
WEB 2.0: Blind to an Accessible New World
Joshua Hailpern
University of Illinois
201 N Goodwin Ave
Urbana, IL 81820, USA

1-217-333-3328

Jhailpe2@cs.uiuc.edu

Loretta Guarino Reid
Google

1600 Amphitheatre Pky
Mtn. View, CA 94043, USA

1-650-253-4380
lorettaguarino@google.com

Richard Boardman
Google

1600 Amphitheatre Pky
Mtn View, CA 94043, USA

1-650-253-6586

rickb@google.com

 Srinivas Annam
Google

1600 Amphitheatre Pky
Mtn View, CA 94043, USA

1-650-253-4380

annams@google.com

ABSTRACT
With the advent of Web 2.0 technologies, websites have evolved
from static pages to dynamic, interactive Web-based applications
with the ability to replicate common desktop functionality.
However, for blind and visually impaired individuals who rely
upon screen readers, Web 2.0 applications force them to adapt to
an inaccessible use model. Many technologies, including WAI-
ARIA, AJAX, and improved screen reader support, are rapidly
evolving to improve this situation. However, simply combining
them does not solve the problems of screen reader users. The
main contributions of this paper are two models of interaction for
screen reader users, for both traditional websites and Web 2.0
applications. Further contributions are a discussion of
accessibility difficulties screen reader users encounter when
interacting with Web 2.0 applications, a user workflow design
model for improving Web 2.0 accessibility, and a set of design
requirements for developers to ease the user's burden and increase
accessibility. These models, accessibility difficulties, and design
implications are based directly on responses and lessons learned
from usability research focusing on Web 2.0 usage and screen
reader users. Without the conscious effort of Web engineers and
designers, most blind and visually impaired users will shy away
from using new Web 2.0 technology in favor of desktop based
applications.

Categories and Subject Descriptors
K4.2 [Social Issues]: Assistive technologies for persons with
disabilities. H5.4 [Hypertext/Hypermedia]: Navigation, User Issues.

General Terms
Performance, Design, Human Factors.

Keywords
Web 2.0, Screen Reader, Blind, Visually Impaired, Use Models.

1. INTRODUCTION
When screen reader software was created in the 1980’s, no one
could have predicted how computer technology, and thereby
screen readers, would have evolved. However, the latest
technological shift has radically altered the visually impaired
user’s model of interaction.

For many years, Web content was relatively static. Aside from
the occasional movie, a screen-reader user was able to traverse the
textual and image content on Web sites through a series of
keyboard-based interactions. However, with the advent of
dynamic Web content, the traditional use model has been
shattered. While dynamic content that runs in virtual
environments, such as Flash, poses many challenges, it exists
within its own environment. Hence, its accessibility is directly
related to the features made available by that environment. Web
2.0 content (using AJAX and JavaScript) dynamically alters
traditional Web page content. It confounds the mental and
physical model that screen-reader users have developed.

The implication for Web inaccessibility is becoming a greater
concern. Dynamic Web 2.0 [22] applications (e.g., Gmail,
Facebook and Apple .mac Web Apps) have increasingly blurred
the line between desktop applications and the Web. While the
added benefit from rich dynamic Web application grows, the
divide between functionality and usability is expanding.
Specifically, Web 2.0 applications and their use of scripting and
dynamic content are actively managing the model of the content
presented to the user. Screen readers, with their virtual buffers, are
also managing the model of the content presented to their users. It
is easy for these two models to get out of sync with one another,
leaving the screen reader user disoriented or working with an
incorrect model.

Current studies have shown that blind users tend to avoid dynamic
pages [3]. Hence large populations are missing out on Web
content simply due to its (lack of) accessibility. As researchers, it
is incumbent upon us to understand and model the current world,
including the use models of our users. Without this
understanding, the chasm between new technology and its
usability will continue to increase. New technology must be
developed with an understanding of the needs and concerns of our
target user population. No matter how powerful the technology is,
if it is not accessible, over 1.5 million visually impaired
individuals in the USA[1] will not be able to use it. The
worldwide statistics put the number of visually impaired at 161
million or about 2.6% of the world population [29].

While screen reader implementations that support WAI-ARIA
[27, 28] are addressing some of these problems, screen reader
users will need to be aware of this more complex model of
interaction. Designs should simplify this task as much as possible
for the user.

This paper presents two models of screen reader users interacting
with the “traditional Web” and Web 2.0 applications. Based on
the Web 2.0 model, we present accessibility hurdles directly
related to the interaction between screen readers and Web 2.0
applications. We conclude by presenting a model for Web 2.0
accessibility design and user workflow as well as a set of design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WWW’09, April 20–24, 2009, Madrid, Spain.
Copyright 2009 ACM 978-1-60558-487-4/09/04...$5.00.

requirements for developers to ease the demands on the user and
increase accessibility. These findings were grounded in results
from iterative usability research, interviews with screen reader
users, and an examination of the relevant technology. The main
contribution of this work is a series of models for understanding
the use model of visually impaired users, an analysis of
accessibility for Web 2.0 applications with screen readers, and a
series of implications for design of accessible Web 2.0
applications.

2. DEFINITIONS
For those users who are unable to rely upon the visual and textual
representation of data on a computer, other audio or tactile based
solutions must be employed. We define this user group, those that
cannot use vision as their primary mode of interaction, as visually
impaired users. To help improve the accessibility of computers,
companies have created programs called Screen Readers that
translate textual content on a computer to other modalities for
accessing screen content, as well as providing hot-keys for
computer interaction (because the utility of a mouse is minimal).
While there are tactile displays that translate text to Braille [2],
this paper will focus on audio-based screen readers [9, 14].
Specifically, we will focus on the JAWS screen reader, considered
the most “popular” solution on the market [10].

In order to describe the process of accessing content via screen
readers, we will use the term “reading” not literally, but rather to
describe the translation of textual content to computer-generated
voice.

3. BACKGROUND AND RELATED WORK
Research on accessibility for the visually impaired community has
been conducted for decades, first beginning with SAID and later
Screen Reader/2 by Jim Thatcher at IBM [24, 25]. In 1994, Jim
Thatcher stated “blind users must have access to the same
computing environment as their sighted colleagues” [25].
Solutions have also expanded beyond the scope of purely audio-
based systems, such as the Refreshable Braille Display [2]. The
ubiquity of screen readers in today’s world, in conjunction with an
increased awareness for individuals with disabilities [7, 16, 20],
has prompted growing attention from a wide range of
communities, organizations, and companies [6].

