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Abstract

In this paper, we discuss a curious relationship between Cooperative Coevolutionary Algo-
rithms (CCEAs) and Univariate EDAs. Inspired by the theory of CCEAs, we also present a
new EDA with theoretical convergence guarantees, and some preliminary experimental results
in comparison with existing Univariate EDAs.

1 Introduction

Over the last decade, the field of estimation of distribution algorithms (EDAs) has led to variety
of interesting models and tools which have several advantages over their related traditional evolu-
tionary algorithms (EAs). In particular, EDAs possess a unique flexibility to efficiently represent
interactions between variables in higher-order problems.

2 Cooperative Coevolution

Coevolutionary algorithms generally assign fitness to an individual not based on an absolute mea-
sure but rather on the interaction of that individual with other individuals in the evolutionary
system. The hallmark of a coevolutionary algorithm is that the relative order of any two individu-
als may change depending on the presence of other individuals in the system.

The most common coevolutionary frameworks are one-population competitive, two-population
competitive, and n-population cooperative arrangements. In the one-population competitive coevo-
lutionary algorithm, individuals in a single population are assessed by pitting them against other
individuals in the same population, often in a game (for example, evolving checker players [3]). In
the two-population competitive arrangement, individuals from one population are pitted against
individuals against an opposing population. Here, typically only one population contains solutions
of interest to the experimenter; the second population serves as a foil to push the first population
towards robust solutions (for example, a sorting networks versus sorting problems [5]).

In this paper, we focus on n-population cooperative arrangements, popularly known as Cooper-
ative Coevolutionary Algorithms (CCEAs) [16, 17]. In CCEAs, the solution space is broken into
some n subsolution spaces, and each subsolution space is assigned a population. An individual is
assessed by grouping it with individuals from the other populations to form a complete solution;
the quality of this solution is then incorporated into the individual’s fitness.



Cooperative coevolutionary algorithms can be either generational or (less commonly) steady-
state, and often take one of two forms: serial versus parallel algorithms. In a serial algorithm,
each population is evaluated and updated in turn, round-robin. In the parallel algorithm, all of the
populations are evaluated before any of them is bred. Here we show the two generational versions
of these algorithms:

loop (ALGORITHM 1. Serial Generational CCEA)
for each population p € P do
for each individual ¢ € p do
Evaluate(i, p, P)
Breed whole population p

loop (ALGORITHM 2. Parallel Generational CCEA)
for each population p € P do
for each individual 7 € p do
Evaluate(i, p, P)
for each population p € P do
Breed whole population p

Much of cooperative coevolutionary research has focused on the specifics of the Evaluate(i, p, P)
function. Choice of evaluation procedure in CCEAs is known to lead to a variety of pathologies.
Certain of these have been studied at length using a theoretical model for CCEAs which, while
somewhat different from actual CCEAs, provides insight into their dynamics. We discuss this model
next.

3 The Evolutionary Game Theory Infinite Population Model

Analyses of cooperative (and other) coevolution will often make use of an infinite population for-
mulation derived from evolutionary game theory (EGT). This formulation usually assumes that
each population has a (typically) finite set of genotypes, and that all populations have an infinite
number of individuals. Much EGT work in cooperative coevolution has focused on two populations;
therefore, we will focus on the two-population case in this section. The first population is repre-
sented by a vector x where z; indicates the proportion of genotype ¢ in the population. Likewise,
the second population is represented by the vector y. We also assume there exists a matrix A whose
elements a;; represent the reward when genotypes i (from the first population) and j (from the
second population) are combined to form a joint solution.

One common EGT model [21] breaks the evolutionary process into two parts. First, the fitness
of each individual is assessed. We will use the vector u to represent the fitness of the genotypes in
the first population so that each genotype i has fitness u;. Likewise, we will use w for the second
population. Wiegand defined the fitness of a genotype as the average reward received when pairing
it with every member of the other population. That is, at time ¢:
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Second, we then update the genotype proportions for the next generation (time t + 1) using a



formulation that simulates fitness-proportional selection:
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Wiegand discovered that this “complete mixing” model could converge towards local suboptima
surrounding Nash Equilibria in the joint space: if a suboptima basin were large and broad, the
system would collect at its peak rather than at another tall but narrow peak centered at a global
optimum. This was largely because the fitness procedure averaged the performance of an individual
over all individuals in the corresponding population, without regard to how good a collaborator
those individuals were. That is, the fittest individuals tended to be jacks-of-all-trades, doing rea-
sonably well with the average collaborator, rather those which performed optimally when paired
with the optimal collaborator (but perhaps poorly on average). Wiegand termed this pathology
relative overgeneralization.

