
 1

Undo and Erase Events as Indicators of Usability Problems

Author information removed for blind review

ABSTRACT
One approach to reducing the costs of usability testing is to
facilitate the automatic detection of critical incidents:
serious breakdowns in interaction that stand out during
software use. This research evaluates the use of undo and
erase events as indicators of critical incidents in Google
SketchUp (a 3D-modeling application), measuring an
indicator’s usefulness by the numbers and types of usability
problems discovered. We also compared problems
identified using undo and erase events to problems
identified using the user-reported critical incident technique
[Hartson and Castillo 1998]. In a within-subjects
experiment with 35 participants, undo and erase episodes
together revealed over 90% of the problems rated as severe,
several of which would not have been discovered by self-
report alone. Moreover, problems found by all three
techniques were rated as significantly more severe than
those identified by only a subset of techniques. These
results suggest that undo and erase events will serve as
useful complements to user-reported critical incidents for
low cost usability evaluation of design-oriented applications
like SketchUp.

Author Keywords
Usability testing, critical incidents, undo, erase, user-
reported critical incident technique, Google SketchUp.

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces - Evaluation/methodology.

INTRODUCTION
Traditional laboratory usability testing [22] can only reveal
certain aspects of a product’s usability. In particular,
usability research goals and product characteristics
sometimes dictate the recruitment of a large pool of
participants, which can be prohibitively expensive if the
organization employs a traditional testing methodology.

One way to address this challenge is to facilitate the
automatic identification of particularly troubling interaction
episodes encountered during usability testing. Usability
researchers refer to such episodes as critical incidents.
There are two classes of approaches for identifying critical
incidents without requiring the active attention of a
usability expert: event-based reporting (in which algorithms
attempt to discover potential critical incidents in usage log
data), and self-reporting (in which the participants
themselves identify their own incidents). Each class of
approaches has its benefits and drawbacks. This paper
compares an event-based technique (where the events of
interest are undo and erase), with a self-reporting technique
(the user-reported critical incident technique [10, 11]).

The test application for our approach, Google SketchUp [7],
is a freely-available 3D modeling application with large-
scale distribution around the world. It is used by architects
and interior designers as part of their professional modeling
workflows, and also by casual users with an interest in 3D
modeling. SketchUp is intended as a playful conceptual
design tool, although it can also be used for precise
modeling of 3D objects.

SketchUp’s wide range of uses and its unstructured
workflow present unique challenges for event-based critical
incident detection. Many event-based approaches seek to
explicitly model expected user behavior (e.g., [13]),
detecting and reporting when users deviate from the
predictions of the model. With SketchUp, however, it is
difficult to imagine how one would construct such a model
of expected behavior. There are simply too many different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, MA, USA.
Copyright 2009 ACM 978-1-60558-246-7/08/04…$5.00

 2

3D objects that someone might choose to build, and too
many ways of building them.

This motivates an alternate approach: rather than modeling
successful interactions, we attempt to model unsuccessful
interactions directly. In applications like SketchUp,
attempts to correct mistakes represent natural indicators of
unsuccessful interactions. We chose to focus on two such
indicators: undo and erase events. We chose these particular
indicators because we knew that they occur frequently
during use, and we could measure their occurrence without
having to modify the source code to SketchUp.

How useful are undo and erase events as indicators of
usability problems in SketchUp? Knowing that both undo
and erase are frequent operations that often indicate
recovery from errors, it seemed reasonable to hypothesize
that focusing on these events would reveal some of the
same usability problems self-reported by users. However,
we also knew that some usability problems (for example,
problems related to feature discoverability) would be
unlikely to produce undo or erase events as symptoms.
Furthermore, we knew that some undo or erase events could
lead to false alarms – they might sometimes indicate
epistemic actions [15] rather than usability problems.

To assess the value of focusing on erase and undo, we ran a
within-subjects laboratory experiment. We compared the
numbers and characteristics of usability problems
discovered with undo and erase events to those discovered
with the user-reported critical incident technique. Results
from 35 participants indicate that undo and erase episodes
together revealed over 90% of the problems rated as severe,
several of which would not have been discovered by self-
report alone. Moreover, problems found by all three
techniques were rated as significantly more severe than
those identified by only a subset of techniques. These
findings suggest that undo and erase events will serve as
useful complements to user-reported critical incidents, for
low cost usability evaluation of design-oriented applications
like Google SketchUp.

RELATED WORK
This research is motivated by prior work that has
demonstrated the need for usability testing methodologies
designed to support the testing of large numbers of
participants in parallel. A large participant pool may be
warranted when the goals require statistically significant
results, when it is necessary to sample a variety of expertise
levels [17], when users are allowed the freedom to choose
their own task goals [23], or when there are many ways for
users to accomplish the same goals (as with SketchUp).