3.1 Web Accessibility
While much work has focused on screen reader development,
research has sought to improve accessibility on the Web. Research
has examined Web accessibility for new technologies and
navigation [18, 21] in order to allow the Web to be as accessible
as the desktop application. To lower the overhead for the Web
developer, tools have been created to allow the developer to test
the accessibility of their existing sites [11, 23]. In addition,
software packages have been created [4, 8] to provide developers
with a richer set of tools to increase the accessibility of their own
site.

3.2 Web 2.0 Applications
In 1999, new techniques were developed to advance the state of
Web technologies. The introduction of Dynamic-asynchronous
loading [26] converted static HTML Web pages into rich and
interactive Web applications. Through the use of JavaScript,
AJAX [12] Web sites had the ability to provide desktop-like
interactions to users, dynamically updating the content, and
retrieving new material to be displayed after page load. Further,
Web sites, once limited by images, text and forums, can repurpose

keystrokes [13] to facilitate additional interactions, further
blurring the line between Web and desktop. Additional
development of client-side infrastructure, such as Google Gears,
has blurred the lines between desktop and cloud even more. We
detail the new forms of interaction and situate them with examples
in a fictional Web 2.0 email client, due to email’s ubiquity in our
society.

3.2.1 AJAX Interactions
Web 2.0 applications can provide user keyboard commands much
as standard desktop applications do. This additional functionality
allows users to treat Web browsers as application delivery
systems. For example, an online Web 2.0 email client could allow
users to iterate over emails using keyboard commands (e.g., J and
K keys). In addition, the C key can be mapped to open “Compose
New Message.” By means of keyboard-based interaction, users
are able to navigate Web 2.0 applications quickly. Users can
access complex functionality without exploring menu systems or
finding the appropriate links on a page. This type of functionality
also opens the door for Web 2.0 applications to provide features
that are only available via keyboards (e.g., online games).

3.2.2 Dynamic Content
One of the most notable features of Web 2.0 applications is the
dynamic nature of its content. Web sites can use AJAX to
dynamically retrieve new content without page refresh/reloads,
and adjust the information, content and layout of a page on the fly.
For example, a list of inbox emails can be dynamically updated to
reflect new and incoming mail, so a user does not need to
repeatedly refresh the page. Larger changes to the page can also
be implemented through AJAX. When a user chooses to compose
a new email, the entire page appearance can change to reflect the
new functionality without refreshing or reloading the page by
removing the inbox and replacing it with a new email form. This
support for dynamic page content reduces load time and allows
for pages to change, reflecting the dynamic needs of users. In
short, this additional functionality and seamless interaction
increases the deployment of Web-based applications and further
blurs the line between desktop and Web applications.

3.2.3 Custom Controls
AJAX facilitates a host of custom control mechanisms for
interacting with Web content, such as links, buttons, check boxes,
and combo-boxes. The behavior of these custom controls is
provided by JavaScript, which can reduce the load time of the
Web-application by not requiring all content to be loaded
immediately. The appearance of these controls can be further
customized for look and feel, allowing the application content to
be designed uniquely for each Web application.

As an example of this custom control, a decorated link is text that
is ‘decorated’ to appear like a traditional page link. This visual
decoration is created using CSS markup. The behavior of the
decorated link is implemented via JavaScript event detection (e.g.,
when a user clicks on the link) and JavaScript content changes
(dynamically updating page content, or actually redirecting a
browser). To the user, these have the same visual appearance as
links. When clicked by a mouse, they appear to have the same
result (due to the JavaScript).
Additional, application-like controls such as menu systems (e.g.,
File, Edit, View along the top of an application) can be
implemented using AJAX. These custom controls further allow
Web 2.0 applications to appear like traditional desktop
applications.

3.3 WAI-ARIA
In response to the growing concerns related to Web accessibility
in the AJAX world, a new technical specification named WAI-
ARIA, or ARIA for short, is in development [27, 28]. The main
feature of the ARIA standard is to allow Web pages (or portions
of a page) to declare themselves as applications rather than as
static documents, by adding role, property, and state information
to dynamic Web applications. ARIA is intended for use by
developers of Web applications to enhance a Web application’s
compatibility with screen readers and other assistive technology
with the help of an ARIA-supporting Web browser. This provides
additional information that will be useful for an assistive
technology user to understand the type of the widget and its
current state. With this additional role and state information, an
AJAX application can be made much more accessible than was
previously possible and a screen reader can get useful information
such as whether focus is on a tree item, whether the item is
expanded or collapsed, or the level of the item in the tree
hierarchy.
Consider a dynamic cascading tree on an AJAX page. ARIA
markup allows a designer to provide roles for div elements of the
tree in mark up. The outer-most level of the tree structure can be
set to role=tree, while each item can be labeled role=treeitem.
As users open and close branches of the tree structure, additional
attributes such as expanded or collapsed can be applied, providing
screen readers with appropriate knowledge about changing page
structures that can be relayed to users.

In addition to providing roles and states, ARIA also provides
mark-up for managing focus and for managing dynamically
changing content. The activedescendent property gives authors
better control over the focus notifications sent to screen readers.
Since screen readers track the focus and describe objects that
receive focus, it is very important to accessibility that focus be
managed properly. The live property lets author indicate how
important it is to notify users about content that has changed
dynamically. Since failure to know when content has changed
dynamically is the source of much confusion for visually impaired
users, this ARIA property is critical to helping screen readers
support web applications

ARIA holds the potential to improve many aspects of Web
accessibility. Its main focus is providing additional mark-up,
identifiable to screen reader. But, it is not a complete guide to
designing more accessible applications. While ARIA is essential,
without understanding the constraints and mental models of our
users, developers of Web applications cannot fully appreciate the
complexity of their situation, nor how to design to meet the needs
of this population.

4. USER RESEARCH
During the summer of 2008 researchers developed and tested
Web-based solutions to help teach Web 2.0 applications to screen
reader users [15]. In particular, [15] examined the use of dynamic
and interactive tutorials whose content was embedded within Web
2.0 applications themselves. These solutions were based upon
two-hour interviews with five members of the visually impaired
community in the Silicon Valley, CA area. Seventeen visually
impaired users (20-60 years old) evaluated the resulting tutorial
solutions. While this work was specifically targeting interactive
tutorial design for screen-reader users, additional lessons,
understandings, and models about limitations and accessibility for
Web 2.0 applications were revealed.