Later research has shown that the system will converge if we change the fitness assessment
procedure. The intuitive solution is to base the fitness of individuals in a population not on
average collaboration but rather on the maximum performance over all collaborations. Following
Panait [11] we might change Equation 1 to:

ul(.t) = max a;; wj(-t) = max a; (3)
Panait provided a proof of convergence to the optimum [11] using this in combination with tour-
nament selection rather than fitness-proportional selection, assuming that the optimum is unique.
Panait’s derivation of tournament selection (of tournament size H) transformed Equation 2 to:
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This curious equation is a result of order statistics. In each subequation there are two terms
raised to H each. These compute the probability that, of a tournament of size H, the winners
(there may be ties) will include a genotype whose fitness is the same as genotype i. The first term
gives the probability that all H tournament entrants will have a fitness less than or equal to ¢’s
fitness, and the second term gives the probability that all will have a fitness less than that of <.
The remaining elements in each subequation compute the probability that the first such winner is
in fact 7, as opposed to other fitness-equivalent genotypes.

So far, these theoretical models are fairly divorced from real-world CCEAs: the population is
infinite; there is no breeding, only selection; and the evaluation procedure involves scanning across
all possible collaborators. But this situation can be improved somewhat. Panait, TuylsThuyles,
and Luke [13] have provided a weakened convergence proof for when the evaluation procedure
for a genotype is to take its maximum performance when paired N times with randomly chosen
collaborators, and and using tournament selection (Equation 4), both common practice in real



CCEAs. The proof shows that for any probability e there exists a size N which is guaranteed to
achieve convergence within e.
The maximum-of-N evaluation procedure, which replaces Equations 1 or 3, is:
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Note the similarity to Equation 4. This equation is again a result from order statistics due to use
of “max”. In the first subequation, for example, the fractional term and the y](-t) together indicate
the probability that a given pairing (i, 7) will provide the highest reward for a given individual i
out of N such pairings. This is then multiplied by the reward a;; and summed to compute the
expected maximum reward for ¢ when doing N pairings.

How large should N be? In a real scenario, N is effectively bounded by the size of the col-
laborating population(s). But even this upper bound is problematic: large values of N are more
accurate and more likely to converge rapidly to the optimum; but may require more total number
of evaluations than is realistic given the evaluation budget. Thus recent work [2, 12] has focused
on reducing the total number of evaluations by identifying an archive of individuals from the col-
laborating population(s) which provide as good an assessment as testing with entire collaborating
population would provide. As it turns out, this archive size can be very small, resulting in a
significant reduction in evaluations.

4 Univariate Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) replace the evolutionary computation population
with a statistical distribution of an infinite population. Most such algorithms iteratively generate
samples (individuals) from the distribution, test those samples, and then update the distribution
so that high-fitness samples are generated more often in the future and low-fitness samples are
generated less often in the future.

An important design decision for EDAs is to select a representation for the probability dis-
tribution. An obvious problem is that the distribution of an infinite population, over the entire
solution space, is of high dimensionality and complexity. Early on, one common approach was to
break the joint distribution into separate distributions per-allele. That is, we assume an individual
consists of a set of alleles, and for each allele, we maintain a distribution of probabilities of the gene
settings for that allele. In the simplest case, if the individual is a boolean vector, then each allele
distribution could be represented by a single number [0, 1] indicating the probability of choosing
a 1 instead of a 0. If the individual is a vector of floating-point numbers, each allele may possibly
be represented as a gaussian distribution over the range of possible values. Common Univariate
EDAs include the Univariate Marginal Distribution Algorithm (UMDA) [7], the Compact Genetic
Algorithm (CGA) [18], and Population-Based Incremental Learning (PBIL) [1]. To illustrate, here
is the pseudocode for PBIL, a simple but effective univariate EDA:



loop (ALGORITHM 3. PBIL)
for q from 1 to Q do
Create an individual i, by choosing a gene at random under each allele distribution.
Evaluate(iq)

Select the best R individuals from among the various i1...74
for each allele distribution a do
Change the distribution to reflect the distribution of genes for that allele
among the R best individuals

By pushing the joint distribution into individual marginal distributions, univariate EDAs dis-
card information that is normally available to a more traditional evolutionary algorithm. Such
information is important to solve non-separable problems. In univariate EDAs, each distribution is
being updated based solely on its performance, without consideration of the particular other dis-
tributions with which it is being conjoined. Non-separable problems require such consideration, as
their fitness is based on the nonlinear combination of various elements. Recognizing this weakness,
EDA designers have attempted to create richer distributions involving more relationships among the
alleles. Perhaps best known are variations of the Bayesian Optimization Algorithm (BOA) [15, 14],
which attempt to use a bayesian network to model the entire joint space in a sparse manner.