Our approach is a derivative of the critical incident
technique [5], in which significant events during interaction
(positive or negative) are collected and analyzed by trained
observers. (We chose to focus on negative incidents in this
paper, since they are more likely to indicate usability
problems.) del Galdo et al. [4] adapted the critical incident

technique for use in HCI, and Winograd and Flores
independently developed the theory of user breakdowns
[25]. Hartson and Castillo devised the user-reported critical
incident technique [10, 11], in which the users of the system
are responsible for detecting and describing their own
critical incidents as they occur. While their technique was
designed for use in remote situations, some of their studies
were done in laboratory environments. The comparison of
our approach with this technique forms the central theme of
this paper.

Capra [2] developed and evaluated an augmented
retrospective variant of the user-reported critical incident
technique, finding it to be similarly effective to a
contemporaneous reporting strategy. In this variant,
researchers showed participants a video replay of their
entire session, asking them to detect and describe critical
incidents as they observed them in the replay. Our own
implementation is a hybrid implementation of [10, 11] and
[2], separating the detection and description phases.
Participants detect critical incidents contemporaneously, but
description is delayed until a retrospective phase (in which
we prompt them with screen capture video centered about
each detected incident). We chose this approach because it
allowed us to compare self-reported incidents to those
detected by undo and erase (for which a hybrid approach is
the only reasonable option).

One difficulty Hartson and Castillo found with their first
implementation of the user-reported critical incident
technique was that users often initiated the reporting long
after they experienced a problem [11] (making it more
difficult to link the reported incident to contemporaneous
video or other context). The solution described in their
paper was to decouple the detection and description of
incidents, which is exactly what our own implementation
does by combining contemporaneous detection of incidents
with retrospective description.

A legitimate concern for any usability evaluation method
that relies on retrospective analysis is whether important
information is lost due to the fallibility of human memory.
We are encouraged by results from a recent eye-tracking
study [9]. In an evaluation of the stimulated Retrospective
Think Aloud method, Guan et al. compared participants’
original eye movements to their retrospective
verbalizations, and found strong correlations. They
concluded that stimulated Retrospective Think Aloud was
both valid and reliable for reconstructing an account of a
user’s attention during a task.

Finally, our focus on undo and erase events is closely
related in spirit to a case study described by Swallow et al.
[24]. They instrumented a direct-manipulation visual
builder application to record log data for a variety of
indicators of critical incidents, including undo and erase.
However, their analysis was limited to a discussion of false
positives; they did not compare to other usability evaluation
methods as we do in this paper.

 3

EXPERIMENTAL METHODOLOGY
This section describes the design of the experiment we ran
to compare problems detected by erase and undo events to
those detected by user-reported critical incidents. A series
of three pilot experiments totaling 27 participants informed
the design of the final experiment. The results of these pilot
studies will be described as they relate to the design that we
arrived at for the final experiment.

Participant Recruitment
Our goal in recruitment was to attract participants of a
variety of backgrounds and SketchUp expertise levels. This
variety increased the generality of the study, and made
inter-group comparisons possible. We recruited a total of 70
participants, including both the pilot study and the formal
experiment. Most participants (61) responded to flyers
posted at coffee shops and in academic buildings at the
University of Colorado at Boulder. To attract a higher
percentage of SketchUp experts, we also enlisted 6
employees of Google who are specialists in 3D modeling
with SketchUp. The remaining 3 participants were software
engineering interns at Google, and participated only as part
of the pilot experiments.

Of the 35 participants in the formal experiment, 19/35
(57%) were a near-equal mix of undergraduate and graduate
students from the following departments: Architecture (7);
Computer Science (4); Civil Engineering (3);
Telecommunications (1); Aerospace Engineering (1);
Astrophysics (1); Geography (1); and English (1). Of the 16
non-students, 6 were professional 3D modelers, 3 were
software engineers, and the remainder had miscellaneous
jobs unrelated to SketchUp.

Of the 35 participants, 10/35 (28%) had never used
SketchUp before, 9/35 (26%) described themselves as
novices with the interface, 9/35 (26%) described themselves
as intermediate users, and 7/35 (20%) described themselves
as experts. For a 90 minute session, participants were
compensated with a $10 gift check, a short-term license to
SketchUp Pro, and Google schwag.

Experimental Setup
The formal experiment was divided into six 90-minute
sessions, each with between 5 and 7 participants who
worked in parallel on independent laptops (see Figure 1 for
a photograph of the laboratory environment). Each of the
laptops was an IBM ThinkPad T61p, with identical
software configurations including a development version of
SketchUp. Laptops were also equipped with screen capture
recording software and dual headsets with microphones (for
the paired retrospective session, described later).

We also instrumented SketchUp so that it could record
time-stamped occurrences of undo and erase events, and
added a button for participants to report critical incidents.
We implemented these extensions as plug-ins using
SketchUp’s embedded Ruby API, thus avoiding having to
make any modifications to the source code to SketchUp.

Experimental Protocol
The 90 minute experiment was divided into the following
sections: Training in SketchUp (15 minutes), Training in
Identifying Critical Incidents (20 minutes), Practice (10
minutes), Modeling Task (15 minutes), and Retrospective
Commentary (30 minutes).

