
A Representation of Programs for Learning and Reasoning

Moshe Looks
Google, Inc.

madscience@google.com

Ben Goertzel
Novamente LLC

ben@novamente.net

Abstract

Traditional machine learning systems work with rela-
tively flat, uniform data representations, such as fea-
ture vectors, time-series, and context-free grammars.
However, reality often presents us with data which are
best understood in terms of relations, types, hierar-
chies, and complex functional forms. One possible rep-
resentational scheme for coping with this sort of com-
plexity is computer programs. This immediately raises
the question of how programs are to be best repre-
sented. We propose an answer in the context of ongo-
ing work towards artificial general intelligence.

Background and Motivation
First, what do we mean by programs? The essence
of programmatic representations is that they are well-
specified, compact, combinatorial, and hierarchical.
Well-specified: unlike sentences in natural language,
programs are unambiguous; two distinct programs can
be precisely equivalent. Compact: programs allow us
to compress data on the basis of their regularities. Ac-
cordingly, for the purposes of this paper, we do not
consider overly constrained representations such as the
well-known conjunctive and disjunctive normal forms
for Boolean formulae to be programmatic. Although
they can express any Boolean function (data), they dra-
matically limit the range of data that can be expressed
compactly, in comparison to unrestricted Boolean for-
mulae (Weg87; Hol90). Combinatorial: programs can
access the results of running other programs (e.g. via
function application), as well as delete, duplicate, and
rearrange these results (e.g., via variables or combina-
tors). Hierarchical: programs have an intrinsic hierar-
chical organization, and may be decomposed into sub-
programs.

Baum has advanced a theory “under which one un-
derstands a problem when one has mental programs
that can solve it and many naturally occurring vari-
ations.” (Bau06). Accordingly, one of the primary
goals of artificial general intelligence will be system
that can represent, learn, and reason about such pro-
grams (Bau06; Bau04). Furthermore, integrative AGI

Copyright c© 2008, The Second Conference on Artificial
General Intelligence (AGI-09.org). All rights reserved.

systems such as Novamente (LGP04) may contain sub-
systems operating on programmatic representations.
Would-be AGI systems with no direct support for pro-
grammatic representation will clearly need to represent
procedures and procedural abstractions somehow. Al-
ternative representations such as recurrent neural net-
works have serious downsides, however, including opac-
ity and inefficiency.

It is worth noting that the problem of how to repre-
sent programs for an AGI system dissolves in the lim-
iting case of unbounded computational resources. The
solution is algorithmic probability theory (Sol64) ex-
tended recently to the case of sequential decision the-
ory (Hut05). The latter work defines the universal al-
gorithmic agent AIXI, which in effect simulates all pos-
sible programs that in agreement with the agent’s set
of observations. While AIXI is uncomputable, the re-
lated agent AIXItl may be computed, and is superior to
any other agent bounded by time t and space l (Hut05).
The choice of a representational language for programs1
is of no consequence, as it will merely introduce a bias
that will disappear within a constant number of time
steps.2

The contribution of this paper may be seen as pro-
viding practical techniques for approximating the ideal
provided by algorithmic probability, based on what Pei
Wang has termed the assumption of insufficient knowl-
edge and resources (Wan06). Given this assumption,
how programs are represented is of paramount impor-
tance, as we shall see in the next section. What ex-
actly is meant by a representation is also addressed.
The third section of the paper delves into effective tech-
niques for representing programs. The fourth and final
section concludes and suggests future work.

Representational Challenges

Despite the advantages outlined in the previous section,
there are a number of challenges in working with pro-
grammatic representations:

1As well as a language for proofs in the case of AIXItl.
2In fact, the universal distribution converges very

quickly (Sol64).

• Open-endedness – in contrast to other knowledge
representations current in machine learning, pro-
grams may vary in size and “shape”, and there is no
obvious problem-independent upper bound on pro-
gram size. This makes it difficult represent programs
as points in a fixed-dimensional space, or learn pro-
grams with algorithms that assume such a space.

• Over-representation – often, syntactically distinct
programs will be semantically identical (i.e. repre-
sent the same underlying behavior or functional map-
ping). Lacking prior knowledge, many algorithms
will inefficiently sample semantically identical pro-
grams repeatedly (Loo07b; GBK04).

