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Abstract

Empirical risk minimization offers well-known learning grantees when training
and test data come from the same domain. In the real worldgthowe often
wish to adapt a classifier fromsourcedomain with a large amount of training
data to differentargetdomain with very little training data. In this work we give
uniform convergence bounds for algorithms that minimizemavex combination
of source and target empirical risk. The bounds explicitlgdel the inherent
trade-off between training on a large but inaccurate sodate set and a small but
accurate target training set. Our theory also gives restiien we have multiple
source domains, each of which may have a different numberstdmces, and we
exhibit cases in which minimizing a non-uniform combinatiaf source risks can
achieve much lower target error than standard empiricaiminimization.

1 Introduction

Domain adaptation addresses a common situation that arfessapplying machine learning to di-
verse data. We have ample data drawn frasn@acedomain to train a model, but little or no training
data from theargetdomain where we wish to use the model [17, 3, 10, 5, 9]. Domdaptation
guestions arise in nearly every application of machineniegr In face recognition systems, training
images are obtained under one set of lighting or occlusianlitions while the recognizer will be
used under different conditions [14]. In speech recognjtacoustic models trained by one speaker
need to be used by another [12]. In natural language proagssart-of-speech taggers, parsers,
and document classifiers are trained on carefully annotat@uing sets, but applied to texts from
different genres or styles [7, 6].

While many domain-adaptation algorithms have been propdbede are only a few theoretical
studies of the problem [3, 10]. Those studies focus on the w&®re training data is drawn from a
source domain and test data is drawn from a different targetath. We generalize this approach
to the case where we have some labeled data from the targetimlémaddition to a large amount
of labeled source data. Our main result is a uniform convergeébound on the true target risk
of a model trained to minimize a convex combination of engpirisource and target risks. The
bound describes an intuitive tradeoff between the quanfitye source data and the accuracy of
the target data, and under relatively weak assumptions weaapute it from finite labeled and
unlabeled samples of the source and target distributioesus# the task of sentiment classification
to demonstrate that our bound makes correct predictionstabadel error with respect to a distance
measure between source and target domains and the numbeanofg instances.

Finally, we extend our theory to the case in which we have iplalsources of training data, each

of which may be drawn according to a different distributiodanay contain a different number

of instances. Several authors have empirically studieceaiabcase of this in which eaghstance

is weighted separately in the loss function, and instandgh® are set to approximate the target
domain distribution [10, 5, 9, 11]. We give a uniform conwamge bound for algorithms that min-



imize a convex combination of multiple empirical sourcéksignd we show that these algorithms
can outperform standard empirical risk minimization.

2 A Rigorous Model of Domain Adaptation

We formalize domain adaptation for binary classificatioricdi®ws. A domainis a pair consisting
of a distributionD on X’ and a labeling functiorf : X — [0, 1]. Initially we consider two domains,
asourcedomain(Dg, fs) and atargetdomain(Dr, fr).

A hypothesiss a functionh : X — {0,1}. The probability according the distributidhs that a
hypothesish disagrees with a labeling functigh(which can also be a hypothesis) is defined as

es(h,f) = Exwps [ [h(x) = fX)]].

When we want to refer to thisk of a hypothesis, we use the shorthardh) = es(h, fs). We
write the empirical risk of a hypothesis on the source dorasiy (h). We use the parallel notation
er(h, f), er(h), andér(h) for the target domain.

We measure the distance between two distributbrand D’ using a hypothesis class-specific dis-
tance measure. Lét be a hypothesis class for instance spateand. Ay be the set of subsets
of X' that are the support of some hypothesig4n In other words, for every hypothesisc H,
{z:2 € X, h(x) =1} € Ay. We define the distance between two distributions as:

dy(D,D') =2 sup [Prp [A] - Prp/[4]] .

A€eAy

For our purposes, the distanég has an important advantage over more common means for com-
paring distributions such ak; distance or the KL divergence: we can compdig from finite
unlabeledsamples of the distributior® andD’ when has finite VC dimension [4]. Furthermore,
we can compute a finite-sample approximatiordtpby finding a classifieh, € H that maximally
discriminates between (unlabeled) instances fi@andD’ [3].

