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Abstract

It is well known that the static caching algorithm that keeps the most frequently requested documents in the cache
is optimal in case when documents are of the same size and requests are independent and identically distributed.
However, it is hard to develop explicit and provably optimal caching algorithms when requests are statistically corre-
lated. In this paper, we show that keeping the most frequently requested documents in the cache is still optimal for
large cache sizes even if the requests are strongly correlated.
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1 Introduction
One of the important problems facing current and future network designs is the ability to store and efficiently deliver a
huge amount of multimedia information in a timely manner. Web caching is widely recognized as an effective solution
that improves the efficiency and scalability of multimedia content delivery, benefits of which have been repeatedly
verified in practice. For an introduction to the concept of Web caching, the most recent tutorials, references and the
latest technology, an interested reader is referred to the Web caching and content delivery Web page [8].

Caching is essentially a process of storing information closer to users so that Internet service providers, delivering
a given content, do not have to go back to the origin servers every time the content is requested. It is clear that keeping
more popular documents closer to the users can significantly reduce the traffic between the cache and the main servers
and, therefore, improve the network performance, i.e., reduce the download latency and network congestion. One
of the key components in engineering efficient Web caching systems is designing document placement/replacement
algorithms (policies) that are managing cache content, i.e., selecting and possibly dynamically updating a collection
of cached documents.

The main performance objective in creating and implementing these algorithms is minimizing the long-term fault
probability, i.e., the average number of misses during a long time period. In the context of equal size documents and
independent reference model, i.e., independent and identically distributed requests, it is well known (see [5], Chapter 6
of [16]) that keeping the most popular documents in the cache optimizes the long-term cache performance. Throughout
this paper we refer to this algorithm as static frequency caching. A practical implementation of this algorithm is known
as Least-Frequently-Used rule (LFU). However, the previous model does not incorporate any of the recently observed
properties of the Web environment, such as: variability of document sizes (see [10]), presence of temporal locality in
the request patterns (e.g., see [9], [15], [2], [6], [7] and the references therein), variability in document popularities
(e.g., see [3]) and retrieval latency (e.g., see [1]).

Many heuristic algorithms that exploit the previously mentioned properties of the Web environment have been
proposed, e.g., see [7], [5], [14] and the references therein. However, there are no explicit algorithms that are provably
optimal when the requests are statistically correlated even if the documents are of equal size. Our main result of this
paper, stated in Theorem 1 of Section 3, shows that, in the generality of semi-Markov modulated requests, the static
frequency caching algorithm is still optimal for large cache sizes. The semi-Markov modulated processes, described
in Section 2, are capable of modeling a wide range of statistical correlation, including the long-range dependence
(LRD) that was repeatedly experimentally observed in Web access patterns; these types of models were recently used
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in [11] and their potential confirmed on real Web traces in [9]. In Section 4, under mild additional assumptions, we
show how our result extends to variable page sizes. Our optimality result provides a benchmark for evaluating other
heuristic schemes, suggesting that any heuristic caching policy that approximates well the static frequency caching
should achieve the nearly-optimal performance for large cache sizes. In particular, in conjunction with our result
from [11], we show that a widely implemented Least-Recently-Used (LRU) caching heuristic is, for semi-Markov
modulated requests and generalized Zipf’s law document frequencies, asymptotically only a factor of 1.78 away from
the optimal. Furthermore, similar results can be expected to hold for the improved version of the LRU caching, termed
the Persistent Access Caching, that was recently proposed and analyzed in [12], as well as for the LRU caching for
variable document sizes studied in [10].

2 Modeling statistical dependency in the request process
In this section we describe a semi-Markov modulated request process. As stated earlier, this model is capable of
capturing a wide range of statistical correlation, including the commonly empirically observed LRD. This approach
was recently used in [11], where one can find more details and examples.