• Chaotic Execution – programs that are very simi-
lar, syntactically, may be very different, semantically.
The presents difficult for many heuristic search algo-
rithms, which require syntactic and semantic distance
to be correlated (Loo07c; TVCC05).

• High resource-variance – programs in the same
space may vary greatly in the space and time they
require to execute.
Based on these concerns, it is no surprise that search

over program spaces quickly succumbs to combinato-
rial explosion, and that heuristic search methods are
sometimes no better than random sampling (LP02).
Regarding the difficulties caused by over-representation
and high resource-variance, one may of course raise the
objection that determinations of e.g. programmatic
equivalence for the former, and e.g. halting behavior
for the latter, are uncomputable. Given the assump-
tion of insufficient knowledge and resources however,
these particular concerns dissolve into the larger issue
of computational intractability and the need for efficient
heuristics. Determining the equivalence of two Boolean
formulae over 500 variables by computing and compar-
ing their truth tables is trivial from a computability
standpoint, but, in the words of Leonid Levin, “only
math nerds would call 2500 finite” (Lev94). Similarly,
a program that never terminates is a special case of a
program that runs too slowly to be of interest to us.

Now, in advocating that these challenges be ad-
dressed through “better representations”, it must be
clear that we do not mean merely trading one Turing-
complete programming language for another; in the end
it will all come to the same. Rather, as we have argued
previously (Loo06; Loo07a; Loo07c), we claim that to
tractably learn and reason about programs requires us
to have prior knowledge of programming language se-
mantics. The mechanism whereby programs are exe-
cuted is known a priori, and remains constant across
many problems. We have proposed, by means of ex-
ploiting this knowledge, that programs be represented
in normal forms that preserve their hierarchical struc-
ture, and heuristically simplified based by reduction
rules. Accordingly, one formally equivalent program-
ming language may be preferred over another by virtue
of making these reductions and transformations more
explicit and concise to describe and to implement.

Normal forms have been proposed and experimen-
tally validated for Boolean formulae, and for a num-
ber of toy problems, such as the artificial ant on the
Santa Fe trail (Loo06). This paper has two main inno-
vations. Firstly, the system of normal forms is extended
to encompass a full programming language. Secondly,
a more extended taxonomy of programmatic transfor-
mations beyond simplification are proposed to aid in
learning and reasoning about programs, situated in a
unified framework.

Tractable Representations
In order to distinguish between the various normal
forms we introduce below, a simple type system is in-
troduced. This is necessary in order to convey the min-
imal information needed to correctly apply the basic
functions in our canonical forms. Various systems and
applications may of course augment these with addi-
tional type information, up to an including arbitrary
the satisfaction of arbitrary predicates (e.g. a type for
prime numbers). This can be overlaid on top of our
minimalist system to convey additional bias in selecting
which transformations to apply, introducing constraints
as necessary. For instance, a call to a function expect-
ing a prime number, called with a potentially composite
argument, may be wrapped in a conditional testing the
argument’s primality. A similar technique is used in the
normal form for functions to deal with arguments that
are (possibly empty) lists.

Normal Forms
Normal forms are provided for Boolean and number
primitive types, and the following parametrized types:

• list types, listT , where T is a type with a normal
form,

• tuple types, tupleT1,T2,...TN
, where all Ti are types

with normal forms, and N is a positive natural num-
ber,

• enum types, {s1, s2, . . . sN}, where N is a positive
number and all si are unique identifiers,

• function types T1, T2, . . . TN → O, where O and all
Ti are types with normal forms,

• action result types.

A list of type listT is an ordered sequence consisting
any number of elements, all of which must have type T .
A tuple of type tupleT1,T2,...TN

is an ordered sequence of
exactly N elements, where every ith element is of type
Ti. An enum of type {s1, s2, . . . sN} is some element si

from the set. Action result types concern side-effectful
interaction with some world external to the system (but
perhaps simulated, of course), and will be described
in detail in their subsection below. Other types may
certainly be added at a later date, but we believe that
those listed above provide sufficient expressive power to
conveniently encompass a wide range of programs, and
serve as a compelling proof of concept.

The normal form for some type T is a set of ele-
mentary functions with codomain T , a set of constants
of type T , and a tree grammar, G. Internal nodes
for expressions described by G are elementary func-
tions, and leaves are the symbols of the form Uvar or
Uconstant, where U is some type with a normal form
(often U = T).