For a hypothesis spagé, we define the symmetric difference hypothesis spdge as
HAH = {h(x) ® R (x): h,h € H} ,

where® is the XOR operator. Each hypothegis HAH labels as positive all points on which a
given pair of hypotheses iH disagree. We can then defing, A7 in the natural way as the set of
all setsA suchthatd = {z : © € X, h(x) # h/(x)} for someh, b’ € H. This allows us to define as
above a distancéy Ay that satisfies the following useful inequality for any hylpesesh, b’ € H,
which is straight-forward to prove:

1
les(h,h') —er(h,h')| < idHAH(Ds,DT) -

We formalize the difference between labeling functions feasuring error relative to other hypothe-
ses in our class. Thideal hypothesisninimizes combined source and target risk:

h* = argmineg(h) + er(h) .
heH

We denote the combined risk of the ideal hypothesid by es(h*) +er(h*) . The ideal hypothesis
explicitly embodies our notion of adaptability. When thedbéypothesis performs poorly, we
cannot expect to learn a good target classifier by minimismgrce errof. On the other hand, for
the kinds of tasks mentioned in Section 1, we expetd be small. If this is the case, we can
reasonably approximate target risk using source risk amdidtance betweeRs andDr .

We illustrate the kind of result available in this settingiwihe following bound on the target risk

in terms of the source risk, the difference between labdlimgtions fs and fr, and the distance
between the distribution®s andDy. This bound is essentially a restatement of the main theorem
of Ben-David et al. [3], with a small correction to the statarhof their theorem.

1This notion of domain is not the domain of a function. To avoid confusianwill always mean a specific
distribution and function pair when we say domain.

20f course it is still possible that the source data contains relevant infamebout the target function even
when the ideal hypothesis performs poorly — suppose, for examplefdkic) = 1 if and only if fr(z) =0
— but a classifier trained using source data will perform poorly on data the target domain in this case.



Theorem 1 LetH be a hypothesis space of VC-dimensibandi{s, Ur be unlabeled samples of
sizem’ each, drawn fromDg and Dr, respectively. Letl; a7 be the empirical distance aHs,
U7, induced by the symmetric difference hypothesis spach.pfdbability at leastl — § (over the
choice of the samples), for everye H,

2dlog(2m’) + log(%)

/

+A.

1.
er(h) < es(h) + §dHAH(uSaUT) + 4\/ m

The corrected proof of this result can be found Appendik Fhe main step in the proof is a variant
of the triangle inequality in which the sides of the triangdpresent errors between different decision
rules [3, 8]. The bound is relative ta When the combined error of the ideal hypothesis is large,
there is no classifier that performs well on both the sourcktarget domains, so we cannot hope
to find a good target hypothesis by training only on the sodmeain. On the other hand, for small
A (the most relevant case for domain adaptation), Theorenowssthat source error and unlabeled
‘HAH-distance are important quantities for computing targedrer

3 A Learning Bound Combining Source and Target Data

Theorem 1 shows how to relate source and target risk. We nogepd to give a learning bound for
empirical risk minimization using combined source andeatgpining data. In order to simplify the
presentation of the trade-offs that arise in this scenamcstate the bound in terms of VC dimension.
Similar, tighter bounds could be derived using more sojufsitsdd measures of complexity such as
PAC-Bayes [15] or Rademacher complexity [2] in an analogoag

At train time a learner receives a sample= (Sr, Sg) of m instances, wher@p consists ofdm
instances drawn independently fr@s- andSs consists of 1 — 3)m instances drawn independently
from Dg. The goal of a learner is to find a hypothesis that minimizegetarisker (h). Wheng
is small, as in domain adaptation, minimizing empiricagj&risk may not be the best choice. We
analyze learners that instead minimize a convex combinati@mpirical source and target risk:

éa(h) = aér(h) + (1 - a)és(h)

We denote as, (h) the corresponding weighted combination of true source argkt risks, mea-
sured with respect tg andDr.

We bound the target risk of a domain adaptation algorithrrifinimizesé,, (k). The proof of the
bound has two main components, which we state as lemmas.bElmst we bound the difference
between the target risk-(h) and weighted risk, (h). Then we bound the difference between the
true and empirical weighted risks (1) andé,, (h). The proofs of these lemmas, as well as the proof
of Theorem 2, are in Appendix B.

Lemmal Leth be a hypothesis in clagg. Then
1
ealt) ()] < (1~ ) (3wardDs. Pr) 44

The lemma shows that asapproaches 1, we rely increasingly on the target data, andisitance
between domains matters less and less. The proof uses ardieaihnique to that of Theorem 1.