In feedback from the initial interviews and subsequent software
evaluations, users articulated their frustration with dynamic page
content. They expressed how difficult it can be to change their
mental model of ‘how the Web works’. One finding of note was
the robust set of interactions that users relied upon to navigate a
Web page (via links, tables, headers, and other Web elements), as
well as textual content (reading the whole page, by paragraph, by
sentence, word-by-word, and even letter-by-letter). Moreover,
these complex and varied forms of interaction have become
ingrained in their usage of computers. Hence, disruption to these
models has severe usability repercussions.

In the current paper, we focus on three findings relating to Web
2.0 usage for screen reader dependent users: a model for screen
reader usage, a model for Web 2.0 usage, and accessibility
concerns for interaction between the two. These findings were
directly based upon the feedback from seventeen screen reader
users. The following sections, present the main contributions of
this paper: a model of screen reader interaction with traditional
Web content (Section 5), a model of screen reader interaction with
Web 2.0 applications (Section 6), difficulties in accessibility that
arise with Web 2.0 applications (Section 6), and a set of design
requirements to improve Web 2.0 application accessibility
(Section 7).

5. MODEL OF SCREEN READER
INTERACTION WITH TRADITIONAL
WEB CONTENT

This section presents a model of screen reader interactions with
traditional Web content. We first outline the current set of
modalities screen reader users have to facilitate the Web-based
interactions. To better illustrate the workflow of a screen reader
user, we situate our model in a real-world example based upon
interviews with and observations of screen-reader users. We
conclude by discussing the specific features each modality
provides to a screen reader user.

By modeling and understanding the methods screen-reader users
rely upon to interact with computers, we are able to gain insight
into how new technology should be designed to meet their needs,
concerns, and mental models. Further, modeling allows us to
compare screen reader support for traditional Web browsing
versus Web 2.0 application usage. These models and descriptions
were based upon interviews with screen-reader users,
development of Web-based technology targeting visually
impaired individuals, and use of screen readers themselves.

5.1 Mapping Modalities to Interaction
Our model entails a mapping of user interactions to modes and
features to modes. We now probe the modalities and functionality
of the screen reader itself. Screen-reader software solutions have
multiple modes of interaction. The JAWS screen reader uses
these specific mode names, however similar modalities exist in
the majority of the commercial solutions:

• Virtual Cursor Mode (VC) - Conceptually, VC primarily
focuses on textual content retrieval and interaction with the
static structure of the content. Users rely mostly upon VC for
reading text, and navigating the content on a Web page.

• Forms Mode (FM) - FM facilitates interaction with interactive
control objects (text input fields, check boxes, pull down menus,
etc.). Users rely on FM to fill out forms and interact with
control objects. FM is automatically activated when users hit
the enter key while on an interactive control object.

• PC Cursor Mode (PCM) - In PCM, users can no longer
navigate content via a virtual buffer (Section 5.1.1), utilize
screen reader navigation, or use screen reader keyboard hot-
keys, or read large bodies of static text. This does facilitate
keyboard commands to be detected by active applications.

Each of these modes provides the user with a different set of
interactions (Table 1). Most users never activate PCM for day-to-
day tasks. During our interviews and research, none of the users
had utilized PCM before. While the screen reader may
automatically switch between VC and PCM, it provides no
feedback to the users about this switch. As far as users are
concerned, this modes switch never happens (because it occurs
transparently by the system), and therefore, they never
consciously use PCM; this effectively makes it an unused mode.
Throughout this paper, we will treat PCM from the perspective of
the user, not the underlying technological structure. Section 5.2
provides an example workflow illustrating screen reader mode
switches. See Section 5.3 for a detailed description of
functionality in each mode of interaction.

5.1.1 VC and the Virtual Buffer
Popular screen readers use various techniques to improve user
experience while they interact with Web pages. Of note is the
virtual buffer. This feature, simply put, provides an in-memory
copy of the current Web page so a screen reader user can navigate
quickly and easily through the page with the help of the screen
reader’s navigation commands. For example, once a virtual buffer
is present, a user can press letter P to move to the next paragraph
or use the JAWS command to search in the buffer.

5.2 Illustration of Workflow:
 Interaction with Traditional Web Content

Section 5 highlights a model of screen readers interacting with
traditional Web content. This can be best illustrated by describing
the workflow of screen reader users, and how they normally use
Web controls and read content. To better demonstrate the use of
screen readers and their different modes of interaction, we
describe a fictional screen reader user, Alice, interacting with a
Web based email client. This scenario is an amalgam of
observations, interaction and discussion with users in the
experimental context [15].

5.2.1 Loading Web Content (VC Only)
When Alice starts her Web browser, her screen reader is in VC.
The Web browser loads her homepage. Her screen reader
announces the page load completion and automatically reads all
page content from top to bottom. Using the Ctrl hot-key to stop
the text to speech, Alice proceeds to press Ctrl+L, and keyboard
focus moves to the URL bar in her Web browser. She types in the

URL of her favorite Web based email client. Upon page load, the
screen reader announces that the content has been completely
loaded and begins reading the entire page content.

5.2.2 Reading Page Content & Navigating Text (VC
only)

Alice wishes to immediately find out what new emails she has.
Because Alice has used this site before, she does not need to read
the entire page to understand the current content. Rather, she
remembers that the launch page has a list of emails in a table.
Still in VC, Alice uses the T key, to cycles through the tables on
the page, until she finds the one titled Inbox. Using the Ctrl +
Arrow Keys, she iterates row-by-row over the table, listening to
the content of the row. To repeat listening, she uses her Control +
Arrow Keys to go backwards and forwards word-by-word.

Alice notices that she has a new email from her employee Eve.
Using the Arrow Keys, she finds the subject line, which the screen
reader informs her is a link. Pressing the Enter key, her Web page
reloads, and upon completion, the screen reader begins reading
the entire page back to Alice. However, Alice only wants to read
Eve’s email. To skip to the body of the email, Alice uses the P
key, skipping paragraphs until she reaches the body of Eve’s
email. Alice then invokes the Insert + Page Down key command,
which tells the screen reader to read the rest of the page from this
location forward. When she wishes to re-read content, she uses
her Arrow Keys to re-read each line or Alt + Arrow Keys to re-
read each sentence, occasionally using the num-pad 5 key to read
each word, a letter at a time. Eve asks Alice to contact their
finance director Bob to ask him to send the financial reports from
the past year.

