaptation to a specifiertt data set. Note that the estima-
tion of these densities is not the final goal of speaker vatifin systems, which is rather to
discriminate the client and impostor classes; hence discétive approaches might appear
good candidates for this task as well.

As a matter of fact, Support Vector Machine (SVM) based systbave been the sub-
ject of several recent publications in the speaker veriicatommunity, in which they
obtain similar to or even better performance than GMMs oesdvext-independent speaker
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verification tasks. In order to use SVMs or any other disanamit approaches for speaker
verification, several modifications from the classical téghes need to be performed. The
purpose of this chapter is to present an overview of discrami approaches that have been
used successfully for the task of text-independent spaagkdication, to analyze their differ-
ence and their similarities with each other and with cladgienerative approaches based on
GMMs. An open-source version of the C++ source code usedrforpeed all experiments
described in this chapter can be foundhtip://speaker.abracadoudou.com

12.1 Introduction

Person authentication systems are in general designedén tr let genuine clients access
a given service while forbidding it to impostors. This candeen as a 2-class classification
problem suitable for machine learning approaches.

A number of specificities make speaker verification difféfesm a standard binary clas-
sification problem. First, the input data are sentences &fegyths depend on its phonetic
content and the speaking rate of the underlying speaker.

Second, only few client training examples are availablenost real application, it is not
possible to ask a client to speak during several hours or idagsler to capture the entire
variability of his/her voice. There are typically betweemecand three utterances for each
client.

Third, the impostor distribution is not known and even noliwefined: we have no idea
of what an impostor is in a “real” application. In order to sil@te impostor accesses, one
usually considers other speakers in the database. Thisago® is somewhat remedied by
evaluating the models with impostor identities that areawailable when creating the mod-
els. This incidentally means that plenty of impostor acessse usually available, often more
than 1000 times the number of client accesses, which makewdiblem highly unbalanced.

The distribution of impostors being only loosely defineds tirior probability of each
class is unknown, and the cost of each type of error is usnalijknown beforehand. Thus,
one usually selects a model that gives reasonable perfaerianseveral possible cost trade-
offs.

Finally, the recording conditions change over time. Theakpecan be located in several
kinds of places: office, street, train station, etc. The ckevised to perform the authentica-
tion can also change between authentication attemptslilEmghone, mobile phone, laptop
microphone, etc.

That being said, the problem of accepting or rejecting somaisadentity claim can be
formally stated as a binary classification task. &die a set of clients ang € S be thei-th
client of that set. We look for a discriminant functiofi(-; ;) and a decision thresholt
such that

fx;9) > A, (12.1)

if and only if sentenc& was pronounced by speakgr

The parameters#; are typically determined by optimizing an empirical crider com-
puted on a set af; sentences, either called the training or the learning set {(x;, yl)}f;'l,
wherex; € R*>Tt is an input waveform sequence encodedjag-dimensional frames, and
yi € {—1, 1} is the corresponding target, wherestands for for a true client sequence and
—1 for an impostor access. The search space is defined as tHdsattons f : R<7t — R
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parameterized by};, and; is identified by minimizing the mean loss on the training set,
where the losg(-) returns low values whefi(x; ;) is neary and high values otherwise:

;= arg min Z Lf(x;0),y) .
(%,y)€L;

Note that the overall goal is not to obtain zero errorfrbut rather on unseen examples
drawn from the same probability distribution. This objeetis monitored by measuring the
classification performance on an independent testZsen order to provide an unbiased
estimate of performance on the population.

A standard taxonomy of machine learning algorithms setstafscriminant models,
that directly estimate the functiof{(-; 13;), from generative models, whefé:; 1) is defined
through the estimation of the conditional distribution efjsences knowing the speaker. We
briefly present hereafter the classical generative appribet encompasses the very popular
Gaussian Mixture Model (GMM), which will provide a baselimethe experimental section.
All the other methods presented in this chapter are keras¢t systems that belong to the
discriminative approach.

12.2 Generative Approaches

The state-of-the-art generative approaches for speakificagon use atypical models in the
sense that they do not model the joint distribution of inguits outputs. This is due to the fact
that we have no clue of what the prior probability of havinguets; speaking should be, since
the distribution of impostors is only loosely defined and pheportion of client accesses in
the training set may not be representative of the propoitidature accesses. Although the
model is not complete, a decision function is computed ugiagationale described below.

12.2.1 Rationale

The system has to decide whether a sent&nwas pronounced by speaksgror by any other
personsg. It should accept a claimed speaker adi@antif and only if:

P(S”i) > OéiP(So|5() R (122)
whereq; is a trade-off parameter that accounts for the loss of false@ance of an impostor

access versus false rejection of a genuine client access.
Using Bayes theorem, we rewrite (12.2) as follows:

p(X[s:) P(s0)
pxlso) ~ M PGs)
whereA\; is proportional to the ratio of the prior probabilities ofibg or not being the client.
This ratio being unknown); is replaced by a client independent decision threshol@his
corresponds to having different (unknown) settings fortthde-off parameters;.
The left ratio in (12.3) plays the role ¢f(x; ;) in (12.1), where the set of parameters
1, is decomposed as follows:

=A=A, (12.3)

p(x|si, 6:)

f(&:9:) = p(X|s0,60)

3



200 KERNEL BASED TEXT-INDEPENDNENT SPEAKER VERIFICATION

with ¢; = {0;,60,}. The loss function used to estima#tg is the negative log-likelihood

00 = argmeln Z - 1ng(x|807 0) )
(Ry)eLy

whereL; is the subset of pair&, y) in the learning set; for whichy = —1. As generally
few positive examples are available, the loss function tigedtimated; is based on a Max-
imum A Posteriori (MAP) adaptation scheme (Gauvain and 1934) and can be written as
follows:

0, —arguyn 30 —og(p(xlsi. 0)00))

®yeLs

whereL} is the subset of pair&, y) in £; for whichy = 1. This MAP approach puts some
prior on € to constrain these parameters to some reasonable valupgadtice, they are
constrained to be ne#, which represents reasonable parameters for any unknowarpe
See for instance Reynolds et al. (2000) for a practical implatation.