Despite these difficulties, there has been some theoretical work on convergence properties in
univariate EDAs. UMDA has been shown to converge to the optimum for separable problems
[9], and for non-separable problems when augmented with a simulated-annealing-like Boltzman
selection [8, 10]. A theoretical infinite-population version of UMDA has also been shown to converge
to the optimum [22, 23]. Rastegar and Hariri have shown convergence to local optima for PBIL
[20] and CGA [19].

5 EDAs and the EGT Infinite Population Model of CCEAs

CCEAs do not operate over a joint population but rather over a set of marginal populations, each
responsible for some portion of the joint solution. In the EGT infinite population model of CCEAs,
these marginal populations are infinite in size — that is, they are distributions rather than samples.
We wish to point out here that, crucially, univariate EDAs do exactly the same thing. We are not
used to viewing EDAs’ marginal distributions as “infinite populations” in the CCEA sense, but
that is precisely what they are. The EGT framework that is used in CCEA theory is not just an
equivalent model for theoretical univariate EDAs, it is a univariate EDA.

This implies that univariate EDAs and “real” (as opposed to EGT) CCEAs are cousin algo-
rithms. There are only two significant differences between them. First, CCEAs represent their
marginal distributions with samples (the individuals), whereas EDAs commonly represent their
marginal distributions with tables, histograms, or parameterized distributions (such as gaussians).
And second, because they have actual samples in their marginal distributions, CCEAs employ
EC-style breeding operators to update those samples. This is similar to the cousin-relationship
between EC algorithms and EDAsThis is in the same sense as EC algorithms being cousins with
EDASs consisting of one joint distribution over the whole space.

This connection between the two techniques may permit some cross-pollination. For example,
the CCEA community has expended considerable energy to understand exactly why CCEA models
exhibit pathologies: this work may prove fruitful in explaining similar issues in EDAs. Likewise,



the EDA community has generated efficient algorithms which may improve on existing CCEA
approaches, and may transfer theory as well. The EDA community has also moved from univariate
to bivariate and bayesian network representations of the joint distribution: perhaps these might
inform CCEAs as well.

5.1 A Proof and an Algorithm

In Section 3 we discussed a proof of an e-bounds on convergence to the optimum in a two-population
EGT CCEA using the maximum-of- N-collaborators evaluation procedure (Equation 3) in combi-
nation with tournament selection (Equation 4). As a first example of the potential for cross-
pollination, we have extended this two-population proof to the M-population case. We include the
theorem and its proof in Section 7.

This theorem suggests a new EDA algorithm, derived directly from the parallel generational
CCEA algorithm (Algorithm 2), with optimal convergence properties as shown in the theorem. The
algorithm is not particularly efficient: for each allele, we construct and test multiple individuals to
assess that allele, but do not reuse their results to inform other allele distributions. As a result,
in its proven form, it would be expected to require many more evaluations per round than PBIL,
CGA, and UMDA —but we offer it here as an example of just how close CCEAs and univariate
EDAs are.

The algorithm is:

loop (ALGORITHM 4. CMLA)
for each allele distribution a do
for each gene value g € a do
for N times do
Construct an individual ¢ using allele a fixed to g, and with other genes
selected at random under the remaining allele distributions.
Evaluate(i)
for each allele distribution a do
Change the distribution to reflect performing tournament selection of size H
over the genes in a (using Equation 4).

5.2 Comparison and Results

This section presents some of the simulation results for CMLA in terms of both fitness evaluations
and generations. All experiments were averaged over 50 runs and utilize a tournament size of
H=2.