5.2.3 Constructing An Email (VC & FM)
Alice presses the Insert + F7 key, and brings up a list of all the
links on the page. Using her Arrow Keys, she cycles through the
list of links until she locates “Compose New Email.” Pressing
Enter, the page reloads, and the screen reader begins iterating over
all page content.

Alice knows that an H2 header immediately precedes the text
entry fields, therefore she uses the 2 key, the JAWS command in
VC mode to cycle through level two headers on a page, and
iterates over all H2 headers. If she did not know what level
header she was looking for, she could have used the H key, the
JAWS command in VC mode to cycle through all headers on the
page. Upon reaching the appropriate header, she locates the first
text area, the To field. With focus on the text area, Alice presses
the Enter key, and switches from VC to FM. The screen reader
now places the focus within the text area, and notifies Alice of the
change in state/mode. Alice then begins typing Bob’s email
address. She then presses the TAB key, jumping to the Subject
line, and fills in the content. She TABs again to the body, and
writes the content of her email. She reviews the content by
pressing Arrow Keys. Finally, she presses TAB once more and
locates the “Send” button. Pressing Enter, the email is sent, and
the page reloads to display the content of her sent email. Alice
then switches back to VC and she can reread her email or find the
inbox link on the page and continue iterating over her inbox.

As illustrated in this example, most reading of textual content and
Web page navigation is with VC, while text entry is with FM.
Most other Web and computer based interactions utilize VC and
FM. Traditional screen reader interaction does not use PCM.

Table 1. High level, user-Web interaction breakdown
across screen reader modes for traditional Web usage.

5.3 Mapping Modalities to Features
While our discussion of our model thus far has described the
conceptual segmentation of screen readers and Web usage, we
now explore the functionality contained within each screen reader
mode. We present a breakdown of functionality across each
screen reader mode (Table 2). Due to the difficulty in using
mouse-based interactions by visually impaired users, screen
readers rely upon custom hot-keys to provide the traditional suite
of computer interactions. Because of the wide variety of human-
computer interactions, most keys on a keyboard are assigned to
interactions. In addition to the general set of keyboard hot-keys,
screen readers tend to adjust some keys for application specific
functionality. For example, as a user switches between Word and
the Windows desktop, certain keys will change to reflect the
changes in features/functionality.

Because so many keyboard keys are used for JAWS commands,
textual/keyboard input (to type text, or fill out online fields) is not
possible within the same modality. To facilitate input, an
additional mode (FM) is necessary. In this mode, users enter text
into input fields and the keystrokes are not interpreted as
navigation commands.

Not all screen readers utilize a separate PCM mode of interaction.
For example, WindowEyes [14] allows most standard keyboard
based interactions in FM. However, in JAWS, PCM is an
additional mode, though not commonly used. Its main purpose is
to facilitate interaction that is not text input, and requires use of
key activations that are normally captured by the screen reader in
VC. One screen reader user described this lack of familiarity by
stating:

Because everything I know about JAWS is not helping
me out at all. It sort of like... you have a sufficiently
different way of navigating, which is going to require a
completely new learning curve to navigate it - PP4

Another user described her frustration with the new modality by
stating:

…this is a command I have never used! …. Nobody –
and I have had several different teachers – nobody has
told me ... a command for turning the virtual cursor off..
- PP5

6. MODEL OF SCREEN READER
INTERACTIONS WITH WEB 2.0 SITES

In this section, we present a model of interaction between screen
reader users and Web 2.0 applications. Using this model and
interviews with screen reader users [15], we highlight current
accessibility issues. Section 6.1 presents a scenario involving a
fictional screen reader user Alice, interacting with a dynamic
Web-based email client. As more and more modern uses of the
Web revolve around these dynamic sources of content,
accessibility becomes a growing concern.

6.1 Illustration of Workflow:
 Interaction with Web 2.0 Content

To better illustrate the use of screen readers and the difficulties
inherent with Web 2.0 applications, we illustrate our fictional
screen reader user, Alice, interacting with a Web based email
client that is using Ajax (without ARIA). We find Alice with her
Web browser open, pointed at the Web 2.0 version of her Web
based email client. This scenario is an amalgam of observations
of interaction, coping techniques and feedback from users in the
experimental context [15].

6.1.1 Reading Page Content
When the page loads, the screen reader (in VC) begins reading the
entire page content. Alice wishes to immediately find out what
new emails she has in her inbox. To iterate over the inbox
content, the Web Application uses two hot-keys, J and K. Alice
switches her screen reader to PCM, to enable her to interact with
these custom hot keys. As she cycles over each element, she gets
no audio feedback that the page content has changed or that she is
iterating over different emails. Realizing that this custom
interaction does not function for screen readers as described, she
returns to VC. She then looks for tables. However, the inbox is
not created with a table element, but rather with CSS styling of
div elements. As a result, her traditional method of interaction
does not function. Realizing there must be a link somewhere, she
brings up her list of page links. She finds a series of links that
appear to follow a pattern: name, a subject, a date/time. This
does not appear to be easy to follow, but Alice surmises she can
TAB through these links, and get access to the content. After
navigating to the series of emails, she TABs through sets of name,
subject, date, until she finds one from Eve.

Pressing Enter, she opens the email. However, because the mail
client only updated the DOM, the page did not reload. Alice waits
for page load confirmation, but receives none. Confused, she
presses the Enter key again, and gets an error from the screen
reader, informing her that she is not on a link or clickable element.
This confuses Alice even more. She instructs the screen reader to
re-read the entire page. This is when Alice notices that the page
content has changed. Locating the body of the email, Alice reads
the content in VC, and realizes that Eve would like Alice to
contact their finance director Bob, and ask him to send the
financial reports from the past year.