Training in SketchUp (15 minutes)
To familiarize everyone with SketchUp, participants
watched three short new-user training videos [6]. The three
videos we showed were: “New Users 1: Concepts,” “New
Users 2: Drawing Shapes,” and “New Users 3: Push/Pull.”
Participants were encouraged to take notes.

Training in Identifying Critical Incidents (20 minutes)
To ensure that participants were adequately trained in
reporting critical incidents, we gave extensive instructions
and examples of incidents. For the purposes of a fair
comparison, we tried to mimic the style and content of
training described by Hartson et al. [11]. We did make
several changes motivated by our first pilot experiment. In
this experiment (n = 12), we observed that participants
seemed less likely to report problems when they attributed
the problems to themselves (rather than the software). We
adjusted our instructions to emphasize that we were testing
the software and not the participants. We also decided to
refer to critical incidents as “interface issues,” hoping that
the more neutral terminology would encourage reporting.

Practice (10 minutes)
Participants were given 10 minutes to practice using
SketchUp and reporting critical incidents. Participants were
told to explore interface features and build whatever they
wanted during these 10 minutes.

Figure 1: The experimental setup for our laboratory study.
Seven laptops were identically configured with SketchUp.
Participants worked in parallel; their actions were logged, and
their screens were recorded. Notice that there were two chairs and
headsets next to each computer, to facilitate paired-participant
retrospective commentary sessions.

 4

Figure 2: The “bridge” task. Participants had to draw this model
in SketchUp, and report any critical incidents as they worked. We
asked them to ensure that all four legs were the same height and
shape. If they finished early, they were asked to resize their bridge
to 5 ft. x 5 ft. and make three copies of it, laying them end to end
to end.

Figure 3: The “room” task. Participants were asked to draw this
model of a room in SketchUp, and report any critical incidents as
they worked. We asked them to ensure that the room was 10 ft.
high, and the doorway was 6 ft. 3 in. high. They did not need to
model the bed; they could insert it from the “components browser”
and position it in the room. If participants finished early, they were
asked to modify the bed to form two single beds, each with one
pillow. They were also asked to add shadows to their scene.

Modeling Task (15 minutes)
We randomly assigned participants to one of two tasks:
some completed the bridge task (Figure 2), while others
completed the room task (Figure 3). Having a second task
increased the generality of the study, but time constraints
prevented us from giving both tasks to each participant.
Each task had two phases; if participants finished the first
phase, they could raise their hand and receive printed
instructions for the second (more difficult) phase. We
intended to keep all participants busy throughout the
session, regardless of their expertise level in SketchUp. See
the captions for Figures 2 and 3 for descriptions of the
specific instructions provided to participants. We
deliberately made the goals unambiguous and constrained;

if we had allowed participants any flexibility in defining
their own goals, then many of their undo and erase
operations could have indicated changes of goal rather than
usability problems.

We asked participants to report critical incidents as they
worked. To report an incident, they simply clicked a
“Report an Issue” button. Pressing this button triggered a
log message that was written to a file; it had no visible
impact to the user. Here we deviated from the approach of
Hartson and Castillo [10, 11]. Instead of asking them to fill
out a form immediately upon experiencing the incident, we
simply marked the incident and allowed the user to
continue immediately. After the task was finished, we
extracted video episodes around each marked event and
asked them to reflect on the episodes (see the next section
on “Retrospective Commentary”). This was done to
minimize disruption to the user, and to facilitate a fair
comparison with undo and erase events (for which
commentary must be collected retrospectively to avoid
intolerable disruption).

We purposefully did not encourage participants to think
aloud as they worked. Our early pilot experiments
suggested that it is exceedingly difficult to think aloud
while modeling in SketchUp, and thinking aloud appeared
to greatly interfere with the ability to model successfully.
The thought process behind using SketchUp is likely non-
verbal: SketchUp users are forced to think spatially: in 3D
shapes and orientations – not words. Asking them to
comment retrospectively rather than concurrently at least
allows them to focus their attention on putting their
thoughts into words.

Retrospective Commentary (30 minutes)
Immediately following the completion of the task, we
processed the video to extract 20 second episodes centered
around each undo, erase, and self-reported incident. If two
episodes would have overlapped (e.g., a user repeatedly
used undo), then we merged the episodes to form a single
longer episode, identifying each individual event with a
large caption in the video. We showed them the video
episodes in a VCR-style interface, and automatically
prompted them with questions about each episode. They
answered the questions by speaking into their headsets,
clicking on a button to indicate when they had finished
answering each question. Since we asked different
questions for each event type, we showed all of the
episodes of each event type together, rather than
interleaving them. To avoid confounding our results, we
fully counterbalanced the order of the event types.

Three of the questions were common to all event types:

1. Please describe the events that led you to
[undo/erase/report an issue]. Focus your answer on
recounting a “play-by-play” of what you were thinking
and doing at the time. If you can't remember, just say
so and move on to the next episode.

 5

2. In the events leading up to your [undo/erase/issue
report], did the behavior of SketchUp surprise you? If
yes, explain the difference between your expectations
and what actually happened.