Sentences in a normal form grammar may be trans-
formed into normal form expressions. The set of ex-
pressions that may be generated is a function of a set
of bound variables and a set of external functions that
must be provided (both bound variables and external
functions are typed). The transformation is as follows:
• leaves labeled Tconstantare replaced with constants of

type T ,
• leaves labeled Tvar are replaced with either bound

variables matching type T , or expressions of the form
f(expr1, expr2, . . . exprM), where f is an external
function of type T1, T2, . . . TM → T , and each expri is
a normal form expression of type Ti (given the avail-
able bound variables and external functions).

Boolean Normal Form
The elementary functions for Boolean normal form are
and, or, and not. The constants are {true, false}. The
grammar is:
bool_root = or_form | and_form

| literal | bool_constant
literal = bool_var | not(bool_var)
or_form = or({and_form | literal}{2,})
and_form = and({or_form | literal}{2,}) .

The construct foo{x,} refers to x or more matches of
foo (e.g. {or_form | literal}{2,} is two or more
items in sequences where each item is either an or_form
or a literal).

Number Normal Form
The elementary functions for number normal form are
times and plus. The constants are some specified sub-
set of the rationals (e.g. those with corresponding IEEE
single-precision floating-point representations). The
normal form is as follows:
num_root = times_form | plus_form

| num_constant | num_var
times_form = times({num_constant |

plus_form}
plus_form{1,})

| num_var
plus_form = plus({num_constant |

times_form}
times_form{1,})

| num_var .

List Normal Form
For list types listT , the elementary functions are list
(an n-ary list constructor) and append. The only con-
stant is the empty list (nil). The normal form is as
follows:

list_T_root = append_form | list_form
| list_T_var | list_T_constant

append_form = append({list_form |
list_T_var}{2,})

list_form = list(T_root{1,}) .

Tuple Normal Form

For tuple types tupleT1,T2,...TN
, the only elementary

function is the tuple constructor (tuple). The constants
are T1_constant×T2_constant× · · · × TN_constant.
The normal form consists simply of either a constant,
a var, or tuple(T1_root T2_root . . . TN_root).

Enum Normal Form

Enums are atomic tokens with no internal structure -
accordingly, there are no elementary functions. The
constants for the enum {s1, s2, . . . sN} are the sis. The
normal form is either a constant or a var.

Function Normal Form

The normal form for a function of type T1, T2, . . . TN →
O is a lambda-expression of arity N whose body is of
type O. The list of variable names for the lambda-
expression is not a “proper” argument - it does not
have a normal form of its own. Assuming that none of
the Tis is a list type, the body of the lambda-expression
is simply in the normal form for type O (with the pos-
sibility of the lambda-expressions arguments appearing
with their appropriate types). If one or more Tis is a
list type, then the body is a call to the split function
(described below), whose arguments are all in normal
form.

Split is a family of functions with type signatures

(T1, listT1 , T2, listT2 , . . . Tk, listTk
→ O),

tuplelistT1 ,O, tuplelistT2 ,O, . . . tuplelistTk
,O

→O.

When a call split(f, tuple(l1, o1), tuple(l2, o2), . . .
tuple(lk, ok)) is made, the list arguments l1, l2, . . . lk
are examined sequentially. If some li is found that is
empty, then the result is the corresponding value oi. If
all li are nonempty, we can deconstruct each of them
xi : xsi, where xi is the first element of the list and
xsi is the remainder of the list. The result is then
f(x1, xs1, x2, xs2, . . . xk, xsk). The split function thus
acts as an implicit case statement to deconstruct lists if
they are nonempty, and return some other value if they
are empty.

Action Result Normal Form

An action result type act, corresponds to the result of
taking an action in some world. Every action result
type has a corresponding world type, world. Associated
with action results and word are two special sorts of
functions.

• Perceptions - functions that take a world as their first
argument and normal (i.e. non-world and non-action-
result) types as their remaining arguments, and re-
turn normal types. Unlike normal functions the re-
sult of evaluating a perception call may be different
at different times.

• Actions - functions that take a world as their first
argument and normal types as their remaining argu-
ments, and return action results (of the type asso-
ciated with the type of their world argument). As
with perceptions, the result of evaluating an action
call may be different at different times. Furthermore,
actions may have side effects in the associated world
that they are called in. Thus, unlike any other sort
of function, actions must be evaluated, even if their
return values are ignored.