From the theorem in Section 7, we expect that the probability of convergence to the global
optimum for the EGT model increases with the number of collaborators. We expect to see a similar
effect as we increase the number of collaborators in the CMLA. Figure 1 plots the convergence
trajectory of CMLA with 1, 4, and 16 collaborators on MAXONES, a well known linear function
with the following definition:

Definition 1. MAXONES: {0,1}" — R is defined as:

MAXONES(z) = ixz (6)



In figure 1, observe that the solution quality increases as IV increases. However, in Section 5.1
we have noted that CMLA may be very inefficient as we construct many individuals and evaluate
them for each allele, but do not reuse the results to inform the distributions for the other alleles. To
illustrate this heavy cost of evaluations, Figure 2 contains exactly the same same set of experiments
as those in Figure 1, plotted against the number of evaluations instead of the number of generations.
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Figure 1: Best-so-far fitness versus generations for N collaborators on a 100-bit MAXONES problem
where N =1, N =4, and N = 16. Bars show 95% confidence intervals.

The wastefulness of CMLA in terms of evaluations is bad news in practice, since we have
found that CMLA quickly gets trapped in local optima on some problems when the number of
collaborators is insufficient. Figure 4 shows a comparison between PBIL and CMLA (N = 8) on
the well-known LEADINGONESBLOCKS problem [6]. The LEADINGONESBLOCKS problem counts
the number of leading blocks of size b in x that have all bits set to 1. It has the following definition:

Definition 2. Forn € B and b € {1,...,n} so that n/b € N, LEADINGONESBLOCKS;, : {0,1}" — R
1s defined as:

n/b b
LEADINGONESBLOCKS)(z) = Z H xj (7)
i=1 j=1

In figures 4 and 3, CMLA clearly does not converge to the optimum fitness. Rather than
radically increase the number of samples in CMLA to achieve an optimal solution quality, we chose
instead to apply a probability update rule that is similar to the probability update rule that is used
in PBIL. This probability update rule mixes the probability values of for time ¢ with the newly
computed probability values for time ¢ 4+ 1 according to a learning rate [1]. Figures 6 and 5 show
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Figure 2: Best-so-far fitness versus evaluations for N collaborators on a 100-bit MAXONES problem
where N =1, N = 4, and N = 16. Bars show 95% confidence intervals, and vertical dotted lines
show the evaluation budgets. A comparison of this figure to Figure 1 illustrates the heavy cost of
adding more collaborators. While the solution quality increases modestly as also shown in Figure
1, the number of evaluations required per generation also increases significantly.



the results after applying a learning rate of o = 0.05 to CMLA for N = 8. Using a smaller learning
rate in this manner helps CMLA to achieve the optimal solution. However, as the figures indicate,
CMLA is still wasteful in terms of the number of evaluations. Furthermore, while this result is
interesting, the use of this update rule deviates somewhat from the formulation we have proven in
Section 7 to have optimal convergence guarantees.
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Figure 3: Best-so-far trajectory versus generations for LEADINGONESBLOCKS problem, 100 bits,
5-bit blocks (so that the ideal fitness is 20). For CMLA, a = 1. Bars show 95% confidence intervals.
PBIL is compared to CMLA with N = 8 collaborators.

6 Conclusion

A conclusion!

7 Proofs

As discussed in Section 3, it has been shown that a two-population cooperative coevolutionary EGT
model, with tournament selection, and with maximum-of-M-collaborations fitness assessment, will
converge to the optimum within some € probability given a sufficiently large value of M. This
model is the one described by Equations 5 and 4. The theorem here extends this convergence proof
to the N-population cooperative coevolutionary EGT model.

Notation We use (X;) to denote the space of genotypes of the i-th population (for simplicity, we
have X; = {1,2,3,...,n;} where n; is the number of genotypes for the i-th population. We further
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Figure 4: Best-so-far trajectory versus ewvaluations for LEADINGONESBLOCKS problem, 100 bits,
5-bit blocks (so that the ideal fitness is 20). For CMLA, o = 1. Bars show 95% confidence intervals.
PBIL is compared to CMLA with N = 8 collaborators.

define X_; = X1 X ... x X;_1 X X511 X ... X Xy as the joint space of all possible collaborators for
an individual from population i (Notice that X; was missing). For each population p from 1 to M,

for each genotype ¢ from 1 to n,, we let pxl(t) denote the ratio of individuals with genotype 7 in
population p at generation t.

Here we will deviate from our previous equations in our use of j. Now j will represent a tuple of
individuals chosen from various populations to collaborate with individual i. We will also extend
y; to refer not to the proportion of genotype j in the second population (as was the case earlier)
but rather to the proportion of collaborating tuple j in the joint collaboration space. That is, for
tuple j € X_; (the i-th population is missing from j) with j = (j1,..., Ji—1, Ji+1, - M), WeE US€
the notation y](-t) = [Loci a0 ;épvxgi). Likewise, a;; is the reward received for genotype i when
combined with collaborators described by tuple j.