12.2.2 Gaussian Mixture Models

State-of-the-art systems compute the density of a senfehga rough estimate that assumes
independence of thE frames that encode. The density of the frames themselves is assumed
to be independent of the sequence length, and is estimated@aussian Mixture Model
(GMM) with diagonal covariance matrices, as follows:

p(x[s.0) = P(T)p

—~

X|T,s,0)

=

= (1) [ p(xIT, 5.0)

~~
Il
-

o

=P(T) ]| p(x'l5.0)

~
Il

1

=

M
=P [ D] mN & [ om) (12.4)
m=1

t

1

whereP(T) is the probability distributiort of the length of sequence x? is thet-th frame
of x, and M is the number of mixture components. The paramelecsmprise the means
{p,, }M_,, standard deviationko,,,} M_,, and mixing weight~,,}¥_, for all Gaussian
components. The Gaussian density is defined as follows:

X|p, o :*ex —lx— Ts=2(x —
N ) = o (50 S o)

whered is the dimension ok, 3 is the diagonal matrix with diagonal elemenlg = o,
and|X| denotes the determinant B,

1Under the reasonable assumption that the distributiongmteace length are identical for each speaker, this
distribution does not play any discriminating role and cardft unspecified.
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As stated in the previous section, we first train an impostodehp(x|sg, 8y), called
world or universal background modelhen it is common to all speakess For this purpose,
we use the Expectation-Maximization (EM) algorithm to nmaize the likelihood of the
negative examples in the training set. Note that in ordebtaia state-of-the-art performance,
the variances of all Gaussian components are constraintsel iigher than some threshold,
normally selected on a separate development set. Thisggoakten calledariance flooring
(Melin et al. 1998), can be seen as a way to control the cgpafihe overall model.

For each client;, we use a variant of MAP adaptation (Reynolds et al. 20003 tionate
a client modep(x|s;, 0;) that only departs partly from the world modgl |sq, 89). In this
setting, only the mean parameters of the world model aretaddp each client, using the
following update rule:

lj’in = Ti,m ﬁ:n + (1 - Ti,m)p/?n ’

wherep!) is the vector of means of Gaussianof the world modelﬁin is the corresponding
vector estimated by maximum likelihood on the sequenceitasa for clients;, andr; is
the adaptation factor that represents the faith we haveeigltant data. The latter is defined
as follows (Reynolds et al. 2000):

where 7, ,,, = _Mim (12.5)
’ Nim + 7T

wheren;, ., is the effective number of frames used to comp@ig that is, the sum of mem-
berships to component for all the frames of the training sequence(s) uttered bsntk;
(see Section 12.5.2 for details). The MAP relevant fagtisrchosen by cross-validation.

Finally, when all GMMs have been estimated, one can ingttn(iL2.3) to take a decision
for a given access as follows:

T M ;
1 m= Wmet;Hinvo'm
T E log ZM_l ( ) >log A,
t=1

Yot T N (xE; ), 0m)

where@y = {1, 0., 7 }M_, are the GMM parameters for the world model, ahd=

{pi,, om, mm}M_, are the GMM parameters for the client model. Note thatloes not
follow from (12.3) and is an empirical normalization factafded to yield a thresholN that
is independent of the length of the sentence.

12.3 Discriminative Approaches

Support Vector Machines (SVMs) (Vapnik 2000) are now a saadhdbol in numerous appli-
cations of machine learning, such as in text or vision (Jwmas2002; Pontil and Verri 1998).
While GMM is the mainstream generative model in speakeffication, SVMs are prevail-
ing in the discriminative approach. This section providdmaic description of SVMs that
introduces the kernel trick that relates feature expamssiorkernels, on which will focus in
Section 12.5.
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12.3.1 Support Vector Machines

In the context of binary classification problems, the SVMisien function is defined by the
sign of
fx9)=w-d(x)+0b , (12.6)

wherex is the current exampl@ = {w, b} are the model parameters ab@) is a mapping,
chosen “a priori”, that associates a possibly high dimeraliteature to each input data.
The SVM training problem consists in solving the followingpplem:

L
(w*, %) =arg min £ [wl?+C Y&
(wb) 2 = (12.7)
S.t. yl(W'Xl-i-b)Zl—fl \Z
&>0 v,

wherelL is the number of training examples, the target class lgbel{—1, 1} corresponds
to x;, andC' is a hyper-parameter that trades off the minimization ofsifécation error
(upper-bounded by;) and the maximization of the margin, which provides geriea#ibn
guarantees (Vapnik 2000).

Solving (12.7) leads to a discriminant function expressea dinear combination of
training examples in the feature spakg). We can thus rewrite (12.6) as follows:

L
fx;09) = Zalyz d(x;) - P(x) +b,
=1

where most training examples do not enter this combinatipr=0); the training examples
for which a; # 0 are calledsupport vectors

As the feature mappin@(-) only appears in dot products, the SVM solution can be
expressed as follows:

L
Fx0) = ark(xi,x) +b
=1

wherek(-, -) is the dot produc®(-) - ®(-). More generallyk(-, -) can be any kernel function
that fulfills the Mercer conditions (Burges 1998), which eresthat, for any possible training
set, the optimization problem is convex.