Let a sequence of requests arrive at Poisson points {τn,−∞ < n < ∞} of unit rate. At each point τn, we use Rn,
Rn ∈ {1, 2, . . . , N}, to denote a document that has been requested, i.e., the event {Rn = i} represents a request for
document i at time τn; we assume that the sequence {Rn} is independent of the arrival Poisson points {τn} and that
P[Rn = i] > 0 for all i and P[Rn < ∞] = 1.

Next, we describe the dependency structure of the request sequence {Rn}. We consider the class of finite-state,
stationary and ergodic semi-Markov processes J , with jumps at almost surely strictly increasing points {Tn,−∞ <
n < ∞}, T0 ≤ 0 < T1. Let process {JTn ,−∞ < n < ∞} be an irreducible Markov chain that is independent of
{τn}, has finitely many states {1, . . . ,M} and transition matrix {pij}. Then, we construct a piecewise constant and
right-continuous modulating process {Jt} such that

Jt = JTn , if Tn ≤ t < Tn+1;

for more details on the construction of process Jt, t ∈ R, see Subsection 4.3 of [11]. Let πr = P[Jt = r], 1 ≤ r ≤ M ,
be the stationary distribution of J and, to avoid trivialities, we assume that minr πr > 0. For each 1 ≤ r ≤ M , let
q(r)
i , 1 ≤ i ≤ N ≤ ∞, be a probability mass function, where q(r)

i is used to denote the probability of requesting
item i when the underlying process J is in state r. Next, the probability law of {Rn} is uniquely determined by the
modulating process J according to the following conditional distribution

P[Rl = il, 1 ≤ l ≤ n|Jt, 0 ≤ t ≤ τn] =
n∏

l=1

q
(Jτl

)
il

, n ≥ 1, (1)

i.e., the sequence of requests Rn is conditionally independent given the modulating process J . Given the properties
introduced above, it is easy to conclude that the constructed request process {Rn} is stationary and ergodic as well.
We will use

qi = P[Rn = i] =
M∑

r=1

πrq
(r)
i

to express the marginal request distribution, with the assumption that qi > 0 for all i ≥ 1. In addition, assume that
requests are enumerated according to the non-increasing order of marginal request popularities, i.e., q1 ≥ q2 ≥ . . . .

In this paper we are using the following standard notation. For any two real functions a(t) and b(t) and fixed
t0 ∈ R ∪ {∞} we use a(t) ∼ b(t) as t → t0 to denote limt→t0 [a(t)/b(t)] = 1. Similarly, we say that a(t) ! b(t) as
t → t0 if lim inft→t0 a(t)/b(t) ≥ 1; a(t) " b(t) has a complementary definition, i.e., lim supt→t0 a(t)/b(t) ≤ 1.

Throughout the paper we will exploit the renewal (regenerative) structure of the semi-Markov process. In this
regard, let {Ti}, T0 ≤ 0 < T1, be a subset of points {Tn} for which JTn = 1. Then, it is well known that {Ti} is
a renewal process and that sets of variables {Jt, Tj ≤ t < Tj+1}j≥1 are independent for different j and identically
distributed, i.e., {Ti} are regenerative points for {Jt}. Furthermore, the conditional independence of {Rn} given {Jt}
implies that {Ti} are regenerative points for Rn as well.

Next we define Rr(u, t), 1 ≤ r ≤ M , to be a set of distinct requests that arrived in interval [u, t), u ≤ t, and
denote by Nr(u, t), 1 ≤ r ≤ M , the number of requests in interval [u, t) when process Jt is in state r. Furthermore,
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let N(u, t) # N1(u, t)+ · · ·+NM (u, t) represent the total number of requests in [u, t); note that N(u, t) has Poisson
distribution with mean t− u.

The following technical lemma will be used in the proof of the main result of this paper.

Lemma 1 For the request process introduced above, the following asymptotic relation holds

P[i ∈ R(T1, T2)] ∼ qiE[T2 − T1] as i →∞, (2)

where R(u, t) # R1(u, t) ∪ · · · ∪RM (u, t).