Other sorts of functions acting on worlds (e.g. ones that
take multiple worlds as arguments) are disallowed.

Note that an action result expression cannot appear
nested inside an expression of any other type. Con-
sequently, there is no way to convert e.g. an action
result to a Boolean, although conversion in the oppo-
site direction is permitted. This is required because
mathematical operations in our language have classi-
cal mathematical semantics; x and y must equal y and
x, which will not generally be the case if x or y can
have side-effects. Instead, there are special sequential
versions of logical functions which may be used instead.

The elementary functions for action result types
are andseq (sequential and, equivalent to C’s short-
circuiting &&), orseq (sequential or, equivalent to C’s
short-circuiting ||), and fails (negates success to fail-
ure and vice versa). The constants may vary from type
to type but must at least contain success, indicating
absolute success in execution. The normal form is as
follows:

act_root = orseq_form | andseq_form
| seqlit

seqlit = act | fails(act)
act = act_constant | act_var
orseq_form = orseq({andseq_form |

seqlit}{2,})
andseq_form = andseq({orseq_form

| seqlit}{2,}) .

Note that a do(arg1, arg2, . . . argN) statement
(known as progn in Lisp), which evaluates its ar-
guments sequentially regardless of success or fail-
ure, is equivalent to andseq(orseq(arg1, success),
orseq(arg2, success), . . . orseq(argN , success)).

Program Transformations
A program transformation is any type-preserving map-
ping from expressions to expressions. Transformations
may be semantics preserving, or may potentially alter
semantics. In the context of program evolution there
is an intermediate category of fitness preserving trans-
formations that may or may not alter semantics. In

general the only way that fitness preserving transfor-
mations will be uncovered is by scoring programs that
have had their semantics potentially transformed to de-
termine their fitness.

Reductions
Reductions are semantics preserving transformations
that do not increase some size measure (typically num-
ber of discrete symbols) of expressions, and are idem-
potent. A set of canonical reductions is defined for
every type that has a normal form. For example,
and(x, x, y) → x is a reduction for Boolean expressions.
For numerical functions, the simplifier in a computer
algebra system may be used. The full list of reduc-
tions is omitted in this paper for brevity - see (Loo06;
Loo08) for details. An expression is reduced if it maps
to itself under all canonical reductions for its type, and
all of its children are reduced.

Another important set of reductions are the compres-
sive abstractions, which reduce or keep constant the size
of expressions by introducing subfunctions. Consider
the expression
list(times(plus(a, p, q) r),

times(plus(b, p, q) r),
times(plus(c, p, q) r))

which contains 19 symbols. By introducing the sub-
function
f(x) = times(plus(x, p, q) r),

and transforming the expression to
list(f(a), f(b), f(c)),

the total number of symbols is reduced to 15. One
can quite naturally generalize this notion to consider
compressive abstractions across a set of programs, as in
the PLEASURE approach (Goe08). Compressive ab-
stractions unfortunately appear to be rather expensive
to uncover, although perhaps not prohibitively so (the
computation is easily parallelized, for instance).

Neutral Transformations
Semantics preserving transformations that are not re-
ductions are not useful on their own - they can only
have value when followed by additional transformations
in some other class. They are thus more speculative
than reductions, and more costly to consider. I will re-
fer to these as strongly neutral transformations. Using
strongly neutral transformations in evolutionary search
was first proposed by Roland Olsson (Ols95)).
• Abstraction - given an expression E containing non-

overlapping subexpressions E1, E2, . . .EN , let E′ be
E with all Ei replaced with the unbound variables vi

(1 ≤ i ≤ N). Define the function f(v1, v2, . . . v3) =
E′, and replace E with f(E1, E2, . . . EN).
Abstraction is a distinct from compressive abstrac-
tion in that only a single call to the synthesized func-
tion f is introduced, whereas in compressive abstrac-
tion there will be at least two (so that the number of
symbols will not be increased).

• Inverse abstraction - replace a call to a user-
defined function with the body of the function, with
arguments instantiated (note that this can also be
used to partially invert a compressive abstraction).

• Distribution - let E be a call to some function f ,
and let E′ be a subexpression of E’s ith argument
that is a call to some function g, such that f is dis-
tributive over g’s arguments, or a subset thereof. We
shall refer to the actual arguments to g in these posi-
tions in E′ as x1, x2, . . . xn. Now, consider the func-
tion D(F) that is obtained by evaluating E with its
ith argument (the one containing E′) replaced with
the expressions F . Distribution is then defined as re-
placing E with E′ after replacing each xj (1 ≤ j ≤ n)
with D(xj).
An example should be much easier to follow. Con-
sider the expression

plus(x, times(y, ifThenElse(cond,
a, b))) .