6.1.2 Constructing An Email
Alice presses Insert + F7, and brings up a list of all the links on
the page. Using her Arrow Keys, she cycles through the list of

Table 2. Breakdown of functional interactions across
screen reader modes for traditional Web page usage [15].

links however, does not find any link called “Compose New
Email.” What visually appears on the page is not a true link, but a
Decorated Link, that has the appearance of a link, but does not
match the link properties. Therefore the screen reader does not
detect it. Alice begins to read through the entire page until she
locates the simulated link, however, even though she presses
Enter, the page does not change, nor does the screen reader read
the text “Compose Mail” as a link. Alice remembers, that she can
activate “Compose Mail” via the application C hot key. Alice
switches to PCM, and presses the C key. For the sake of
simplicity, lets assume that the page does reload (does not use a
DOM update, though a DOM update would be the most efficient).
The screen reader notifies Alice that the page loads, but because
she is not in VC, it does not automatically read the entire page.
Further, the page uses JavaScript to automatically place Alice in a
text field. Alice must then switch back to VC, to uncover what
page she is on. She instructs the screen reader to read the page
content, and uncovers that she is in “Compose Mail.” Because this
moved her outside of the text area, Alice must switch to FM. She
then TABs to her text areas, and fills out her email. TAB’ing to
the send button, Alice sends her email.

The page reloads to display a static-text version of her sent email.
Alice switches to VC, in order to read the current page content.
Realizing her email is correct, she wishes to return to her inbox to
continue checking emails. However, the inbox link is also a
decorated link. In order to begin this cycle again, she must switch
to PCM, use an application hot-key to switch to her inbox, then
return to VC to cycle through her inbox list.

6.2 AJAX Keyboard Interactions
One central aspect of the screen reader and Web 2.0 model is
examining the interaction with AJAX content. With the
integration of these new technologically driven features,
accessibility and interaction is not readily addressed for screen-
reader users. Without providing appropriate means of interacting
with content, or understanding the challenges that come from the
interaction, Web 2.0 applications will be difficult for screen
reader users.

Though the integration of hot-keys into Web applications
generally increases the usability of Websites, particularly Web
applications, screen-reader users have a hard time taking
advantage of this functionality. This is a result of the keyboard
capture mechanism used by screen readers. Keyboard actions are
captured by the screen reader before they reach the Web browser,
and therefore before any rich Web application. In order to allow
screen readers to interact with Web applications, users must
switch to PCM, a mode that is not commonly used. Table 3 is an
extended version of Table 2 that includes Web 2.0 interactions
separated by screen reader modality. As illustrated in Table 3,
traditional Web browsing does not require use of PCM mode, yet
it is often the only mode in which users can access application hot
keys in keyboard-based Web 2.0 content. In other words, users
must switch back-and-forth between VC (for traditional Web
interaction and content reading), FM (for input) and PCM (for
Web specific features). One screen reader user described this new
mode of interaction by stating:

I would use the analogy of driving on the opposite side
in Europe. Because every time they go into this program
they are going to have to junk everything that is in their
head ... they are going to be doing this every time they
go to the Internet – PP10

In short, AJAX interactions (crucial to Web 2.0) require PCM that
most screen reader users do not know about. Given user reaction,
and the increased complexity required to switch back-and-forth
between screen reader modalities, Web designers must take
visually impaired users into consideration from the very beginning
of the design cycle.

6.3 Dynamic Content Updates
Highlighting the effects and implications of dynamic content
updates in our user model is necessary to understand how to
improve technology. When some page content is updated
dynamically, screen reader users generally remain uninformed as
to page changes. Screen readers alert users to page changes on
page refreshes, not on most dynamic content changes. While
users can learn to expect content changes based on their actions
(e.g., clicking a button), when the content refreshes without their
direct action, users can become confused. Further, if users click
what appears to be a link (expecting to be redirected to a new
page) and pages do not refresh, but dynamically update parts of
the content, users can be unaware of page changes or even that
they correctly activated the control. To complicate the situation
further, traditional Web browsing feedback is not provided in
PCM. Therefore, when users invoke AJAX interactions in PCM
(Section 6.2), they cannot rely upon any of the feedback they are
accustomed to.

As a result, one of the main features of Web 2.0 applications is
lost on the visually impaired community. Without feedback, three
main situations arise:

Table 3. Breakdown of features across screen reader modes
for Web 2.0 application usage [15] with traditional
interaction (for context) is shaded.

1. NOTIFICATION: User does not realize content has
changed and is therefore unable to locate his/her old position
or content they presumed was on the page

2. LAYOUT & STRUCTURE CHANGES: The user realizes,
somehow, that the page has been updated, but must reread
the entire page to discover what has changed.

3. CONFIRMATION FEEDBACK: When user performs
actions, without confirmation, he/she is unaware if clicking a
link or pressing a hot-key actually had an effect

None of these situations is desirable. They reduce the
accessibility and usability of the entire Web application.

6.4 Virtual Buffer and Focus
The virtual buffer, and its effects on Web 2.0 applications is
another dimension of our user model. While the virtual buffer is
an important feature in screen reader technology, it has caused
some interaction difficulties for the visually impaired user. Most
notably, problems arise when the content of an AJAX application
page changes, often without any user intervention. This poses a
major issue for the screen readers, since the virtual buffer is no
longer in-sync with the Web page shown on the screen. Not only
are the unexpected content changes confusing, the user may also
lose his/her place in the content. When a screen reader moves
around the page, it is actually maintaining the location of the
Virtual Cursor (the user’s position) in its virtual buffer. When the
page dynamically updates, the Virtual Cursor location may also
shift, often in an unpredictable fashion. While in the more benign
cases, the Virtual Cursor may simply move elsewhere in the
virtual buffer, the most extreme cases results in the screen reader
getting completely confused. In one such example, we observed
the screen reader reading HTML/CSS from the page’s source
rather than meaningful content. Because the screen reader does
not recognize the structure of the Web site, due to the buffer
change, hot keys appear to do nothing because, to the screen
reader, they have nothing to act upon. This can be mildly
confusing to sighted users, but they have the ability to visually
scan a page. However, visually impaired users become
completely lost as to their position and what page they were on.

6.5 Custom Controls
Though there are benefits to using Custom Controls, there is a
major accessibility issue with them. These links and control
mechanisms are simply “stylized” to visually appear as their
standard Web/form element counterparts, while not utilizing
native anchors or controls. As a result, this content is not
identifiable by screen readers, and therefore, not identifiable by
visually impaired users. We model the accessibility and
interaction implications of custom controls.