Proof: Given in Section 5. !

3 Caching policies and the optimality
Consider infinitely many documents of unit size out of which x can be stored in a local memory referred to as cache.
When an item is requested, the cache is searched first and we say that there is a cache hit if the item is found in the
cache. In this case the cache content is left unchanged. Otherwise, we say that there is a cache fault/miss and the
missing item is brought in from the outside world. At the time of a fault, a decision whether to replace some item from
the cache with a missing item has to be made. We assume that replacements are optional, i.e., the cache content can
be left unchanged even in the case of fault. A caching algorithm represents a set of document replacement rules.

We consider a class of caching algorithms whose information decisions are made using only the information of
past and present requests and past decisions. More formally, let Cπ

t ≡ Cπ
t (x) be a cache content at time t under

policy π. When the request for a document Rn is made, the cache with content Cπ
τn

is searched first. If document
Rn is already in the cache (Rn ∈ Cπ

τn
), then we use the convention that no document is replaced. On the other hand,

if document Rn is not an element of Cπ
τn

, then a document to be replaced is chosen from a set Cπ
τn
∪ {Rn} using

a particular eviction policy. At any moment of request, τn, the decision what to replace in the cache is based on
R1, R2, . . . , Rn, Cπ

τ0
, Cπ

τ1
, . . . , Cπ

τn
. Note that this information already contains all the replacement decisions made

up to time τn. This is the same information as the one used in the Markov decision framework [5].
The set of the previously described cache replacement policies, say Pc, is quite large and contains mandatory

caching rules (more typical for a computer memory environment), i.e., those rules that require replacements in the case
of cache faults. Furthermore, the set Pc also contains the static algorithm that places a fixed collection of documents
Cπ

t ≡ C in the cache and then keeps the same content without ever changing it.
Now, define the long-term cache fault probability corresponding to the policy π ∈ Pc and a cache of size x as

P (π, x) # lim sup
T→∞

E
[∑

τn∈[0,T ] 1[Rn *∈ Cπ
τn

]
]

T
, (3)

recall that EN(0, T ) = T . Note that we use the lim sup in this definition since the limit may not exist in general and
that, as defined before, Cπ

τn
≡ Cπ

τn
(x) is a function of x, which we suppress from the notation.

Next, we show that

P (π, x) = lim sup
k→∞

E
[∑

τn∈[T1,Tk] 1[Rn *∈ Cπ
τn

]
]

EN(T1, Tk)
, (4)

where Tk are the regenerative points, as defined in the previous section. Note that estimating the previous expression
is not straightforward since replacement decision depends on all previous requests, i.e., it depends on the past beyond
the last regenerative point. To this end, for the lower bound, for any 0 < ε< 1, let k ≡ k(T, ε) # +T (1− ε)/E[T2 −
T1],+ 1, where +u, is the smallest integer that is greater than or equal to u. Then, note that

1
T

E




∑

τn∈[0,T ]

1[Rn *∈ Cπ
τn

]



 ≥ E
[
1[Tk < T ]

∑
τn∈[T1,Tk] 1[Rn *∈ Cπ

τn
]

T

]

≥ E
[∑

τn∈[T1,Tk] 1[Rn *∈ Cπ
τn

]
T

]
− E

[
1[Tk > T ]

N(0, T )
T

]
. (5)
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Next, using the Weak Law of Large Numbers for P[Tk > T ] → 0 (as T → ∞) and the fact that N(0, T ) is Poisson
with mean T and independent of Tk, we obtain

P (π, x) ≥ (1− ε) lim sup
T→∞

k=
l

T (1−ε)
E[T2−T1]

m
+1

E
[∑

τn∈[T1,Tk] 1[Rn *∈ Cπ
τn

]
]