12.3.2 Kernels

A usual problem in machine learning is to extract featurasine relevant for the classifica-
tion task. For SVMs, choosing the features and choosingehedkare equivalent problems,
thanks to the so-called “kernel trick” mentioned above. Htter also permits to mag; into
potentially infinite dimensional feature spaces by avajdire explicit computation ob(x; );
it also reduces the computational load for mappings in fimitehigh dimension.

The two most well known kernels are the Radial Basis Fund¢isF) kernel

202

Cilser — e 1I2
k(x,xy) = exp(M) (12.8)
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Figure 12.1 Split of the speaker population in three subsetk the final decomposition in
learning and test sets.

and the polynomial kernel
k(xi,x1) = (ax; - xp + D), (12.9)

whereo, p, b, a are hyper-parameters that define the feature space.

Several SVM-based approaches have been proposed reaetdabkte the speaker veri-
fication problem (Campbell et al. 2006a; Wan and Renals 2008)se approaches rely on
constructing an ad-hoc kernel for the problem at hand. Thes®els will be presented and
evaluated after the following section that describes thaildeof the experimental methodol-
ogy and the data that will be used to compare the various rdetho

12.4 Benchmarking Methodology

In this section, we describe the methodology and the dathinsdl the experiments reported
in this chapter. We first present the data splitting strathgyis used to imitate a realistic use
of speaker verification systems. Then, we discuss the messualuating the performances
of learning algorithms. Finally, we detail the databasedusebenchmark these algorithms,
and the pre-processing that builds sequences of frames#eawaform signals.

12.4.1 Data Splitting for Speaker Verification

A speaker verification problem is not a standard classibogtiroblem, since the objective
is not to certify accesses from a pre-defined set of clientstehd, we want to be able to
authenticate new clients when they subscribe to the seriaeis, we want to learn how to
build new classifiers on the fly. Hence, a speaker verificaystem is evaluated by its ability
to produce new classifiers with small test error. This is extad by the data splitting process
depicted in Figure 12.1.

The root level gathers the population of speakers, whichpi# to three sub-
populations, defined by their role in building classifietse tievelopment sé®, the world
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set)V and the evaluation sét All accesses from the speakers#fwill be used as the set of
negative examples; for training the models responsible for authenticatingrals;, where

s; may belong either to the developmentBetr to the evaluation s&t. The set and¢ are
further split into clients (res@>+ and£™) and impostors (resf@~ and£™) at the second
level of the tree. The clients and the test impostors herftar ietween the development and
the evaluation sets.

The impostor accessesT~ and£~ form the set of negative test examplgs, that is,
“attempt data” from out-of-training impostors claimingeiatity s;, wheres; belongs respec-
tively to DT and £T. Finally, at the third level of the tree, the accesses ofntlie are
split to form the positive examples of the training €&t (also known as the “enroliment
data”, usually a single access), and the set of positiverfgit data’Z; " that play the role of
out-of-training client accesses requiring authenticatio

To summarize, the development §2is used jointly with)V to train models and select
their various hyper-parameters (such as the number of @Gaussshe MAP adaptation factor,
kernel parameters, etc.). For each hyper-parameter, weedefiange of possible values, and
for each value, each client model is trained using the emmsit dataC;” and the world data
L;, before being evaluated with the positive and negativergitelataZ, ™ andZ, . We then
select the value of the hyper-parameters that optimizesengierformance measure (the
Equal Error Rate described below) ¢& " U 7, }. Finally, the evaluation sef is used to
train new client models using these hyper-parameters,cametasure the performance of the
system on these new clients.

12.4.2 Performance Measures

The classification error rate is the most common performamezsure in the machine learn-
ing literature, but it is not well suited to the type of protiie encountered in speaker verifi-
cation, where class priors are unknown and misclassificédgses are unbalanced. Hence, a
weighted version of the misclassification rate is used, @logie distinguishes two kinds of
errors:False Rejectior{FR) which consists in rejecting a genuine client, d&adse Accep-
tance(FA) which consists in accepting an impostor. All the measused in this chapter
are based on the corresponding error ratesFtige Acceptance Ra{€AR) is the number
of FAs divided by the number of client accesses, and=dise Rejection Raté-FRR) is the
number of FRs divided by the number of impostor accesses.

As stated in the previous section, in practice, we aim admgl a single system that is
able to take decisions for all future users. The performamoseasured globally, on the set
of speakers of the evaluation set, by averaging the perfocemaver all trials independently
of the claimed identity.

In the speaker verification literature, a point often ovekied is that most of the results
are reported with “a posteriori” measures, in the sense ttiaatdecision threshold\ in
Equation (12.1) is selected such that it optimizes somerait on the evaluation set. We
believe that this is unfortunate, and, in order to obtainiasdd results, we will use “a priori”
measures, where the decision threshidlid selected on a development set, before seeing the
evaluation set, and then applied to the evaluation data.

Common a posteriori measures include the Equal Error R&ER)Ewhere the thresh-
old A is chosen such that (FAR=FRR), and the Detection Error THd®ET) curve
(Martin et al. 1997), which depicts FRR as a function of FARewl\ varies. Note that
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the DET curve is is a non-linear transformation of the Reme®perating Characteristic
(ROC) curve (Van Trees 1968). The non-linearity is in factoanmal deviate, coming from
the hypothesis that the scores of client accesses and ionpstesses follow a Gaussian
distribution. These measures are perfectly legitimatesfqurioratory analysis or for tuning
hyper-parameters on the development set and they are uskd jpurpose here. To avoid
confusion with proper test results, we will only report DEIrees computed on the devel-
opment set. For test performance, we will use a priori messuhne Half Total Error Rate (
HTER = %(FAR(A) + FRR(A))) and the Expected Performance Curve (EPC) (Bengio et
al. 2005), which depicts the evaluation set HTER as a funatioa trade-off parameter.
The latter defines a decision threshold, computed on thdajavent set, by minimizing the
following convex combination of development FAR and FRR:

A* = argmAin (a -FAR(A) + (1 — «) - FRR(A)) . (12.10)

We will provide confidence intervals around HTER and EPChis thapter, we report
confidence intervals computed at the 5% significance lewtiguan adapted version of the
standard proportion test (Bengio and Mariéthoz 2004).