Since both plus and times are distributive over the
result branches of ifThenElse, there are two possi-
ble distribution transformations, leading to the ex-
pressions

ifThenElse(cond,
plus(x, times(y, a)),
plus(x, times(y, b)))

and

plus(x (ifThenElse(cond,
times(y, a),
times(y, b)))).

• Inverse distribution - the opposite of distribution.
This is nearly a reduction; the exceptions are expres-
sions such as f(g(x)), where f and g are mutually
distributive.

• Arity broadening - given a function f , modify it to
take an additional argument of some type. All calls
to f must be correspondingly broadened to pass it an
additional argument of the appropriate type.

• List broadening3 - given a function f with some
ith argument, x, of type T , modify f such that x is
of type listT instead. This necessitates splitting on
x into e.g. y : ys, and replacing all references to x in
the definition of f with references to y. Furthermore,
all calls to f with x = x′ must have x′ replaced with
list(x′).

• Conditional insertion - an expression x is replaced
by ifThenElse(true, x, y), where y is some expres-
sion of the same type of x.
As a technical note, action result expressions, which

may cause side-effects, complicate neutral transforma-
tions somewhat. Specifically, abstractions and compres-
sive abstractions must take their arguments lazily (i.e.

3Analogous tuple-broadening transformations may be
defined as well, but are omitted for brevity.

not evaluate them before the function call itself is eval-
uated), in order for neutrality to be obtained. Further-
more, distribution and inverse distribution may only be
applied when f has no side-effects that will vary (e.g.
be duplicated or halved) in the new expression, or af-
fect the nested computation (e.g. change the result of
a conditional). Another way to think about this issue
is to consider the action result type as a lazy domain-
specific language embedded within a pure functional
language (where evaluation order is unspecified). An
emperical study of the tradeoffs involved lazy vs. ea-
ger function abstraction for program evolution may be
found in (Spe96).

The number of possible neutral transformation that
may be performed on any given program grows very
quickly with program size - exact calculations may be
found in (Ols95). Furthermore, synthesis of complex
programs and abstractions does not seem to be pos-
sible without them. Accordingly, a key hypothesis of
any approach to AGI requiring significant feats of pro-
gram synthesis, without assuming the currently infeasi-
ble computational capacities required to brute-force the
problem, must be that the inductive bias necessary to
select promising neutral transformation can be learned
and/or preprogrammed.

Non-Neutral Transformations
Non-neutral transformations are the general class de-
fined by removal, replacement, and insertion of subex-
pressions, acting on expressions in normal form, and
preserving the normal form property. Clearly these
transformations are sufficient to convert any normal
form expression into any other. What is desired is
a subclass of the non-neutral transformations that is
combinatorially complete, where each individual trans-
formation is nonetheless a semantically small step.

For Boolean expressions, the full set of transforma-
tions is given in (Loo06). For numerical expressions, the
transcendental functions sin, log, and ex, not present
in the normal form are used to construct transfor-
mations. These obviate the need for division (since
a/b = elog(a)−log(b)), and of course a − b = a + −1 ∗ b.
For lists, transformations are based on insertion of new
leaves (e.g. to append function calls), and “deepen-
ing” of the normal form by insertion of subclauses
(see (Loo06) for details). For tuples, it is simply the
union of the transformations of all the subtypes (of
course for other mixed-type expressions the union of
the non-neutral transformations for all types must be
considered as well. For enum types the transforma-
tions are simply replacing one symbol with another.
For function types, the transformations are based on
function composition. For action result types, ac-
tions are inserted/removed/altered, analogous to the
insertion/removal/alteration of Boolean literals in the
Boolean type.

We propose an additional class of non-neutral trans-
formations across type based on the marvelous fold
function:

fold(f, v, l) =
ifTheElse(empty(l), v,

f(first(l), fold(f, v, rest(l))))

The fold function allows us to express a wide variety
of iterative constructs, while guaranteeing termination,
and biasing us towards low computational complexity.
In fact, fold allows us to represent exactly the primitive
recursive functions (Hut99).