EN(T1, Tk)
= (1− ε) lim sup

k→∞

E
[∑

τn∈[T1,Tk] 1[Rn *∈ Cπ
τn

]
]

EN(T1, Tk)
,

since the set {k : k = +T (1− ε)/E[T2 − T1], + 1, T > 0} covers all integers. We complete the proof of the lower
bound by passing ε → 0. The upper bound uses similar arguments where, in this case, k is defined as k ≡ k(T, ε) #
+T (1 + ε)/E[T2 − T1],, and P (π, x) is upper bounded as

1
T

E




∑

τn∈[0,T ]

1[Rn *∈ Cπ
τn

]



 ≤ E
[∑

τn∈[T1,Tk] 1[Rn *∈ Cπ
τn

]
T

]
+ E

[
1[T > Tk − T1]

N(0, T )
T

]

+ E
[
1[T1 < T ]

N(0, T1)
T

]
.

The last term in the preeceding inequality goes to zero since E [1[T1 < T ]N(0, T1)] ≤ KP[T1 < K] + TP[T1 >
K] holds for any 0 < K < T and T1 is almost surely finite. Then, similarly to earlier arguments, we derive the
corresponding upper bound for P (π, x) in (4).

Next, observe the static policy s, where Cπ
τn
≡ {1, 2, . . . , x} for every n. Then, due to the ergodicity of the request

process, the long-term cache fault probability of the static policy is

Ps(x) # P (s, x) =
∑

i>x

qi.

Since the static policy belongs to the set of caching algorithms Pc, we conclude that

Ps(x) ≥ inf
π∈Pc

P (π, x). (6)

Our goal in this paper is to show that for large cache sizes x there is no caching policy that performs better, i.e.,
achieves long-term fault probability smaller than Ps(x). This is stated in the following main result of this paper.

Theorem 1 For the semi-Markov modulated request process defined in Section 2, the static policy that stores docu-
ments with the largest marginal probabilities minimizes the long-term cache fault probability for large caches, i.e.,

inf
π∈Pc

P (π, x) ∼ Ps(x) as x →∞. (7)

Remarks: (i) From the examination of the following proof it is clear that the result holds for any regenerative request
process that satisfies Lemma 1. (ii) Though asymptotically long-term optimal, the static frequency rule possesses other
undesirable properties such as high complexity and lack of adaptability to variations in the request patterns. However,
its optimal performance presents an important benchmark for evaluating and comparing widely implemented caching
policies in the Web environment. On the other hand, it is a question whether a widely accepted analysis of the cache
miss ratio is the most relevant performance measure to analyze. A strong argument in support to this choice is that
other measures would be harder (sometimes impossible) to analyze. However, in Section 4, we present some possible
extensions of our results to the analysis of other objective functions, such as long-term average delay of fetching
documents not found in the cache, or long-term average cost of retrieving documents outside of the cache, etc. (iii)
Note that the condition qi, i ≥ 1, given in the previous section makes the problem of proving asymptotic optimality
nontrivial. In case qi > 0 for just a finite number of i’s, the document population would be finite and the result
above would be trivially true. (iv) The preliminary version of this work was presented in the Workshop on Analytic
Algorithms and Combinatorics (ANALCO’2006), Miami, Florida, January 2006.
Proof: In view of (6), we only need to show that infπ∈Pc P (π, x) ! Ps(x) as x →∞.

For any set A, let |A| denote the number of elements in A and A \ B represent the set difference. Then, it is easy
to see that the number of cache faults in [t, u), t < u, is lower bounded by |R(t, u) \ Cπ

t | since every item that was not
in the cache at time t results in at least one fault when requested for the first time; in particular, if t = Tj , u = Tj+1,

∑

τn∈[Tj ,Tj+1)

1[Rn *∈ Cπ
τn

] ≥ |R(Tj , Tj+1) \ Cπ
Tj
|. (8)
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This inequality and (4) results in