3. Did you find a way around the issue? If so, what did
you do to get around it?

For undo and erase episodes, we asked two additional
questions:

4. Did you report this as an issue?

5. If you did not report this as an issue, why do you think
that you didn’t?

In our first two pilot experiments, participants answered
these questions by themselves, speaking into the
microphone alongside other participants who were doing
the same in parallel. Often the commentary that resulted
was abrupt and awkward, and generally did not help in
describing the underlying usability problem. To remedy
this, in our third pilot test (n = 10), we tried pairing up
participants and asking them to discuss each others’
episodes together. The commentary was significantly
improved – enough so that we decided it was worth the
extra time required.

In the final experiment, each pair of participants was
assigned roles as “speaker” and listener”. (The participants
swapped roles halfway through, and changed computers.)
The speaker’s job was to watch her own episodes and
attempt to answer the prompted questions. The listener’s
job was to ask questions until the answers were completely
clear. The listener, not the speaker, was responsible for
deciding when to move on to the next question (by clicking
a “Question has been answered clearly” button). In either
role, participants were encouraged to use a shared mouse to
point at objects rather than their fingers, so that we could
capture these references in the screen capture recording.

We formed participant pairs by matching those with the
most episodes with those with the least, in an attempt to
reduce the variance in time required for each pair to
complete the retrospective review. If an odd number of
participants were present in a session, the experimenter
became the listener for the participant with the most
episodes.

DATA PROCESSING AND CODING
This section describes the analysis process employed to
extract usability problems from the raw usability data. Our
analysis roughly followed the process described by
Howarth et al. [14]: we extracted usability problem
instances, and merged these instances to form usability
problems. But before we began the extraction and merging
process, there were several steps we took to prepare the
data. These steps are described in the following sections.

Discarding Ambiguous Participant Data
From an original set of 43 participants, we were forced to
remove three participants because their microphones failed
to work properly. We also needed to remove one more
participant because he did not finish his retrospective
during the time allotted. We decided to remove three more
participants because they had been paired with the
experimenter; we would like to run further studies to
evaluate how the quality of the commentary might differ in
these cases. Finally, we removed one participant because
she could not even begin to answer the questions about her
episodes. (She was utterly lost with SketchUp. Her usability
problems were more of the “how do I use a mouse?”
variety.) Removing the data from these 8 participants left
35 participants, whose data proceeded to the next phase of
analysis.

Discarding Unclear Episodes
The 35 participants produced 353 episodes (139 undo
episodes, 113 erase episodes, and 101 self-report episodes).
Cumulatively, this equates to an average of 10.1 episodes
per person, or 0.67 episodes per minute of SketchUp usage.
From this initial set of 353 episodes, we needed to discard
25 episodes (8%) because the combination of commentary
and screen capture video was not clear enough for the
researcher to extract a complete usability problem instance.
We discarded an additional 4 episodes (1%) in which the
user could not remember enough about the episode to
answer any of the retrospective questions.

Discarding False Alarms
From the remaining set of 324 episodes, we identified 64
episodes (19.8%) that contained no identifiable usability
problems. Almost all of these “false alarm” episodes (98%)
were triggered by erase events. (One false alarm was
generated by self report, when a participant accidentally
pressed the button.) There were two varieties of erase false
alarms. First, there were episodes in which a user erased an
extra cosmetic edge that was a byproduct of the normal
modeling process. (This is specific to SketchUp; most other
3D drawing programs do not work this way.) Second, there
were episodes in which users created temporary
construction lines to help them align multiple pieces of
geometry, and then erased these lines when they were
finished. Interestingly, this example could never have
resulted in an undo operation; there is no way to undo a
temporary construction line without also undoing the
alignment action that follows it. This seems to be a general
difference between undo and erase, and would likely hold
true for other applications besides SketchUp.

Identifying Usability Problem Instances
After all of the data preparation steps described above, we
were left with 260 episodes. A researcher analyzed these
episodes to extract 215 unique usability problem instances.
The mapping from episodes to usability problems instances
was many-to-many, as described next.

 6

Sometimes, a single episode would correspond to multiple
usability problem instances. In identifying usability
problem instances, we did not distinguish between
problems that were found directly by a method, and those
that were incidental to the method. For example, if a user
experienced some problem, pressed undo because of the
problem, and then experienced a second problem unrelated
to the first, we would include both problem instances. This
process produced 35 additional problem instances.

Sometimes, a single usability problem instance would
correspond to multiple episodes. This happened only when
multiple episodes overlapped in content. Of course,
episodes of the same event type cannot overlap in the
screen capture video (since otherwise our process would
have merged them into a single longer episode). However,
grouping the retrospective by event type necessitated that
we avoid merging events of different event types.
Therefore, it was possible for episodes of different event
types to overlap in content. When participants saw the
same interaction sequence for a second time, their
responses to questions during the retrospective session were
likely to be terse. (“I have already talked about that; refer to
my previous answers.”) We resolved such situations as
follows: If a problem was mentioned during the
commentary for an episode, and that same problem was
visible in the video of an overlapping episode, then we
counted it as a single problem instance discovered in both
episodes. There were 50 pairs of partially overlapping
episodes, and 20 triples.