12.4.3 NIST Data

The NIST database is a subset of the database that was uste fIST 2005 and 2006
Speaker Recognition Evaluatiomhich comes from the second release of the cellular switch-
board corpus (Switchboard Cellular - Part 2) of the Lingaiftata Consortium. This data
was used as development and evaluation sets while thengajnegative) examples come
from previous NIST campaigns. For both development andietian clients, there are about
2 minutes of telephone speech available to train the modelgach test access was less than
1 minute long. Only male speakers were used. The developgpoentation consisted of 264
speakers, while the evaluation set contained 349 speakiéFlifferent records were used as
negative examples for the discriminant models. The totailmer of accesses in the develop-
ment population is 13596 and 22131 for the evaluation setifptipn with a proportion of
10% of true target accesses.

12.4.4 Pre-Processing

To extract input features, the original waveforms are sachjgivery 10ms with a window

size of 20ms. Each sentence is parameterized using 24 utamigand-pass filters with a

DCT transformation of order 16, complemented by their fiestigative (delta) and th&0-

th second derivative (delta-delta), the log-energy, tHeadeg-energy and delta-delta-log-
energy, for a total of 51 coefficients. The NIST databasegtlephone-based, the signal is
band-pass filtered between 300 and 3400 Hz.

A simple silence detector, based on a two-components Gaussikture model, is used
to remove all silence frames. The model is first learned omdawm recording with land line
microphone and adapted for each new sequence using the Ma&Ratidn algorithm. The
sequences are then normalized in order to have zero meamanduiance on each feature.

While the log-energy is important in order to remove thergikeframes, it is known to be
inappropriate to discriminate between clients and impsstbhis feature is thus eliminated
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after silence removal, while its first derivative is keptride, the speaker verification models
are trained with 50 (51-1) features.

12.5 Kernels for Speaker Verification

One particularity of speaker verification is that patterns sequences. An SVM based
classification thus requires a kernel handling variable siequences. Most solutions pro-
posed in the literature use a procedure that converts theeseqs into fixed size vectors
that are processed by a linear SVM. Other sequence kerels amnbeddings in infinite-
dimensional feature spaces (Mariéthoz and Bengio 200 edder, compared to the main-
stream approach, this type of kernels is computationatiydemanding for long sequences.
It will not be applied here, since the NIST database contaimg sequences.

In the following we describe several approaches using semuéernels. The most
promising are then compared in Section 12.8.

12.5.1 Mean Operator Sequence Kernels

For kernel methods, a simple approach to tackle variablgthesequences considers the
following kernel between two sequences:

K%)= o 505 b, xY) | (12.11)
;T

where we denote b (-, -) a sequence kernet; is a sequence of sizE andx! is a frame
of x;. We thus apply a frame-based kerkél, -) to all possible pairs of frames coming from
the two input sequences andx;.

As the kernelK represents the average similarity between all possibls pairames, it
will be referred to as the mean operator sequence kerned Kitid of kernel has been applied
successfully in other domains such as object recogniti@u¢orbel et al. 2004). Provided
thatk(-, -) is positive-definite, the resulting kerngl(-, -) is also positive-definite.

The sequences in the NIST database typically consist ofraetfousands of frames,
hence the double summation in (12.11) is very costly. As thelver of operations for
each sequence kernel evaluation is proportional to theustoof sequence lengths, such
a computation typically requires an order of the million gfesations. We thus will con-
sider factorizable kernels(-, -), such that the mean operator sequence kernel (12.11) can be
expressed as follows:

1 T Tj
(i %)) = g 3 D 0(x1) - 00)
t=1 u=1

1 &
T Z¢(Xf)
t=1

T.
1 J
1 s > ¢>(xy)] . (12.12)
u=1
When the dimension of the feature space is nottoo large, abnmgthe dot product explicitly
is not too demanding, and replacing the double summatiowbysingle ones may result in

a significant reduction of computing time.




KERNEL BASED TEXT-INDEPENDNENT SPEAKER VERIFICATION 207

Explicit polynomial expansions have been used in Campl2€02); Campbell et al.
(2006a); Wan and Renals (2003). In practice, the averagaréeaectors within brackets
in (12.12) are used as input to a linear SVM. The GLDS (Germ@lLinear Discriminant
Sequence) kernel of Campbell departs slightly from a rawmarhial expansion, by using a
normalization in the feature space:

K(%;,%;) = O(x)T 1 0(x5) (12.13)

T;T;
whereT" defines a metric in the feature space. Typically, this is gahial approximation of
the Mahalanobis metric, that i, is a diagonal matrix whose diagonal elemeptsare the
empirical variancésfor each feature, computed over the training data.

The polynomial expansion sendsdimensional frames to a feature space of dimension
(d+p)!/dlp! — 1, wherep is the degree of the polynomial. With odf input features,
and for a polynomial of degrege = 3, the dimension of the feature space2i126. For
higher polynomial degrees and for other feature space bhnigimension, the computational
advantage of the decomposition (12.12) disappears, anditter to use explicit kernel in
the form (12.11). We empirically show below that, for the alstepresentation of frames
described in Section 12.4.4, the GLDS normalization in132is embedded in the standard
polynomial kernel.