P (π, x) ≥ lim sup
k→∞

1
EN(T1, Tk)

k−1∑

j=1

E[|R(Tj , Tj+1) \ Cπ
Tj
|]. (9)

Now, since we consider caching policies where replacement decisions depend only on the previous cache contents and
requests, due to the renewal structure of the request process we conclude that for every j ≥ 1 and all i ≥ 1, events
{i ∈ R(Tj , Tj+1)} and {i ∈ Cπ

Tj
} are independent and, therefore, for every j ≥ 1,

E
[
|R(Tj , Tj+1) \ Cπ

Tj
|1[Cπ

Tj
= C]

]
=

∑

i≥1

P[i ∈ R(Tj , Tj+1), i *∈ C]P[Cπ
Tj

= C]

= P[Cπ
Tj

= C]
∑

i≥1

P[i ∈ R(Tj , Tj+1)]1[i *∈ C]

≥ P[Cπ
Tj

= C] inf
C:|C|=x

∑

i &∈C
P[i ∈ R(Tj , Tj+1)].

Then, after summing over all values of C, for any j ≥ 1 we obtain

E[|R(Tj , Tj+1) \ Cπ
Tj
|] ≥ inf

C:|C|=x

∑

i &∈C
P[i ∈ R(Tj , Tj+1)]. (10)

To this end, Lemma 1 implies that for an arbitrarily chosen ε > 0 there exists finite integer i0 such that for all i ≥ i0

(1− ε)qiE[Tj+1 − Tj ] < P[i ∈ R(Tj , Tj+1)] < (1 + ε)qiE[Tj+1 − Tj ]. (11)

Thus, using the previous expression and qi ↓ 0 as i → ∞, we conclude that for all k ≤ i0 there exists x0 ≥ i0, such
that for all i ≥ x0

min
1≤k≤i0

P[k ∈ R(Tj , Tj+1)] > P[i ∈ R(Tj , Tj+1)]. (12)

Next, we assume that the cache is of size x ≥ x0. First, note that for any cache content C which is missing at
least one document from [1, i0], inequality (12) implies that the corresponding sum in (10) can be lower bounded by
replacing documents with indexes greater than x0 that are in C with documents with indexes i ≤ i0 that are not in the
cache. Note that such documents must exist since the cache stores x documents. Thus, the previous argument implies

inf
C:|C|=x

∑

i &∈C
P[i ∈ R(Tj , Tj+1)] = inf

C:|C|=x,[1,i0]⊂C

∑

i &∈C
P[i ∈ R(Tj , Tj+1)].

Then, in view of (11) and the monotonicity of qis, the right-hand side of the last expression can be lower bounded as

inf
C:|C|=x,[1,i0]⊂C

∑

i &∈C
P[i ∈ R(Tj , Tj+1)] ≥ (1− ε)E[Tj+1 − Tj ]

∑

i>x

qi, (13)

for an arbitrarily chosen ε > 0 and all x ≥ x0 large enough. Finally, after replacing the lower bound (13) in (10), in
conjunction with (9) and EN(T1, Tk) = (k − 1)EN(T1, T2), we obtain that, as x →∞,

inf
π∈Pc

P (π, x) ! (1− ε)
∑

i>x

qi, (14)

which, by passing ε →∞, completes the proof of the theorem. !

4 Further extensions and concluding remarks
In this paper we prove that the static frequency rule minimizes the long-term fault probability in the presence of
correlated requests for large cache sizes.

There are several generalizations of our results that are worth mentioning. First, the definition of the fault probabil-
ity in (4) can be generalized by replacing terms 1[Rn *∈ Cπ

τn
] with f(Rn)1[Rn *∈ Cπ

τn
], where f(i) could represent the

cost of retrieving document i, e.g., the delay of fetching item i not found in the cache. Assume that 0 < f(i) ≤ K < ∞
and let S be a set of x items such that qif(i) ≥ qjf(j) for all i ∈ S and j *∈ S. Then, the following result holds:
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Theorem 2 For the semi-Markov modulated request process defined in Section 2, the static caching policy C ≡ S
minimizes the long-term average cost function f(·) (e.g., delay) for documents not found in the cache.