Merging Usability Problem Instances
Next, a researcher merged the 215 problem instances to
form 95 unique usability problems. It is critical that we
applied a consistent merging strategy across all problems.
Merging two problems requires generalization, since no two
problem instances are exactly the same. Problem instances
may differ along many dimensions: for example, the level
of granularity of the problem, the immediate cause of the
problem, the circumstances under which the problem
occurred, the consequences of the problem, etc. We adopted
a conservative merging strategy, merging problems if they
only differed superficially. Nevertheless, our merge rate
(2.26:1) was higher than we expected. We suspect that this
may be due to the degree of specificity of our task goals;
different users working on the same task tended to
experience the same problems because they were all
working toward identical goals.

At this point, we used a Poisson model [19] to estimate the
total number of problems (N = 110), given the average
probability of a participant finding the average problem (λ=
0.065). These numbers suggest that we probably found over
85% of the problems for the given tasks and methods.

Finally, a researcher wrote descriptions for each of the 95
usability problems. In describing each problem, our primary
goal was to record what happened in the episode(s), and

what the user said about what happened. Some examples of
usability problem descriptions are:

1. (Found by self-report only; rated as mild severity)
After creating a hole, one user judged the result by
what he could see through the hole. Because the
background (the other side of the hole) was similar to
the material surrounding the hole, he had low
confidence in his success and spent 10 seconds making
sure that the action had the intended effect.

2. (Found by undo only; rated as medium severity)
One user experienced difficulty resizing a rectangle
with the Move/Copy tool. He said that he was surprised
that it distorted into non-rectangular shapes as he
dragged on an edge. He expected that SketchUp would
remember that this shape was created as a rectangle,
and keep that rectangle constraint through the rest of
the modeling process. He worked around the problem
by reversing his action and redrawing the rectangle in
the new shape.

3. (Found by all three methods; rated as high severity)
Several users experienced difficulty when they tried to
copy and paste a rectangle, and align their copy to a
point on an existing rectangle. The paste operation
automatically triggered a “Move” command on the
copied geometry, selecting a particular corner on the
copied rectangle as the anchor point for the move.
Users could not find a way to “snap” the copied
rectangle into alignment with the edges of the target
rectangle, since the anchor point did not correspond to
any point on the existing rectangle. They could not find
a workaround, and ended up with unaligned geometry.

Note that we did not attempt to infer the root causes of
these difficulties, which often requires following intricate
threads of causal reasoning [16]. Was the training video
unclear? Did users’ expectations stem from their prior use
of other 3D modeling software? In this study, we avoided
speculation on such possibilities; our goal was to provide
designers and developers with as much information as
possible to evaluate the design tradeoffs inherent in
addressing the problems.

Coding for Problem Severity
Three independent raters (two expert interface designers for
SketchUp and one intermediate user) coded each of the 95
usability problems for severity. Raters evaluated each
problem for its estimated frequency (rated on a scale of 1-
5), and a combination of its impact and persistence (also
rated on a scale of 1-5). Frequency was estimated as the
percentage of occurrence in the general population during
an average modeling session. Impact was estimated as the
time it would take to recover from the problem, while
persistence was estimated as the extent to which the
problem recurred or was difficult to work-around. The
actual scales are shown in Table 1.

 7

Table 1: Problem Severity Rating Scales

Problem impact and persistence:
(1) minor annoyance, easily learned or worked around
(2) bigger problem (at least 3 minutes time lost), but still

easily learned or worked around
(3) minor annoyance, but will happen repeatedly
(4) bigger problem (at least 3 minutes of time lost), and

will happen repeatedly
(5) showstopper (can't move forward without outside

help; data loss; wrong result not noticed)

Problem frequency:
(1) this problem will be extremely rare (less than 1/100)
(2) some will encounter this (at least 1/100, less than 1/3)
(3) many will encounter this (at least 1/3, less than 2/3)
(4) most will encounter this (at least 2/3, less than 100%)
(5) everyone will encounter (e.g., problem with startup)

Frequency and impact/persistence ratings were added, and
the final severity rating was obtained by reducing this sum
by one; this produced an ordinal scale from 1 (least severe)
to 9 (most severe). We labeled severity as follows: 1-2:
mild; 3-4: medium; 5-9: severe (but 9 was never observed).

We divided the 95 problems into three sets: a training set
(15 problems), a test set (10 problems), and an independent
set (70 problems). Coders used the training set to discuss
the severity scales and resolve differences in coding styles.
Next, they independently rated the 10 problems from the
test set, and then discussed the differences and adapted their
ratings. Before the discussion, Cronbach’s Alpha [3] was
0.75; after coders adjusted their ratings, it increased to 0.90.
Convinced that coders were reaching strong agreement, we
instructed them to independently rate the remaining 70
problems. For the final set of all 95 problems (using the
adapted ratings from the test set), Cronbach’s Alpha was
0.82. To reduce the effect of individual outliers, we chose
the median of the three ratings as the severity statistic for
each problem. Figure 4 shows a histogram of all severities.