Let us definek(x;,x;) as a polynomial kernel of the forrfx; - x; + 1)?, wherep is
the degree of the polynomial. After removing the constanhtghe explicit expansion of
this standard polynomial kernel involvég + p)!/dlp! — 1 terms that can be indexed by
r = (ry,r2,...,74), such that

Or(x) = Veratan? o al?

d
where Zri:p, r, >0, and cr:% .
=1 r1:ro..Tq41-
In the above equationg/c, has exactly the same role as the, /7, coefficients on the
diagonal ofl' ~'/2 in Equation (12.13). In Figure 12.2, we compare these coeflivalues,
where the normalization factois', /7 are estimated on two real datasets, after a polyno-
mial expansion of degree 3. The values are very similar, higihs and lows on the same
monomial. In fact, the performance of the two approachesiobtl on the development set
of NIST are about the same, as shown by the DET curves giveilginé-12.3.
Even if this approach is simple and easy to use, the accueatpe improved by intro-
ducing priors. In fact, to train a client model very few pagtexamples are available. Thus,
if we can put pieces of information collected on large setpafakers into the SVM model,
as done for the GMM system, we can expect an improvement. @méoc example try to
include the world model in the kernel function as proposetthinnext Section.

12.5.2 Fisher Kernels

Jaakkola and Haussler proposed a principled means foribgikérnel functions from gen-
erative models: the Fisher kernel (Jaakkola and HaussE8)1® this framework, which

2The constant feature is removed from the feature spacetprimrmalization.
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Figure 12.2 Coefficient values of polynomial terms, as co@pwn two different datasets
(Banca and PolyVar), compared to thepolynomial coefficients.

has been applied to speaker verification by Wan and Renal$&0the generative model is
used to specify the similarity between pairs of examplesteiad of the usual practice where
it is used to provide a likelihood score, which measures helltlve example fits the model.
Put it another way, a Fisher kernel utilizes a generative ehtml measure the differences
in the generative process between pairs of examples insfeifie differences in posterior
probabilities.

The key ingredient of the Fisher kernel is the vector of Fisteres:

ugz = Vp logp(x|0) ,

where@ denotes here the parameters of the generative modelNgisl the gradient with
respect td. The Fisher scores quantify how much each parameter cateslo the gener-
ation of examplex.

The Fisher kernel itself is given by:

K(%;,%;) = ux, 1(0) 'ug, (12.14)

whereI(0) is the Fisher information matrix &, that is, the covariance matrix of Fisher
scores:

1(0) = Ex (ugug') , (12.15)
where we used thdEx (ux) = 0. The Fisher kernel (12.14) can thus be interpreted as a
Mahalanobis distance between two Fisher scores.
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Figure 12.3 DET curves on the development set of the NISThdacomparing the explicit
polynomial expansion (noted as “GLDS kerpek 3 in the legend), and the principled poly-
nomial kernel (noted “Polynomial kerngl= 3").

Another interpretation of the Fisher kernel is based on éipeasentation of a parametric
class of generative models as a Riemannian manifold (Jémlikd Haussler 1998). Here, the
vector of Fisher scores defines a tangent direction at a ¢peation, that is, at a given model
parameterized by. The Fisher information matrix is the local metric at thiseg point,
which defines the distance between the current mp@daP) and its neighbors(x|0 + §).
The (squared) distanck8, 0 + ) = %6T16 approximates the Kullback-Leibler divergence
between the two models. Note that, unlike the Kullback-lagitlivergence, the Fisher kernel
(12.14) is symmetric. It is also positive-definite since Higher information matrid(0) is
obviously positive-definite &.

Fisher Kernels for GMMs

In the MAP framework, the family of generative models we ddesis the set of Gaus-
sian mixtures (12.4) that differ in their mean vectqs,. Hence, a relevant dissimilar-
ity between examples will be measured by the Fisher scoregpueted on these vectors
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= (Vlrfl log p(x]0), ..., VT 10gp(5c|0))T, where

Vu,, logp(x]6) ZV log Z T N (X | O r)

m/=1

I
M= I

Plonke!) Vo, (3~ ) B2~ )

t=1

P(m|x") 3, 2(x" — u,,) - (12.16)

Il
M=

~~
Il
-

Using definition (12.15), the Fisher information matrix da@ expressed block-wise, with
M x M blocks of sized x d:

I= T m )i<m<Mi<m/<M

with

T T
Ly =Ex {Z ZP m|x" ) P(m/|x") 2, 2 (x! — ) (X" — p,, )T 7 (12.17)
t=1u=1
There is no simple analytical expression of this expeatatioe, among other things, to the
productP (m|x") P(m'|x“). Hence, several options are possible:

I. ignore the information matrix in the computation of thestér kernel (12.14). This
option, mentioned by Jaakkola and Haussler as a simpladdeisubstitute, is often
used in the application of Fisher kernels;

Il. approximate the expectation in the definition of Fish&iormation by Monte Carlo
sampling.