Sketch of the proof: The proof of this theorem follows completely analogous arguments to those used in the proof of
Theorem 1, and, in order to avoid repetitions, we outline its basic steps.

Similarly as in (3), the long-term average cost for documents not found in the cache that corresponds to the caching
policy π ∈ Pc is defined as

D(π, x) # lim sup
T→∞

E
[∑

τn∈[0,T ] f(Rn)1[Rn *∈ Cπ
τn

]
]

T
.

Then, by using similar arguments to (4) - (6) and 0 < f(i) ≤ K < ∞, i ≥ 1, we obtain that the long-term average
cost of the static policy Cτn ≡ S, n ≥ 1, for the cache with size x satisfies

Ds(x) =
∑

i &∈S
f(i)qi ≥ inf

π∈Pc

D(π, x). (15)

Next, in order to prove
Ds(x) " inf

π∈Pc

D(π, x) as x →∞, (16)

similarly as in the proof of Theorem 1, we lower bound the number of cache misses, and, therefore, the average cost
in every regenerative interval [Tj , Tj+1), j ≥ 1, as

∑

τn∈[Tj ,Tj+1)

f(Rn)1[Rn *∈ Cπ
τn

] ≥
∑

i≥1

f(i)1[i ∈ R(Tj , Tj+1), i *∈ CTj ].

Next, since we consider caching policies whose replacement decisions depend only on the past cache contents and
requests, due to the renewal structure of the request process, we conclude that for any j ≥ 1,

E




∑

τn∈[Tj ,Tj+1)

f(Rn)1[Rn *∈ Cπ
τn

]1[Cπ
Tj

= C]



 ≥ P[Cπ
Tj

= C]
∑

i &∈C
f(i)P[i ∈ R(Tj , Tj+1)]

and, thus, similarly as in (10), we obtain

E




∑

τn∈[Tj ,Tj+1)

f(Rn)1[Rn *∈ Cπ
τn

]



 ≥ inf
C:|C|=x

∑

i &∈C
f(i)P[i ∈ R(Tj , Tj+1)].

Now, given the previous observations, the asymptotic inequality (16) is proved using analogous arguments to those in
(11) - (14). Note that in the context of this result, inequality (12) becomes

min
1≤k≤i0

f(k)P[k ∈ R(Tj , Tj+1)] > f(i)P[i ∈ R(Tj , Tj+1)]

for all i ≥ x0, and we have analogous asymptotic linearity as in (11) since qi ↓ 0 as i →∞ and 0 < f(i) ≤ K < ∞.
Finally, the rest of the proof is equivalent to (12) - (14). Thus, the asymptotic bound (16) holds and, in conjunction
with (15), completes the proof of the theorem. !

In addition to the previous generalization, in the context of documents with different sizes, one can prove the
following result:

Theorem 3 Assume that documents have different sizes and that they are enumerated according to the non-increasing
order of qi/si, i.e., q1/s1 ≥ q2/s2 ≥ . . . , where si is the size of document i and si ∈ {s1, . . . , sD}, where
s1, . . . , sD < ∞ and D < ∞. Then, for the semi-Markov modulated request process defined in Section 2, if∑

j>i qj ∼
∑

j≥i qj as i → ∞, i.e.,
∑

j>i qj is long-tailed, the static rule that places documents with the small-
est index in the cache, subject to the constraint

∑
i si ≤ x, is asymptotically optimal.

Proof: The proof can be found in [13].
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5 Proof of Lemma 1
In this section, we prove the asymptotic relation (2) stated at the end of Section 2.