RESULTS
This section describes the numbers and characteristics of
usability problems discovered with each method.

Comparison Among Undo, Erase, and Self-Report
We define that a problem is detected by a method if at least
one participant experienced an instance of the problem, as
evidenced by video episodes and retrospective commentary
associated with that method (undo, erase, or self report).
We define that a problem is detected by a set of methods if
the above statement is true for each method in the set (even
if no particular participant would have contributed evidence
of the problem from all of the methods in the set).

Figure 4: A histogram of the severity rank of problems
discovered by any of the three methods. The median was 3, the
mean was 3.45, and the standard deviation was 1.63.

The number of problems detected by each method or set of
methods is depicted in Figure 5 in a Venn diagram.
Problems identified by only one method are non-
overlapping, while those that were found by a set of
methods are depicted as overlapping with the other
methods. Problem counts are shown as numbers within
each category; counts of severe problems (those whose
severity rating was at least 5) are shown in parentheses. We
can conclude from this data that undo and erase combined
to detect 74/95 (78%) of all problems. When considering
only severe problems, the percentage identified by undo or
erase rises to 23/25 (92%).

When considering problems detected by only one method,
erase seems to have underperformed relative to undo and
self-report. To investigate, we computed the total number of
unique problems (both severe and otherwise) discovered by
each method for each participant, individually. We then
used paired-samples t tests to compare each pair of
methods. For undo and erase, the difference is significant,
t(34) = 2.73, p = 0.01. For self-report and undo, the
difference is not significant, t(34) = 0.973, p = 0.34.
Finally, for self-report and erase, the difference suggests a
trend, but is not significant, t(34) = 1.4, p = 0.17. This last
non-significant result may seem surprising, but consider
that these statistical tests look at problem discovery on the
level of the individual participant. This does not reflect the
possibility of detecting the same problem with different
methods across different participants.

Correlation between Problem Severity and Method
We investigated how median problem severity varied
across methods and combinations of methods, and the
results are shown in Figure 6. The median severity rating
seems to increase with the number of methods. Each
indicator provides independent evidence that a problem is
severe; when all three indicators detect a problem, we can

 8

be more confident that the problem is not a false alarm.
Taking problems as the unit of analysis, we tested for
significant differences across all 7 categories using the
Kruskal-Wallis test. The result is significant (χ2(6) = 24.74,
p < 0.001). We also ran pair-wise comparisons using the
Mann-Whitney test, and found significant differences for U
vs. S&E&U (z = 3.874, p < 0.001), E vs. S&E&U (z =
2.031, p = 0.046), and S vs. S&E&U (z = 3.373, p = 0.001).
All other comparisons were insignificant. Note that the
Mann-Whitney test assumes that problems are independent
(that they do not tend to co-occur more than they would by
chance). Strictly speaking, problems are not independent,
but the effect size is very large and unlikely to disappear
when dependence is factored in. A similar independence
assumption appears elsewhere in the literature (e.g., [19].)

Correlations Between Problem Severity and Expertise
We also looked for correlations between the median
problem severity and participants’ prior SketchUp
expertise. New users, novices, and intermediates all had a
median problem severity rank of 4, while the median for
experts was 2.5. However, the Kruskal-Wallis non-
parametric test of the differences across all four groups was
not significant, χ2(3) = 2.73, p = 0.44. Although the results
were not significant, a possible explanation for the lower
problem severity among experts would be that our tasks
(even with their second phases) were conceptually easy for
the experts in the study. Most of the problems that they
encountered were minor nuisances (keyboard typos, etc.)

Reasons Problems Were Not Reported
We were particularly interested to learn something about
the problems in the top three sections of the Venn diagram
– those that were detected by erase and/or undo, but not
detected by self-reporting. Why would people fail to report
problems, when these problems were detected with other
techniques? To begin to answer this question, we assessed
the data collected on question #5 in the retrospective
session: for erase and undo events that were not reported,
why did the participant think that he did not report it? Of
those times when people ventured to speculate, the
explanations were revealing: 30/52 (58%) said that they did
not report the problem because they blamed themselves
rather than SketchUp. (This happened despite our repeated
attempts to emphasize to participants that they should
disregard the attribution of blame.) Another 16/52 (31%)
said that the problem was too minor to report. The
remaining 6/52 (11%) said that they should have reported it,
but simply forgot. While it is easy to draw conclusions from
these numbers, we must be cautious not to over-interpret;
people are notoriously bad at introspecting about their own
high-level cognitive processes [21]. However, we believe
that the data combined with the subjective comments
warrant further investigation into the reasons people do and
do not report problems.

Figure 5: A Venn diagram showing the number of usability
problems detected by each of the three methods. Problems in
the middle were detected by all three methods, while those on the
outsides were detected by only one method. Counts of severe
problems (problems whose severity rating was at least 5) are
shown in parentheses. Note that undo and erase combined to
detect over 90% of the severe problems found by any of the three
methods. Undo and self-report detected similar numbers of mild
and medium-severity problems.