The formal model for CCEAs with N individuals becomes:

10
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Figure 5: Best-so-far trajectory versus generations for LEADINGONESBLOCKS problem, 100 bits,
5-bit blocks (so that the ideal fitness is 20). For CMLA, o = 0.05. Bars show 95% confidence
intervals. PBIL is compared to CMLA with N = 8 collaborators.
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for each population p and each genotype ¢ in p. Note that the second equation is identical (tour-
nament selection).

Lemma 1. Assume the populations for the EGT model are initialized at random based on a uniform
distribution over all possible initial populations. Then, for any € > 0, there exists . > 0 such that

i

P (minizlunp px(o) < 96) <e (10)
P (maxizl,_np pxl(o) >1-— 95) <e€ (11)

for all populations p from 1 to M.

11
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Figure 6: Best-so-far trajectory versus ewvaluations for LEADINGONESBLOCKS problem, 100 bits,
5-bit blocks (so that the ideal fitness is 20). For CMLA, o = 0.05. Bars show 95% confidence
intervals. PBIL is compared to CMLA with N = 8 collaborators.

Proof. One method to sample the simplex A™ uniformly is described in [4] (pages 568-569): take
n— 1 uniformly distributed numbers in [0, 1], then sort them, and finally use the differences between
consecutive numbers (also, the difference between the smallest number and 0, and the difference
between 1 and the largest number) as the coordinates for the point.
Let p be an arbitrary population from 1 to M. It follows that (px(g)

i ) can be generated
i=1..nyp

as the difference between n — 1 numbers generated uniformly in [0, 1]. It follows that min;,—; p:nz(.o)
is the closest distance between two such numbers (and possibly the boundaries 0 and 1).

Suppose v > 0 is a small number. We iterate over the n, — 1 uniformly-distributed random
numbers that are needed to generate an initial population <pa:§0)> R The probability that the
1=1..n

first number is not within v of the boundaries 0 and 1 is 1 — 2. The f)robability that the second
number is not within v of the boundaries or of the first number is less than or equal to 1 — 4. In
general, the probability that the kth number is not within v of the boundaries or of the first k — 1
numbers is less than or equal to 1 — 2k~y. Given that the numbers are generated independently of
one another, the probability that the closest pair of points (considering the boundaries) is farther
apart than v is equal to

12
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where 1, = max;—1._y n; Would you guys please double-check this last inequality which
introduces n,-?. Given that

lim1— (1 —2(ny — 1)) = 0
~y—0

it follows that for any ¢ > 0 there exists 6. > 0 such that P <min,~:1_,np pr(o) < 06) < € for all
populations p from 1 to M.
To prove Inequality 11, consider that max;—=1 n, pxgo) > 1 — 0. implies that all other ,z; ratios

except for the maximum are smaller to 6., which, as proven above, occurs with probability smaller
than e. O

Lemma 2. Assume the populations for the EGT model are initialized at random based on a uniform
distribution over all possible initial populations. Then, for any € > 0, there exists ne > 0 such that

P min min a:()> A max max a:()<1 >1—c¢
(lezlnpp e N it P 'he

In other words, there is an arbitrary probability that the initial populations contain reasonable
values (not too close to either O or 1) for all proportions of genotypes.
for = V1=¢ " which i ifi f e for thi
Proof. We apply Lemma 1 for =———5~-—, which is greater than 0. The specific value of 7. for this

proof equals the value of 6, _ »— from Lemma 1. It follows that:
1= Wi
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Theorem 1. Given a joint reward system with a unique global optimum a;zis. iz, for any € >0

and any H > 2, there exists a value N. > 1 such that the theoretical CCEA model in Equations 8-9

converges to the global optimum with probability greater than (1 — €) for any number of collaborators
N such that N > N..
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Proof. We only use € as a guarantee for the worst case scenario for the proportions of individuals in
the initial populations. From Lemma 2, it follows that there exists 7. > 0 such that with probability
at least 1 —e¢, it holds that n. < pfcgo) < 1—mn, for all populations genotypes ¢ in all populations p. In
other words, with probability e, the initial populations will not have any proportion of individuals
that cover more than 1 — 7., nor cover less than 7. of the entire population.