Il. approximate the producP(m|x’)P(m’|x*) by a simpler expression in (12.17). For
example, if we assume that the considered GMM performs hasiyaments of
frames to mixture components, thét(m/|x?) P(m/|x*) is null if m # m’. Further-
more, this product is also null for = m’ whenx! or x“ is generated from another
component of the mixture distribution, otherwise, we h#&fen|x")P(m/|x") = 1.
Let g, denote the function such that, (x,y) = 2,,2(x — w,,)(y — ) 2,7 if
P(m|x) = P(ml]y) = 1andg,,(x,y) = 0 otherwise. With this notation and the above
approximations, (12.17) reads

Ly ~0 if m#m

The unknown constar[T] is not relevant and can been dropped from the imple-
mentation of this approximation to the Fisher kernel.
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We now introduce some definitions with the following sceaarsuppose that we
trained the GMM world model on a large set of speakers, neguih parameter®, =
{0, ™ }M_, . We then use this GMM as an initial guess for the model fomtlig.
If, as in the MAP framework, the client model differs from therld model in the mean
vector only, then, after one EM update, the training seqga&navill result in the following
estimates

1 @
P, = > xiP(mlx)
Mim
T;
where n; ,, = Z P(m|xt) .
t=1

Hence,n; ., is the effective number of frames used to compufg that is, the sum of the
membership of all frames of; to componentn. These definitions ofs!, andn, ,, are
convenient for expressing Fisher scores, when the referganerative model is the world
model parameterized k8

T;
V;Lm 1ng(5(i|0)|g:go = 2;12 ZP(m|X§) (Xi - H‘m)
t=1
=nim S (uh, — b)) . (12.18)

With the approximations of the Fisher information discussdbove, the kernel is
expressed as:

I. for the option where the Fisher information matrix is iged:

K(ii, Xj) = u;z; 11;(].
M . . ‘
= (i (= 1) (nmZ0 7 (1, — 1))
m=1

II. for the option where the Fisher information matrix is amgmated by Monte Carlo
integration: here, for computational reasons, we only icfErsa block-diagonal
approximatiorl, where

o~

I=Tnm )i<m<Mi<m/<M
with

~

mm =0 0if m#m/
=~ 1
Imm:_ P t 22—2 t_ ,,0 t_,,0 T2_2
: n% (m[x")"27 (x5 = p, ) (X" = )" 27

wheren is the number of random draws &f generated from the world model.

We then have:
M ‘ o ‘
K (%) = 37 (nim B (= 15)) " Tl (0357 (1, — )

m=1
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Figure 12.4 DET curves on the development set of the NISThda comparing the three
different approximations of the Fisher information matrix

lll. for the option where the Fisher information matrix isprpximated analytically
4 1 T .
K(x;,%;) = Z (m,mzfnl(u:n — u?n)) (nj,mz;l(ugn — H?n))
m=1

These three variants of the Fisher kernel are compared uréiR.4, which compares
the DET curves obtained on the development set of the NIS@abdst. The three curves
almost overlap, confirming that ignoring the informationtrnain the Fisher kernel is not
harmful in our setup.

12.5.3 Beyond Fisher Kernels

The previous experimental results confirm that the mainddignt of the Fisher kernel is the
Fisher score. The latter is based on a probabilistic mo@sVeil through the log-likelihood
function. We can depart from the original setup describeavapby using other models
and/or score. Some alternative approaches has been alreadjigated, for example Wan
and Renals (2005b), uses scores based on a log likelihoodbetiveen the world model
and the adapted client model. We describe below a very simpHification of the scoring

function that brings noticeable improvements in perforogn
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Table 12.1 EERs (the lower the better) on the development set
of the NIST database, comparing Fisher kernel (approxamati
3), the normalized Fisher kernel.

Fisher Normalized Fisher
EER (%) 9.3 8.2
95% confidence +0.9 +0.8
# Support Vectors 37 32

Normalized Fisher Scores

We saw in Section 12.2.2 that the scores used for classigxagnples are normalized, in
order to counterbalance the exponential decrease ofiiketls with sequence lengths. Using
the normalized likelihood leads to the following Fishéeelikernel
o 1 7
K(Xi,Xj) = —uiiu,—(j

- TiT;
M n T N

— ’L-,m272 i _ ,,0 j,m272 Jj _,,0
mz_:l< 7 um)> (—Tj o (1, — 15,)

Here also, one may consider several options for approximétie Fisher information matrix,
but the results displayed in Figure 12.4 suggest it is nothvpursuing this road further.
Table 12.1 and Figure 12.5 compare empirically the Fishenekgapproximation 3) with
the normalized Fisher kernel. Including a normalizatioznss have a positive impact on the
accuracy. Thus other kind of scores should be explored.

GMM Supervector Linear Kernel

The Fisher kernel is a similarity based on the differencéisergeneration of examples. In this
matter, it is related to the GMM Supervector Linear KerneS{®) proposed by Campbell
et al. (2006b).

The GSLK approximates the Kullback-Leibler divergence thaasures the dissimilarity
between two GMMs, each of one being obtained by adapting tiilelvinodel to one example
of the pair(x;,X;). Hence, instead of looking at how a single generative poditers for
each example of th&;, x;) pair, GSLK looks at the difference between pairs of genegati
models. The GSLK is given by:

M
K(}_(i,)_(j) = Z (\/ sz;ll (Ti,mﬂin + (1 - Ti,m)“?n))T ’
m=1

(VA5 (Gt + (L= Tim)ii)

wherer; ,,, is the adaptation factor for the mixture componenadapted with sequencg,
as defined in Equation (12.5). The MAP relevant facta@ chosen by cross-validation, as in
GMM based text-independent speaker verification systeragrn(@®ds et al. 2000).
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Figure 12.5 DET curves on the development set of the NISThdata for Fisher kernel
(approximation 3) and normalized Fisher kernel.

Table 12.2 EERs (the lower the better) on the development
set of the NIST database, comparing GSLK and the normalized
Fisher kernel.

GSLK Normalized Fisher
EER (%) 7.9 8.2
95% confidence +0.8 +0.8
# Support Vectors 34 32

The Fisher kernel and GSLK are somewhat similar scalar mtsdwith the most notice-
able difference being that the Fisher similarity is basedliffierence from the referenge’
whereas the GSLK kernel above is based on a convex comhirgdtibe observations and the
referenceu’ that has no obvious interpretation. Both are an approxonaif the KL diver-
gence as mentioned in Section 12.5.2. The difference isGi%itK compare two adapted
distributions when the Fisher kernel compare the world rhtaléhe updated model using
the access data.