6.5.1 Decorated Links & Link-Based Navigation
This lack of screen-reader identification of decorated links has a
particularly large negative impact on Web-page navigation.
Screen readers provide a mechanism for navigating a Web page
via list of links on the page. This link-based view of the Web is a
essential tool for Web navigation [6]. A large effort has been
made to ensure linked text and alternate text on images are
representative of the link destination to aid in this link-based
traversal [6]. However, if links fail to appear in the list of links,
screen reader users will not be aware of their presence, let alone
be able to use them.

6.5.2 Utilizing Custom Controls
To further exacerbate the issue, if a screen-reader user encounters
these custom controls or decorated links through Web-page
content traversal, traditional keyboard interaction (e.g., activation
of button, execution of link, or checking of check-box) may not be
supported. Although many implementations of decorated links
and custom controls do not support keyboard activation, good
JavaScript practice includes support for keyboard events in
addition to mouse events. While this additional functionality does
not provide methods for screen readers to detect the existence of
these control elements, they will have the appropriate
functionality attached.

6.6 Access to textual content
A major aspect of Web browsing, computer usage, and our user
model is access to textual content. As Table 3 illustrates, PCM
provides no ability for users to get access to any textual content.
For example, consider a list of inbox emails. A user can adjust
his/her position in the queue through an Up key and Down key. If
using JavaScript, the user’s position would be stored in a
JavaScript variable without providing any notification to the
screen reader, and the screen reader would not pick up any visual
placeholder changes. Moreover the user would receive no
feedback that state even changed, let alone what it changed to.

6.7 Existing Web 2.0 Accessibility Solutions
Clearly, solutions can be implemented in the client software to
address many of these limitations. The Dynamo Web browser [5]
and updates to screen readers themselves are viable solutions to
this problem. However, these put the burden of using new
software (which may pose additional problems) or updating their
existing software (which most likely will incur an additional cost
to the user) on the visually impaired user. Further, new software
and new update adoption is not ubiquitous. Thus, it is our
responsibility, as researchers and developers, to seek out solutions
that can be implemented in the back-end server software, so as to
increase the impact and accessibility as broadly as possible.

Currently, development of the ARIA specification holds great
promise for improving Web accessibility. ARIA allows a
developer to specify semantic information for UI widgets with the
help of various role values and a set of state attributes that are
appropriate for the given role as well as managing focus location
and alerting many dynamic content changes. ARIA addresses
some of the above problems by providing developers a way to
specify roles and states for such controls. Although ARIA is a
significant step in making AJAX applications more accessible, it
is not a panacea. Obviously, one cannot make a poor UI design
better just by introducing ARIA roles and states. Before an AJAX
application can be accessible, it is also critical to provide proper
keyboard support and proper focus management in the
application. While ARIA is a promising first step to addressing
the growing complexity of AJAX applications, there are a number
of complex UI widgets used in today’s Web applications that
cannot be described by ARIA markup. However, while ARIA
provides critical tools for enabling support of dynamic web
applications, it must be used in ways that still present a
manageable model for users.

The following section details a set of design requirements for Web
designers to create more accessible Web 2.0 applications based
directly upon the findings above.

7. DESIGN REQUIREMENTS FOR
ACCESSIBLE WEB 2.0 SITES

We present here a set of design implications to influence the
development of future Web 2.0 applications. We relate these
design implication to sections (highlighted in bold) that discuss
usability concerns that are addressed by each design implication.
When appropriate, we note when ARIA can provide support. We
conclude this section with a brief discussion of how navigating a
Web Application that follows these guidelines can ease a visually
impaired user’s interaction. To make full use of these
requirements, we recommend that users integrate these techniques
in the early stages of the development. In many cases this will not
only produce more accessible code (cleaner with less markup) but
can also produce applications that are more useful for the general
population.

7.1 Alternate Modes of Audio Feedback
One critical deficit of Web 2.0 applications is the lack of screen
reader detection of changes (both state and page content) in a Web
page (6.3, 6.6). ARIA does provide some resolution to this
problem for users in VC. While in PCM, no automatic feedback is
provided (without developer assistance). Designers should
employ a system (e.g. AxsJAX [8]) to expose author provided
audio content to the client’s screen reader. This not only provides
additional feedback for VCM, but also for PCM. While there is a
large benefit to the screen reader user from this additional audio
feedback, its inclusion may increase general Website load time.
The performance-conscious developer can mitigate this by
enabling this additional feedback through an opt-in system.

7.2 User Workflow Design Model
As illustrated in Section 6.1, modern navigation of Web 2.0
applications is not only complex, but requires a multitude of mode
switches for screen reader users. Users in our research described
this set of complex mode switches as greatly bothersome. One
visually impaired user (PP14) stated “the switching between, is a
stressful thing for me.” Another user summed up his interaction
with keeping track of multiple modes by stating:

… you have it off to read, and off to perform some of the
keyboard commands, and you have other commands that
you have to use when the virtual cursor is on, and then you
have to remember that you have to have the virtual cursor
on to turn forms mode on, which confused me... it just
seems to be a lot of steps – PP1

Through this feedback from users, we constructed an interaction
design that future Web applications can follow. This new model,
briefly outlined in [15], breaks up user-based interaction into two
conceptual groupings: Reading Mode and Control Mode (Table
4). In this section, we will provide a complete design and
implications of this model. The entire workflow model centers on
the premise that users should exist in one of two conceptual
modes. This dual modality reduces the strain from an increase in
mode switches to access Web 2.0 content, as well as providing a
logical model to aid screen reader users learn and remember the
mode to access appropriate functionality (6.2). Reading Mode
consists of traditional Web browsing, focusing on retrieving
content from the Web site itself. Control Mode should contain all
the Web application based interaction. Thus performing
application commands, accessing features, and manipulating the
features of the online program should be presented and be
reachable via Control Mode. The critical aspect of this model is

that Web developers must provide the appropriate accessible
functionality for each mode of interaction as follows:

1) Examine the workflow of the Web app carefully, and divide
activities into those that conceptually take place in Control
Mode and those that should take place in Reading Mode.

2) Make sure that the user does not have to switch modes
frequently, e.g., when interacting with the app, the user
should not have to switch to Reading Mode to get oriented or
to navigate to a different part of the application. When in
Reading Mode, the user should not need to switch into
Control Mode to navigate or perform some action in the
middle of reading.