Figure 6: Median severity ratings for the problems detected by
each method or combination of methods. Problems detected by
only one method have lower median severity than problems
detected by more than one method. Problems detected by all three
methods have the highest median severity, nearly twice that of the
median of problems detected by any single method alone.

 9

DISCUSSION
This section reflects on the results we obtained, and
discusses possible threats to internal and external validity
[8].

Interpreting the Results of this Experiment
We were initially surprised to find that undo and erase
detected such a high percentage of the problems (over 90%
of the severe problems). Many problems, for example, do
not seem likely to produce either an undo or an erase.

Upon reflection, there are three possible reasons why we
believe that the problem detection rates for undo and erase
were so high. First, sometimes undo or erase operations
happened in circumstances we would not have expected.
Consider the following real problem instance from our
experiment: A user attempted to move a piece of geometry,
and nothing happened (because, unbeknownst to the user,
the geometry was anchored to its position). While it would
seem that there was no reason to undo (since there was no
actual change to the geometry), the user still executed an
undo just to make sure that he hadn’t changed anything.

Second, recall that we recorded problem instances even
when the discovery of the problem was incidental to the
method. (This accounted for nearly 20% of our problem
instances.) Undo and erase operations tend to cluster at
times when people are experiencing difficulties. Within the
20 second window of each screen capture episode, we often
detected participants having difficulties unrelated to the
undo or erase event that triggered the episode.

Finally, consider that our analysis of problem detection
does not take into account the rate of detection. We counted
a problem as being “detected” by the undo method even if
only one participant experienced one instance of the
problem in a single undo episode. The problem might have
been detected by self-report in 10 separate instances, but in
our analysis these instances were redundant information. It
would be worth taking into account the frequency of
reporting in future analyses.

Time Allocation for this Experiment
Of the 90 minutes in our experiment, participants spent only
15 minutes working on the task that we gave them. To some
extent, the short task time reflects the goals of this study,
which were to compare three evaluation methods rather
than to use them. However, it is also useful to note that 20
of the 90 minutes were spent training participants in the use
of the user-reported critical incident method. While it may
be possible to reduce the amount of training, this is a
fundamental difference between self-reporting and event-
based methods. Event-based methods can be employed
without any up-front training (and even without the user’s
prior awareness that they are being monitored).

Addressing Internal Validity Concerns
We were careful to try to minimize several possible threats
to the internal validity of this experiment. Since we varied

the method in a within-subjects manner, we fully
counterbalanced the order of the methods in the
retrospectives to avoid learning or fatigue effects. One other
internal validity threat lies in the process of merging of
usability problem instances. If we were inconsistent in how
we merged problems, problems might end up at
substantially different levels of atomicity. (Consider the
difference between, “Users have trouble selecting objects”
and, “Users have trouble understanding how to select
objects when using the scale tool.”) The former would
likely attract a higher severity rating, and would also be
more likely to be detected by all three of our methods.
Aware of this potential threat, we tried to write problem
descriptions that were much more like the latter than the
former, and took a conservative approach to the merging of
problems. Unfortunately, there is no simple test for
success; merge rates naturally vary with the frequency of a
problem’s occurrence, as well as its level of atomicity.

Generalizing from this Experiment
It is tempting to generalize the conclusions of this
experiment to other tasks, settings and types of applications.
This section discusses the challenges involved in doing so.

Generalizing to other tasks
The conclusions of this experiment may depend to some
extent on the modeling tasks that we chose. SketchUp is a
large and complex application; it is not possible to
comprehensively evaluate its usability by choosing a few
representative tasks. That said, we tried to choose tasks that
we expect are representative of new user goals (building
and furnishing a room, and constructing a simple model).
We hope that our results would generalize at least to these
broader classes of modeling tasks. As mentioned
previously, it is important to keep task goals precise to
reduce false positives due to changes of goal.

Generalizing to other application types
It is somewhat more risky to generalize to other
applications besides SketchUp. Certainly, the application
would need to have undo and erase functions that are used
frequently, and there must be some mechanism to
instrument the application to capture them. This would
include design-oriented applications like word processors,
page layout tools, graphics editing applications, content
creation software for virtual worlds, etc. The value of our
approach would vary across these application types.

Generalizing to other settings
We do not recommend attempting to generalize our
conclusions to other experimental settings. The quality of
our data may be highly dependent on the laboratory
environment in which it was collected. In a remote
evaluation setting, it would be difficult to facilitate the kind
of paired discussions that we believe were critical to
revealing some usability problems. It would be even more
of a stretch to consider natural settings in which the
participant was not aware of the experimental apparatus.

 10

CONCLUSIONS AND FUTURE WORK
The results from this experiment have convinced us that
undo and erase events represent a promising way to detect
problems in design-oriented applications like Google
SketchUp. We have been particularly encouraged by the
problem detection rates, especially for severe problems.