Table 12.2 and Figure 12.6 compare empirically GSLK withrbemalized Fisher ker-
nel. There is no significant difference between GSLK and tivenalized Fisher kernel.
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Figure 12.6 DET curves on the development set of the NISThdata for GSLK and nor-
malized Fisher kernel.

12.6 Parameter Sharing

The text-independent speaker verification problem is dgtaaset of several binary clas-
sification problems, one for each client of the system. Aldgitofew positive examples are
available for each client, the overall number of availabsifive examples may be large.
Hence, techniques that share information between claasificproblems should be benefi-
cial. We already mentioned such a technique: the MAP adaptstheme that trains a single
world model on a common data set, and uses it as a prior distiibover the parameters to
train a GMM for each client. Here, the role of the world modgeto bias each client model
towards a reference speaker model. This bias amounts td shewing of parameters.

Additional parameter sharing techniques are now used anidigrant approaches. In the
following, we discuss one of them, tiNuisance Attribute Projectio(NAP).

12.6.1 Nuisance Attribute Projection

The Nuisance Attribute ProjectioiNAP) approach (Solomonoff et al. 2004) looks for a
linear subspace such that similar accesses (that is, ascessiing from the same client or
from the same channel, etc) are near each others. In ordefr&irrfrom finding an obvious
bad solution, the dimension of the target subspace is diedrby cross-validation. This
transformation is learned on a large set of clients (sifyilarlearning a generic GMM in the
generative approach). After this step is performed, a stahlihear SVM is usually trained
for each new client over the transformed access data. Tlgeoaph provided very good
performance in recent NIST evaluations.
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More specifically, assume each access sequgnisemapped into a fixed-size feature
space through some transformatidiix) such as the one used in the GLDS kernel. Let
We¢ be a proximity matrix encoding, for each pair of accegsgsx; ), that these sequences
were recorded over the same chanf&f( = 0) or not (W, = 1). The NAP approach then
consists in finding a projection matr®* such that

P* = argmri)nz WEP(D(%) — (%)) (12.19)
%,

among orthonormal projection matrices of a given rank. lédAt minimizes the average
difference between accesses from differing channels,grféhture space. Similarly, a sec-
ond matrixW* could encode the fact that two accesses come from the sarakespé
combination between these prior knowledge could be encaséallows

W =aW°® —~yW? | (12.20)

with o and~ hyper-parameters to tune, aRd found to minimize equation (12.19) witW
instead ofW¢,

As stated earlierP* is then used to project each accdgx) into a feature subspace
where, for each client, a linear SVM is used to discrimindient and impostor accesses. As
shown in Table 12.3 and Figure 12.7, NAP brings significargrimmrement when combined
with the GSLK kernel. On the other hand, the number of supypastors grows also signifi-
cantly. This can be interpreted that now all accesses aneisame space and are independent
to the channel and thus more training impostors are gooddaied.

Table 12.3 EERs (the lower the better) on the development
set of the NIST database, comparing an SVM classifier with
GSLK with and without NAP (polynomial kernel of degree

3).
GSKL GSLK with NAP
EER (%) 7.9 5.8
95% confidence +0.8 +0.6
# Support Vectors 34 59

Although the approach has shown to yield very good perfooaaesults, we believe
that there is still room for improvements, sinPé is not selected using the criterion that is
directly related to the task. Minimizing the average sqdalistance between accesses of the
same client (or accesses of different channel) is likelyelip kelassification, but it would also
be relevant to do something about accesses from differiemntts] such as moving them away
for instance.
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Figure 12.7 DET curves on the development set of the NISTodagwith GSLK with and
without NAP.

12.6.2 Other Approaches

Another recent approach that also goes in the same direstidthat obtains state-of-the-art
performance similar to the NAP approach is the Bayesianof#gtalysis approach (Kenny
et al. 2005). In this case, one assumes that the mean vectoclnt model is a linear
combination of a generic mean vector, the mean vector ofuaiable training data for that
client, and the mean vector of the particular channel useligntraining data. Once again,
the linear combination parameters are trained on a largeiatwd access data, involving a
large amount of clients. While this approach is nicely pnéseé theoretically (and obtains
very good empirical performance), it still does not try tadfthe optimal parameters of client
models and linear combination by taking into account théaglaost function.

Another very promising line of research that has emergedachime learning relates
to the general problem of learning a similarity metric (Creopt al. 2005; Lebanon 2006;
Weinberger et al. 2005). In this setting, where the learalggrithm relies on the comparison
of two examples, one can set aside some training examplesually learn what would be
a good metric to compare pairs of examples. Obviously, inSX#& world, this relates to
learning the kernel itself (Crammer et al. 2002; Lanckrietle2004).

In the context of discriminant approaches to speaker vatifin, none of these tech-
nigues have been tried, to the best of our knowledge. Usirayge Ibase of accesses for
which one knows the correct identity, one could for instatragn a parametric similarity
measure that would assess whether two accesses are cooim¢hfe same person or not.
That could be done efficiently by stochastic gradient detsgsing a scheme similar to the
so-calledSiamese neural netwoflChopra et al. 2005) and a margin criterion with proximity
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constraints.

12.7 Is the Margin Useful for this Problem?

The scarcity of positive training examples in speaker atfon explains the great improve-
ments that pertain to parameter sharing techniques. liségigon, we question whether this
specificity also hinders large margin methods to improvenupore simple approaches.