We will prove that there exists N, > 0 such that the EGT model converges to the global optimum
for any N > N, and for all initial configurations that satisfy n. < ,,xﬁ? ) c1- 7ne for all populations

p. To this end, let o be the second highest element joint reward (a < a;+j=). It follows that

®) < « for all ¢ # ¢* in all populations p. Here’s why (by refining Equation 8):
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Next, we work on identifying a lower bound for pu,.’. For simplicity, let ¢* stand for i;, and j*

if
stand for the optimal tuple of collaborators for *.
N N
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We further refine the lower bound for ,u;.’:
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= diy <1—(1—y§.)) >+ > =@ | 2 Y

JEX _p § Yp. kEX

J#J* Nax ;<0 kEX_ i
ai*k:ai*j

Given that > ;" y,(:) = 1, we further refine the previous inequality:
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(®)

N n N
il = o (1= (1202) )4 8w (1Y)
JEX _p: Z Ys.
J#I*Nagx ;<0 kEX _p:
ai*k:ai*j
N N

jEX,p:
j;ﬁj*/\ai*j<0

N

jGX,p:

JF5* Nagx ;<0
N
_ (t) 2 :
= ai*j* — 1 — H 7‘1"]: ai*j* — a”i*j (13)
r=1..M: jGX_p:
T#p JET*Aax ;<0

The inequalities 7. < ra:§-9) < 1 — n hold for all initial populations r, as inferred earlier from

Lemma 2. It follows from Eq%ation 13 that

(0) M-1\N Z
pui* Z Qjxj*x — (]_ — MNe ) Qixj*x — Qx5 (14)
jEX,p:
J#J* Nax ;<0
However,
. _1\N
lim Qixj*x — (]_ — TIGM 1) Qg j* — E Qi j = Q> (15)
N—o0
JjeEX_p:
j;ﬁj*/\ai*j<0

Given that a;;+ > a, Equation 15 implies that there exists N, > 1 such that

Qjx jx — (1 — nEMil)N Qij* j* — Z aixj | >« (16)
jEXipZ
J#T* Aajx ;<0
for all N > N,. From Equations 13 and 16, it follows that pu§9) > o for all N > N,,. Observe that
N, does not depend on the initial population p we considered this far.
Let Ne = maxp=1.m (Np), and let N > N.. Next, we show by induction by ¢ (the number of
iterations of the model, i.e. the number of generations) that the following inequalities hold for all
populations p:
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t M-1\N
pup) 2 U e = Y ey
]‘EX,pZ
JFT* Najx ;<0

airjr — (1 — e

(t+1) (t)
pxi* Z pxi*

At the first generation (¢t = 0), the first inequality holds (from Equation 14). For a population
O pu(O) for all i@ # i*. As a

i* %

p, we combine this with the definition of N. It follows that ,u

H
1
consequence, pxg*) =1- 59) > pxz(?)

To prove the inductive step, it follows from Equation 13 and from the inductive hypothesis that

<1 — T (from Equation 8).

N
t+1 t+1
A > = () = T

jGX_p:
£ Nagx ;<0

v
£
*
<
*
|
/N
—_
|
S
=
N—
z
e
N*
<
%
|
S
S
*
<

j;ﬁj*/\ai*j<0

N
0

Z Qj* j* — (1 _ y](*)> Qgxjx — Z Qi

jGX_p:

j?éj*/\ai*j<0
N
> appr— (T=nM=1)7 | @y — Z Qixj
jGX_p:
j?éj*/\ai*j<0
. . . S (t+1) (t+1) .
Given the definitions of N and «, this also implies that ,u; ' > a > ,u, for all ¢ # 7*. As
H
a consequence, pmz(frl) =1- (1 - pxl(f)) > pzngf) (from Equation 8).

Having shown that pxz@ are monotonically increasing for all populations p, and given that they

are all bounded between 0 and 1, it follows that they each converge to some value. Given that
H
puz(i) > pugt) for all ¢ # i* at each iteration, it follows that pg:gfﬂ) =1- (1 —png)) at each

iteration as well. If ;z is the limit of the pxl(f) values when ¢ goes to oo, then yz =1 — (1 — ;)"
which implies that ,x is either 0 or 1. We can rule out the 0 limit because the values of pxz@ are
(0) ()

monotonically increasing and ,z;. p

i

> 7ne. Thus, px;. converges to 1 for all populations p. ]
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