3) Clearly there will be times when it is necessary to change
modes. Try to design the application so this can happen
automatically and naturally. (e.g., use of application role can
cause parts of the content to be processed in Control Mode).
At a minimum, ensure that the switch follows the conceptual
model of needing to control the application or needing to
read content.

4) In PC mode, content is only read when it takes focus. If it is
important to have the screen reader speak content on certain
operations, it may not happen automatically. It is important
that the author recognize what info the user may need and
arrange to have it spoken (if possible). ARIA live regions or
ARIA activedescendents may be one approach. Making
content focusable via tabindex = 0 is another way. AxsJAX
provides convenient utilities to assist the author in this task.

Table 4. Illustration of User Interaction model outlined in
Section 7.2. Breakdown by feature (Table 3), high-level
interaction concept (Table 1), and screen reader modality
are inline to provide a robust view of the future of screen
reader and Web 2.0 interaction.

Though there is an ability to facilitate content to be read in
Control Mode without using a screen reader [8, 19], users would
lose many aspects of textual reading (slowing it down, going
backwards and forwards, and going word-by-word, or letter-by-
letter). For example, in an email client, switching folders, iterating
over emails, opening emails, and switching to compose email
should be accessed via control mode while reading an email
should be accessed in Reading Mode. During Control Mode
systems such as AxsJAX[8] about current actions and location in
the content. We illustrate our breakdown in Table 4 by presenting
an amalgam of high-level interaction concept (Table 1) along side
specific functionality (Table 2, Table 3) associated with each
screen reader mode (Section 5.1).

7.3 Synchronizing with Virtual Buffers
While the screen reader’s virtual buffer is necessary for natural
Web content navigation via screen reader keyboard commands,
resolving the problems that have arisen due to dynamic Web
content is a large problem (6.3 & 6.4). Much of this burden lies
with advancing the screen reader itself. A common workaround is
to use keyboard commands to force the screen reader to update its
virtual buffer. Additional research has also examined dynamic
content change detection systems [5]. Regardless, this is a serious
problem, one that screen reader developers are working on (and
been fixed for several AJAX situations in their newer versions).
Additional supports for dynamic changes within widgets are
provided through ARIA, however many dynamic updates cannot
be fully described and relayed given the current standard.

Nevertheless, mitigating the virtual buffer remains a thorny issue
in the support of AJAX applications. Until most deployed screen
readers address this concern, Web developers must strive to at
least alert screen reader users to content changes, and possible
synchronicity issues. Workarounds to force buffer updates [17],
present temporary solutions for developers.

7.4 Use of Custom Controls
While use of custom controls is beneficial to the look-and-feel and
performance of Web pages, designers need to take screen reader
users into consideration (6.5). ARIA provides additional support
for complex UI widgets and controls. As this markup becomes
prevalent and screen readers integrate support, existing custom
controls will become accessible. However, as new forms of
interactions are developed, standards like ARIA will also need to
evolve. Even today, some UI widgets involve structures or
interactions that cannot be described by existing ARIA language.

Until appropriate mark-up is provided, designers must explore
other forms of accessibility support. As a rule of thumb, if a Web
2.0 designer is going to make content that visually looks/
functions like a standard Web element (e.g., link, button), then
additional features must be provided for screen readers. With
many of these features, keyboard based interaction is easily
available. For example, decorated links can be made accessible in
three steps:

1. Ensure that links have a keyboard listener and provide the
same functionality on pressing Enter as for a mouse click.

2. Provide an ARIA role="link" on each of the decorated links
for browsers and screen readers that supports ARIA.

3. Finally, add them to tab order by providing the attribute
tabindex="0". This attribute is supported for non-interactive
elements in Internet Explorer, Firefox, Opera and newer
versions of WebKit.

Sadly, these small solutions are often not applied by web
developers. For more complex custom content, providing
mechanisms for navigation and feedback is essential. The
PowerKey support in AxsJAX [8] provides a mechanism for
defining and managing command line interfaces to application
functionality. Designers can use this approach to enable easy and
fast keyboard access for visually impaired users custom controls.
PowerKey has been used to improve keyboard access on pages
such as Google Health and Craigslist.

7.5 Illustration of Workflow:
 Interaction with Web 2.0 Content

We return to our fictional screen reader user, Alice, who is
interacting with a Web based email client that follows the design
requirements outlined in Section 7. Table 4 provides a
complement to the narrative by illustrating her “mode” of use. We
find Alice with her Web browser open, pointed at the Web 2.0
version of her Web based email client. This scenario is based
upon technological solutions implemented in, and an amalgam of
observations of users in the experimental context [15].

7.5.1 Reading Page Content (Navigating Text)
When the page loads, the screen reader in Reading Mode (VC)
begins reading the entire page content. Alice wishes to
immediately find out what new emails she has in her inbox. To
iterate over the inbox content, the Web Application uses two hot-
keys, J and K. Alice switches her screen reader to Control Mode
(PCM), and cycles through her inbox. As she iterates, the Web
app provides feedback to the user via AxsJAX, informing Alice of
each sender, subject, and date. When she finds the emails she
wants, Alice presses the Enter key, and she is provided audio
confirmation of the dynamic content refresh (by AxsJax, ARIA
support, or other solution). Alice switches to Reading Mode (VC)
and reads the content of Eve’s email asking Alice to contact their
finance director Bob, and ask him for the financial reports.

7.5.2 Constructing An Email
To contact Bob, Alice returns to Control Mode and presses the C
hot key. As the DOM gets updated, Alice is provided with Audio
confirmation that the page loaded, and that she is a field of the
form for composing a message. Alice fills out her email. She
TABs to the send button and sends her email. When the page
reloads, she is alerted to the DOM change. Should she wish to
read the page, she can switch to VC. However, she is already in
Control Mode, so she is easily able to press the application hot
key I to jump to the inbox.

8. CONCLUSION & FUTURE WORK
A critical aspect of increasing accessibility is a better
understanding of screen reader user needs. As Web technology
continues to evolve, content designers must remain vigilant and
keep accessibility in mind. This paper presents three models
which provide a new understanding of how technology should be
designed: 1) interaction with traditional Web content shows the
mental and use models current screen reader users, 2) interaction
with Web 2.0 applications illustrates difficulties inherent in screen
readers interacting with AJAX technology, 3) user workflow
design is a model for Web application designers to follow that
minimizes the strain on model switching for screen reader users.
In addition to these three models, we present a set of design
guidelines to facilitate improved accessibility in a Web 2.0 world,
based on model analysis and feedback from user research. While
much work is being conducted on improving screen reader

technology to address the changing needs of users, this paper
focuses on changes that can be made by designers. By focusing on
authoring design implications, improvements in accessibility can
be made for all screen reader users today.