Even considering only this reduced space of possible
transformations, in many cases we will find that there
are still to many possible programs “nearby” some tar-
get to effectively consider all of them. For example
many probabilistic model-building algorithms, such as
learning the structure of a Bayesian network from data,
may require time cubic in the number of variables (in
this context each independent non-neutral transforma-
tion can correspond to a variable). Especially as the size
of the programs we wish to learn grows, and as the num-
ber of typologically matching functions increases, there
will be simply too many variables to consider each one
intensively, let alone apply a quadratic-time algorithm.

To alleviate this scaling difficult, we propose two
techniques. The first is to consider each potential vari-
able (i.e. independent non-neutral transformations) in
order to heuristically determine its usefulness in ex-
pressing constructive semantic variation. For example,
a Boolean transformation that collapses the overall ex-
pression into a tautology is assumed to be not very use-
ful.̃footnoteThis is a heuristic because such a transfor-
mation might turn out to be useful when applied in
conjunction with other transformations. The second
technique is heuristic coupling rules that allow us to
calculate, for a pair of transformations, the expected
utility or disutility of applying them in conjunction.

Conclusions
In this paper, the system of normal forms begun
in (Loo06) has been extended to encompass a full pro-
gramming language. An extended taxonomy of pro-
grammatic transformations has been proposed to aid
in learning and reasoning about programs. In the fu-
ture, we would like to experimentally validate that these
normal forms and heuristic transformations do in fact
increase the syntactic-semantic correlation in program
spaces, as has been shown so far only in the Boolean
case. We would also like to incorporate these nor-
mal forms and transformation into a program evolu-
tion system, such as meta-optimizing semantic evolu-
tionary search (Loo07a), and apply them as constraints
on probabilistic inference on programs.

References
E. B. Baum. What is Thought? MIT Press, 2004.
E. Baum. A working hypothesis for general intelli-
gence. In Advances in Artificial General Intelligence:
Concepts, Architectures and Algorithms, 2006.

S. Gustafson, E. K. Burke, and G. Kendall. Sampling
of unique structures and behaviours in genetic pro-
gramming. In European Conference on Genetic Pro-
gramming, 2004.
B. Goertzel. The pleasure algorithm.
groups.google.com/group/opencog/files, 2008.
C. Holman. Elements of an Expert System for Deter-
mining the Satisfiability of General Boolean Expres-
sions. PhD thesis, Northwestern University, 1990.
G. Hutton. A tutorial on the universality and expres-
siveness of fold. Journal of Functional Programming,
1999.
M. Hutter. Universal algorithmic intelligence: A
mathematical top-down approach. In B. Goertzel and
C. Pennachin, editors, Artificial General Intelligence.
Springer-Verlag, 2005.
L. Levin. Randomness and nondeterminism. In The
International Congress of Mathematicians, 1994.
M. Looks, B. Goertzel, and C. Pennachin. Novamente:
An integrative architecture for artificial general intel-
ligence. In AAAI Fall Symposium Series, 2004.
M. Looks. Competent Program Evolution. PhD thesis,
Washington University in St. Louis, 2006.
M. Looks. Meta-optimizing semantic evolutionary
search. In Genetic and evolutionary computation con-
ference, 2007.
M. Looks. On the behavioral diversity of random pro-
grams. In Genetic and evolutionary computation con-
ference, 2007.
M. Looks. Scalable estimation-of-distribution program
evolution. In Genetic and evolutionary computation
conference, 2007.
M. Looks. Moses wiki. code.google.com/p/moses/wiki,
2008.
W. B. Langdon and R. Poli. Foundations of Genetic
Programming. Springer-Verlag, 2002.
J. R. Olsson. Inductive functional programming using
incremental program transformation. Artificial Intel-
ligence, 1995.
R. Solomonoff. A formal theory of inductive inference.
Information and Control, 1964.
L. Spector. Simultaneous evolution of programs and
their control structures. In Advances in Genetic Pro-
gramming 2. MIT Press, 1996.
M. Tomassini, L. Vanneschi, P. Collard, and M. Cler-
gue. A study of fitness distance correlation as a diffi-
culty measure in genetic programming. Evolutionary
Computation, 2005.
P. Wang. Rigid Flexibility: The Logic of Intelligence.
Springer, 2006.
I. Wegener. The Complexity of Boolean Functions.
John Wiley and Sons, 1987.