The comparisons described in this study focused on
problem severity ratings. We are also interested in other
ways to categorize the problems discovered by each
method. In particular, it is possible that problems cluster
into particular stages of the interaction cycle. We plan to
apply the User Action Framework [1, 12] to the problems
discovered in this study, and look for patterns.

The size of the participant pool is not the only consideration
when designing a usability testing strategy (e.g., consider
the goal of frequent iteration of testing and software
modification [18]). But for situations when study scale is a
limitation, we hope that our approach is of interest. In this
project, we iteratively improved our own methods by
comparing them against a known method for cost effective
usability testing, the user-reported critical incident
technique. Future studies will compare our own approach
to traditional laboratory testing or usability inspection [20].

ACKNOWLEDGMENTS
[Acknowledgments removed for blind review.]

REFERENCES
1. Andre, T.S., Hartson, H.R., Belz, S. M., and McCreary,

F. A. The user action framework: a reliable foundation
for usability engineering support tools. Int. Journal of
Human-Computer Studies 54, 1 (2001), 107-136.

2. Capra, M. Contemporaneous Versus Retrospective
User-Reported Critical Incidents in Usability
Evaluation. In Proc. Human Factors 2002. HFES
(2002), 1973-1977.

3. Cronbach, L. J. Coefficient alpha and the internal
structure of tests. Psychometrika 16, 3 (1951), 297-334.

4. del Galdo, E.M., Williges, B.H., and Wixon, D.R.
An Evaluation of Critical Incidents for Software
Documentation Design. In Proc. Human Factors 1986.
HFES (1986), 19-23.

5. Flanagan, J.C. The Critical Incident Technique.
Psychological Bulletin 51, 4 (1954), 327-358.

6. Google SketchUp New User Tutorial Videos 1-3,
http://www.youtube.com/user/SketchUpVideo.

7. Google SketchUp application,
http://sketchup.google.com

8. Gray, W.D. and Salzmann, M.C. Damaged
Merchandise: A Review of Experiments That Compare
Usability Evaluation Methods. Human-Computer
Interaction 13, 3 (1998): 203-261.

9. Guan, Z., Lee, S., Cuddihy, E., and Ramey, J. The
validity of the stimulated retrospective think-aloud

method as measured by eye tracking. In Proc. CHI
2006. ACM Press (2006), 1253-1262.

10. Hartson, H.R., Castillo, J. C., Kelso, J., and Neale, W.
C. Remote evaluation: the network as an extension of
the usability laboratory. In Proc. CHI 1996. ACM Press
(1996), 228-235.

11. Hartson, R. and Castillo, J.C. Remote evaluation for
post-deployment usability improvement. In Proc. AVI
98. ACM Press (1998), 25-27.

12. Hartson, H.R., Andre, T.S., Williges, R.C., and van
Rens, L. The user action framework: a theory-based
foundation for inspection and classification of usability
problems. In Proc. HCI Int. 1999. (1999), 1058-1062.

13. Hilbert, D. and Redmiles, D. An approach to large-scale
collection of application usage data over the Internet. In
Proc. Software Engineering 1998, 136-145, 1998.

14. Howarth, J., Andre, T. S., and Hartson, R. A Structured
Process for Transforming Usability Data into Usability
Information. Jour. of Usability Studies, 3,1 (2007), 7-23.

15. Kirsh, D. and Maglio, P. On distinguishing epistemic
from pragmatic action. Cog. Sci. 18 (1994), 513-549.

16. Koenemann-Belliveau, J., Carroll, J., Rosson, M. B.,
and Singley, M.K. Comparative usability evaluation:
critical incidents and critical threads. In Proc. CHI 1994.
ACM Press (1994), 245-251.

17. Law, E.L. and Hvannberg, E.T. Analysis of
Combinatorial User Effect in International Usability
Tests, In Proc. CHI 2004. ACM Press (2004), 9-16.

18. Medlock, M.C., Wixon, D., Terrano, M., Romero, R.,
and Fulton, B. Using the RITE method to improve
products: a definition and a case study. In Usability
Professionals Association (2002).

19. Nielsen, J. and Landauer, T. A mathematical model of
the finding of usability problems. In Proc.
CHI/INTERACT 93. ACM Press (1993), 206-213.

20. Nielsen, J. and Mack, R.L. (Eds.) Usability inspection
methods. John Wiley & Sons (1994).

21. Nisbett, R. and Wilson, T. Telling more than we can
know: Verbal reports on mental processes.
Psychological Review, 84, 231-259, 1977.

22. Rubin, J. and Hudson, T. Handbook of Usability
Testing: How to Plan, Design, and Conduct Effective
Tests. John Wiley & Sons, Inc. (1994).

23. Spool, J. and Schroeder, W. Testing web sites: five
users is nowhere near enough. In Extended Abstracts of
Proc. CHI '01. ACM Press (2001), 285-286.

24. Swallow, J., Hameluck, D., and Carey, T. User
Interface Instrumentation for Usability Analysis: A Case
Study. In Proc. Cascon 97, 1997.

25. Winograd, T. and Flores, F. (Eds.) Understanding
computers and cognition. Ablex Publish. Corp (1986).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