Lemma?2 Let H be a hypothesis space of VC-dimensibnlf a random labeled sample of size
m is generated by drawingm points fromDy and (1 — §)m points fromDg, and labeling them
according tofs and fr respectively, then with probability at least— ¢ (over the choice of the
samples), for every € H

. a2  (1—-a)? \/dlog(2m) —logd
|éa(h) —ea(h)] < F—'_ - 5 )

3A longer version of this paper that includes the omitted appendix can Inel fani the authors’ websites.



The proof is similar to standard uniform convergence prqd6 1], but it uses Hoeffding’s in-
equality in a different way because the bound on the rangkeofandom variables underlying the
inequality varies witln and5. The lemma shows that asmoves away front (where each instance
is weighted equally), our finite sample approximation 1¢k) becomes less reliable.

Theorem 2 Let’H be a hypothesis space of VC-dimensioheti/s andi/r be unlabeled samples
of sizem’ each, drawn fronDg and D respectively. Lef be a labeled sample of size generated
by drawingsm points fromD; and (1 — 3)m points fromDg, labeling them according tgs and
fr, respectively. Ik € H is the empirical minimizer of, (k) on.S andh}. = miney er(h) is the
target risk minimizer, then with probability at leakt- § (over the choice of the samples),

~ 2 _ 2 —
er(h) < ex(hy) +2 %ﬂll_aﬁ) \/dlog@;n% logo

2dlog(2m’) + log(3)

/

+ A

1
2(]. — a) §dHAH(uS,uT) + 4\/ m

Whena = 0 (that is, we ignore target data), the bound is identical & ¢l Theorem 1, but with an
empirical estimate for the source error. Similarly wheg- 1 (that is, we use only target data), the
bound is the standard learning bound using only target ddtéde optimala (which minimizes the
right hand side), the bound is always at least as tight asraittthese two settings. Finally note that
by choosing different values af, the bound allows us to effectively trade off the small antaafn
target data against the large amount of less relevant sdatae

We remark that when it is known that= 0, the dependence on in Theorem 2 can be improved;
this corresponds to the restricted or realizable setting.

4 Experimental Results

We evaluate our theory by comparing its predictions to eiwgliresults. While ideally Theorem 2
could be directly compared with test error, this is not grattbecause\ is unknown,dyax IS
computationally intractable [3], and the VC dimensi@ris too large to be a useful measure of
complexity. Instead, we develop a simple approximation leédrem 2 that we can compute from
unlabeled data. For many adaptation taskis small (there exists a classifier which is simultane-
ously good for both domains), so we ignore it here. We appnai@d A by training a linear
classifier to discriminate between the two domains. We ugaralard hinge loss (normalized by
dividing by the number of instances) and apply the quantity (hinge loss in place of the actual
dnan. Let((Us,Ur) be our approximation tdy Az, computed from source and target unlabeled
data. For domains that can be perfectly separated with maf@i/s,lr) = 1. For domains that
are indistinguishable;(Us, Ur) =0. Finally we replace the VC dimension sample complexity term
with a tighter constant’. The resulting approximation to the bound of Theorem 2 is

(o) = \/ (G52 ) - s )

Our experimental results are for the task of sentimentifleaon. Sentiment classification systems
have recently gained popularity because of their poteagiplicability to a wide range of documents
in many genres, from congressional records to financial neBecause of the large number of
potential genres, sentiment classification is an ideal Bmedomain adaptation. We use the data
provided by Blitzer et al. [6], which consists of reviews afta types of products from Amazon.com:
apparel, books, DVDs, electronics, kitchen appliancesimuideo, and a catchall category “other”.
The task is binary classification: given a review, predicethler it is positive (4 or 5 out of 5 stars)
or negative (1 or 2 stars). We chose the “apparel” domain asaoget domain, and all of the plots
on the right-hand side of Figure 1 are for this domain. We iobémpirical curves for the error
as a function ofx by training a classifier using a weighted hinge loss. Supplosearget domain
has weighte and there arggm target training instances. Then we scale the loss of targigiirg
instance byy/3 and the loss of a source training instancg by- «) /(1 — ().