While any new application disturbs the mental model of users, the
disruption to screen reader users is even greater than the standard
disruption, because of the role that the screen reader plays as an
intermediary between the user and the content as rendered in the
browser. Thus this paper articulates what form that additional
disruption takes, and suggestions to alleviate it.

In the future, we look to continue to update these design
guidelines to reflect the evolving state of Web technology. Further
work can also improve Web development tool kits and design new
authoring solutions (e.g., ARIA [27, 28], AxsJAX [8]) to provide
developers with easy-to-integrate solutions. In addition, a
rigorous study of the application of these design implications is
being investigated in order to evaluate the result.

By basing our findings directly on feedback from users, lessons
from designing Web 2.0 applications, and an analysis of screen
reader technology, we believe that our conclusions are grounded
in a holistic understanding of both the technology and the target
users. There are many technologies rapidly coming together, and
simply pulling them together does not solve the problems of
screen reader users. Designers must also consider the user’s work
model and the limitations that the technology imposes. Through
the models and implications for designed outlined here, we
believe Web 2.0 applications can be updated to meet the needs of
over 161 million visually impaired users.

9. ACKNOWLEDGMENTS
We would like to thank all of our participants, Sensory Access
Foundation, VISTA Center, and Lighthouse for the Blind.

10. REFERENCES
[1] American Foundation for the Blind. Facts and Figures on

Americans with Vision Loss.
http://www.afb.org/Section.asp?SectionID=15&DocumentID=4398

[2] Becker, J. V., Becker, D. A., Hinton, D. E. and Hugh G.
Anderson, J.Braille computer monitor(6700553). Unites
States Patent Office, USA 2004.

[3] Bigham, J., Cavender, A., Brudvik, J. and Wobbrock, J.
WebinSitu: A Comparative Analysis of Blind and Sighted
Browsing Behavior. Proceedings of ASSETS 2007 (Tempe,
AZ), 2007.

[4] Bigham, J. P. and Ladner, R. E. Accessmonkey: a
collaborative scripting framework for Web users and
developers. Proceedings of W4A. Bamf, Canada). ACM,
2007.

[5] Borodin, Y., Bigham, J. P., Raman, R. and Ramakrishnan, I.
V. What's New? - Making Web Page Updates Accessible. In
Proceedings of ASSETS 2008 (Halifax, Nova Scotia), 2008.

[6] Boyden, C. and Greco, L. C21. Web Usability for Assistive
Technology. Procedings of CHI 2007 (San Jose, CA), 2007.

[7] Caldwell, B., Cooper, M., Reid, L. G. and Vanderheiden, G.
Web Content Accessibility Guidelines 2.0. 2008.

[8] Chen, C. L. and Raman, T. V. AxsJAX: a talking translation
bot using google IM: bringing Web-2.0 applications to life. In
Proceedings of W4A (Beijing, China). ACM, 2008.

[9] Freedom Scientific. JAWS. 2007

[10] Freedom Scientific. JAWS for Windows ® Screen Reading
Software. http://www.freedomscientific.com/products/fs/jaws-
product-page.asp

[11] Fukuda, K., Saito, S., Takagi, H. and Asakawa, C. Proposing
new metrics to evaluate Web usability for the blind. In CHI
'05 extended abstracts (Portland, OR). ACM, 2005.

[12] Garrett, J. J. Ajax: A New Approach to Web Applications.
adaptive path, February 18, 2005.
http://www.adaptivepath.com/ideas/essays/archives/000385.php, 2005.

[13] Google. Keyboard shortcuts - Gmail Help Center.
http://mail.google.com/support/bin/answer.py?hl=en&answer=6594

[14] GW Micro. Window-Eyes. 2007

[15] Hailpern, J., Guarino Reid, L. and Boardman, R. DTorial: An
interactive tutorial framework for blind users in a Web 2.0
world. UIUC Technical Report #UIUCDCS-R-2009-3029.

[16] Harkin, T. AMERICANS WITH DISABILITIES ACT OF
1990. U. S. Senate, 1990.

[17] Juicy Studio. Improving Ajax applications for JAWS users.
http://juicystudio.com/article/improving-ajax-applications-for-jaws-users.php

[18] Kim, J. W., Candan, K. S. and Mehmet E. Dnderler. Topic
segmentation of message hierarchies for indexing and
navigation support. Proceedings of WWW 2005 (Chiba,
Japan). ACM, 2005.

[19] Lemon, G. WAI-ARIA Live Regions.
http://juicystudio.com/article/wai-aria-live-regions.php

[20] McKeon, H. P. The Rehabilitation Act Amendments (Section
508). U. S. Congress, 1998.

[21] Miyashita, H., Sato, D., Takagi, H. and Asakawa, C. Making
multimedia content accessible for screen reader users. In
Proceedings of the W4A Conference (Banff, Canada, 2007).
ACM, 2007.

[22] O'Reilly, T. What is Web 2.0 (2005).
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-Web-20.html

[23] Takagi, H., Asakawa, C., Fukuda, K. and Maeda, J.
Accessibility designer: visualizing usability for the blind. In
Proceedings of the ACM SIGACCESS conference (Atlanta,
GA). ACM, 2004.

[24] Thatcher, J. SAID (Synthetic Audio Interface Driver). 1984

[25] Thatcher, J. Screen reader/2: access to OS/2 and the graphical
user interface. Proceedings of Assets '94 (Marina Del Rey,
CA). ACM, 1994.

[26] W3C. HTML 4.01 Specification - IFRAME.
http://www.w3.org/TR/html4/present/frames.html#h-16.5

[27] W3C and Editor: Schwerdtfeger, R. Roadmap for Accessible
Rich Internet Applications (WAI-ARIA Roadmap).
http://www.w3.org/TR/wai-aria-roadmap/

[28] W3C - Web Accessibility Initiative and Editor: Henry, S. L.
WAI-ARIA Overview. http://www.w3.org/WAI/intro/aria

[29] World Health Organization. WHO | Magnitude and causes of
visual impairment. wttp://www.who.int/mediacentre/factsheets/fs282/en/