The K-Nearest Neighbors (KNN) algorithm (Duda and Hart 1)9%3robably the sim-
plest and the most known non-parametric classifier. Instédelarning a decision bound-
ary, decisions are computed on-the-fly for each test acbgsssing thek nearest labelled
sequences in the database as “experts”, whose votes aegatgt to make up the decision
on the current access.

In the weighted KNN (Dudani 1986) variant, the votes of tharest neighbors are
weighted according to their distance to the query:

k o .
i} : 1 it d(j, k) = d(j,1)
f(x;) = z:yzwZ , With w; = { dGk)=dG0)  Giherwise, (12.21)
i=1 d(j,k)—d(5,1)

where the sum runs over tlieneighbors of the query;, y; € {—1, 1} determines whether
the neighbor’s access is from a cliept & 1) or an impostor¢; = —1), andd(j, 7) is the
distance fronxk; to its-th neighbor.

One can then use kernels to define distances, as follows:

(i §) = /K (% %) = 2K (%3, %) + K (%;,%;) . (12.22)

but it is often better to normalize the data also in the feaspace so that they have unit
norm, as follows,
K _ia X j
Knorm(iiaij) = — (7X XJ)7 — 5 (1223)
VE (X, %) K(%j,%;)

which leads to the final distance measure used in the expetsme

K (xi,X;)

dnorm(iaj): 2-2 — — — — .
\/K(Xiaxi) K(Xjaxj)

(12.24)

Table 12.4 and Figure 12.8 compares the normalized Fisloge seith NAP approach
followed by either an SVM or a KNN, and as can be seen, the KNpf@gch yields sim-
ilar if not better performance than the SVM approach. Furtitee, the KNN has several
advantages with respect the SVMs: there is no training@@sKNN can easily approximate
posterior probabilities and do not rely on potentially doaiging Mercer conditions to work.
On the other hand, the test session might be longer as finéiaigest neighbors needs to be
efficiently implemented.
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Figure 12.8 DET curves on the development set of the NISThadag comparing Fisher
normalized kernel with NAP for KNN and SVM.

Table 12.4 EERSs (the lower the better) on the development
set of the NIST database, comparing the Fisher normalized
kernel with NAP (250) for KNN and SVM.

SVM KNN
EER (%) 6.7 53
95% confidence +0.7 +0.7
# Support Vectors 47 -

12.8 Comparing All Methods

As a final experiment, we have compared all the proposed aphes and now report the
results on the evaluation set. Figure 12.9 compares aatdhe-art diagonal GMM with an
SVM using a GSLK kernel with NAP, and also with a KNN based omilormalized Fisher
kernel with NAP.

In this experiment, the following set of hyper-parameteesentuned according to the
EER obtained on the development set:

e the number of neighbork in the KNN approach, was varied between 20 and 200,
with optimal value: 100;
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the size ofP, the transformed space in NAP for the GSLK kernel, was varetdieen
40 and 250, with optimal value: 64;

the size ofP, the transformed space in NAP for the Fisher kernel, wasddretween
40 and 400, with optimal value: 250;

the number of Gaussians in the GMM used for the GSLK and Figérerel approaches
was varied between 100 and 500, with optimal value: 200;

all other parameters of the state-of-the-art diagonal GMiddtine were taken from
previously published experiments.

The GMM yields the worst performance, probably partly beseano channel compensa-
tion method is used (while the others use NAP). KNN and SVMgrarances do not differ
significantly, hence the margin does not appear to be at edlssary for speaker verification.

0.20— } : } :
. ' — GMM N, = 500
= \ --- SVM GSLK NAP(64)
ae 015k \ L = KNN Norm. Fisher Kernel NAP(64) |
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Figure 12.9 Expected Performance Curve (the lower, theheih the evaluation set of the
NIST database comparing GMM with T-norm, SVM with a GSLK kelrand NAP, SVM
Fisher normalized kernel with NAP and KNN with a Fisher nolizead kernel with NAP.
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Table 12.5 Final results on the evaluation set of the NISalukde
KNN Normalized

GMM SVMGSKLNAP L 0
HTER (%) 10.2 5.4 5.5
95% Conf. +0.7 £0.5 +0.5

12.9 Conclusion

In this chapter, we have presented the task of text indeptsgeaker verification. We have
shown that the traditional method to approach this tasknsutjh a generative approach
based on Gaussian Mixture Models.

We have then presented a discriminative framework for #g&,tand presented several
recent approaches in this framework, mainly based on Supector Machines. We have
presented various kernels adapted to the task, includeGtDS, GSLK and Fisher kernels.
While many of the proposed kernels in the literature wergopsed in some heuristic way,
including the GLDS and GSLK kernels, we have shown the @tabietween the principled
polynomial kernel and the GLDS kernel, as well as the refetietween the principled Fisher
kernel and the GSLK kernel. We have then shown that in orde8¥Ms to perform at a
state-of-the-art level, parameter sharing in one way otha@rovas necessary. Approaches
such as NAP or Bayesian Factor Analysis were designed foptiv@pose and indeed helped
SVMs to reach better performance.

Finally, we have questioned the main purpose of using SVMsgvmaximize the mar-
gin in the feature space. We have tried instead a plain KNNaggh, which yielded similar
performance. This simple experiment shows that futurearebeshould concentrate more on
better modelling of the distance measure, rather than onmizrg the margin.

A drawback of the current approaches is that they are mademdus blocks (fea-
ture extraction, feature normalization, distance meast® which were all trained using
a separate ad-hoc criterion. Ultimately, a system that evénalin all these steps in a sin-
gle framework to optimize the final objective should perfdoetter, but more research is
necessary to reach that goal.

In order to foster more research in this domain, an openesowgrsion of the C++ source
code used to performed all experiments described in thipteh&ave been made available
athttp://speaker.abracadoudou.com
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