Note that

P[i ∈ R(T1, T2)] = 1− P[i *∈ R1(T1, T2), . . . , i *∈ RM (T1, T2)]

= E
[
1− (1− q(1)

i )N1 . . . (1− q(M)
i )NM

]
, (17)

where Nr # Nr(T1, T2), 1 ≤ r ≤ M . Then, since qi → 0 as i → ∞ and minr πr > 0, it follows that q(r)
i → 0 as

i →∞, 1 ≤ r ≤ M . In addition, 1− e−x ≤ x for all x ≥ 0 and for any 1 > ε> 0, there exists x0(ε) > 0, such that
for all 0 ≤ x ≤ x0(ε) inequality 1− x ≥ e−x(1+ε) holds, and, therefore, for i large enough

E
[
1− e−(q(1)

i N1+···+q(M)
i NM )

]
≤ E

[
1− (1− q(1)

i )N1 . . . (1− q(M)
i )NM

]

≤ E
[
1− e−(1+ε)(q(1)

i N1+···+q(M)
i NM )

]
. (18)

Then, since 1− e−x ≤ x for x ≥ 0, we obtain, for i large enough,

E
[
1− e−(1+ε)(N1q(1)

i +···+NM q(M)
i )

]
≤ (1 + ε)E

[
q(1)
i N1 + · · ·+ q(M)

i NM

]
. (19)

Next, let N # N1 + · · ·+ NM . Then, we show that q(1)
i EN1 + · · ·+ q(M)

i ENM = qiEN . From the ergodicity of
Jt, it follows that

P[Jt = r] =
ET1r

E[T2 − T1]
,

where T1r, 1 ≤ r ≤ M , is the length of time that Jt spends in state r during the renewal interval (T1, T2) (see
Section 1.6 of [4]). Finally, using EN = E[T2 − T1] and ENr = ET1r, 1 ≤ r ≤ M (Poisson process of rate 1), in
conjunction with (19), we conclude, for i large

E
[
1− e−(1+ε)(N1q(1)

i +···+NM q(M)
i )

]
≤ (1 + ε)qiE[T2 − T1]. (20)

Next, we estimate the lower bound for the left-hand side of (18). After conditioning, we obtain

E
[
1− e−(N1q(1)

i +···+NM q(M)
i )

]
≥ E

[(
1− e−(N1q(1)

i +···+NM q(M)
i )

)
1

[
N ≤ q̄

− 1
2

i

]]
, (21)

where q(r)
i ≤ q̄i # qi/ minr πr ≤ Hqi, 1 ≤ r ≤ M , and some large enough constant 0 < H < ∞ . Then, note that

for every ω ∈ {N ≤ q̄
− 1

2
i }, q(1)

i N1 + · · · + q(M)
i NM ≤ q̄i√

q̄i
=
√

q̄i. In addition, for any 1 > ε> 0, there exists
xε > 0, such that for all 0 ≤ x ≤ xε inequality 1− e−x ≥ (1− ε)x holds and, therefore, for i large enough such that√

q̄i ≤ xε

E
[(

1− e−(N1q(1)
i +···+NM q(M)

i )
)

1
[
N ≤ q̄

− 1
2

i

]]
≥ (1− ε)E

[
(N1q

(1)
i + · · ·+ NMq(M)

i )1
[
N ≤ q̄

− 1
2

i

]]

≥ (1− ε)qiE[T2 − T1]− (1− ε)q̄iE
[
N1

[
N > q̄

− 1
2

i

]]
.

Then, since EN < ∞ and 1/
√

q̄i → ∞ as i → ∞, it is straightforward to conclude that E[N1[N > 1/
√

q̄i]] =
EN − E[N1[N ≤ 1/

√
q̄i]] → 0 as i →∞, and, therefore, in conjunction with (21), we obtain

E
[
1− e−(N1q(1)

i +···+NM q(M)
i )

]
! (1− ε)qiE[T2 − T1],

as i →∞. Finally, after letting ε → 0 in the previous expression and (20), we complete the proof of this lemma. !
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