(a) vary distancems = 2500, (©) ¢(Us,Ur) = 0.715, (e) ¢(Us,Ur) = 0.715,
m7 = 1000 ms = 2500, varymr varyms, mr = 2500

o Dist: 0.780
O Dist: 0.715
¢ Dist: 0.447
* Dist: 0.336 >

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(b) vary sources;ms = 2500, (d) source = dvdms = 2500, (f) source = dvd,
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Figure 1: Comparing the bound with test error for sentiméassification. The:-axis of each figure
showsa. They-axis shows the value of the bound or test set error. (a)ata)(e) depict the bound,
(b), (d), and (f) the test error. Each curve in (a) and (b)espnts a different distance. Curves in
(c) and (d) represent different numbers of target instanCessves in (e) and (f) represent different
numbers of source instances.

Figure 1 shows a series of plots of equation 1 (on the top)ledupith corresponding plots of test
error (on the bottom) as a function affor different amounts of source and target data and difteren
distances between domains. In each pair of plots, a singeper (distance, number of target
instancesnr, or number of source instancess) is varied while the other two are held constant.
Note thats = mr/(mr +mg). The plots on the top part of Figure 1 are not meant to be naaleri
proxies for the true error (For the source domains “books! ‘avd”, the distance alone is well
above%). Instead, they are scaled to illustrate that the boundnidiai in shape to the true error
curve and that relative relationships are preserved. Bpging a different in equation 1 for each
curve, one can achieve complete control over their mininmaorder to avoid this, we only use a
single value of”'=1600 for all 12 curves on the top part of Figure 1.

First note that in every pair of plots, the empirical errorvas have a roughly convex shape that
mimics the shape of the bounds. Furthermore the valuewhich minimizes the bound also has
a low empirical error for each corresponding curve. Thiggasts that choosing to minimize the
bound of Theorem 2 and subsequently training a classifieirionmze the empirical erro¢,, (k) can
work well in practice, provided we have a reasonable measucemplexity* Figures 1a and 1b
show that more distant source domains result in highertamer. Figures 1c and 1d illustrate that
for more target data, we have not only lower error in genérdlalso a higher minimizing. Finally,
figures 1e and 1f depict the limitation of distant source détidh enough target data, no matter how
much source data we include, we always prefer to use onlyatigettdata. This is reflected in our
bound as a phase transition in the value of the optim@overning the tradeoff between source and
target data). The phase transition occurs when= C/{(Us,Ur)?* (See Figure 2).

4Although Theorem 2 does not hold uniformly for allas stated, this is easily remedied via an application
of the union bound. The resulting bound will contain an additional logaritfiagitor in the complexity term.
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Figure 2: An example of the phase transition in the optimalThe value ofa. which minimizes
the bound is indicated by the intensity, where black means1 (corresponding to ignoring source
and learning only from target data). We fix= 1600 and((Us,U7) = 0.715, as in our sentiment
results. Ther-axis shows the number of source instances (log-scale)y¥hés shows the number
of target instances. A phase transition occurs at 3,13@tangtances. With more target instances
than this, it is more effective to ignore even an infinite amtaef source data.

5 Learning from Multiple Sources

We now explore an extension of our theory to the case of nlelspurce domains. We are pre-
sented with data fronV distinct sources. Each sourSg is associated with an unknown underlying
distributionD; over input points and an unknown labeling functi6n From each sourc§;, we

are givenm; labeled training instances, and our goal is to use thesarioss$ to train a model to
perform well on a target domaifDr, fr), which may or may not be one of the sources. This setting
is motivated by several new domain adaptation algorithrds $1 11, 9] that weigh the loss from
training instances depending on how “far” they are from tirgét domain. That is, each training
instance is its own source domain.

As in the previous sections, we will examine algorithms thmimize convex combinations of
training errors over the labeled examples from each sowo®ah. As before, we let; = 5;m

with Z;yzl B; = 1. Given a vectoix = (a1, ,an) of domain weights with . a; = 1, we
define the empiricad-weighted error of functior as

N N s
falh) = D aséi(h) = D01 3 Ihe) — fi(a)].

€S

The truea-weighted errore, (h) is defined analogously. LéP, be a mixture of theV source
distributions with mixing weights equal to the componentsao Finally, analogous to in the
single-source setting, we define the error of the multi-seigleal hypothesis for a weightingas

N
Yoo = min{er(h) + ca(h)} = minfer(h) + " aje;(h)} -
j=1

The following theorem gives a learning bound for empiriégk minimization using the empirical
a-weighted error.

Theorem 3 Suppose we are given; labeled instances from sourég for j = 1... N. For a fixed

vector of weightsy, let h = argming, .y, éo(h), and leth% = argmin,c,, er(h). Then for any
6 € (0, 1), with probability at leastt — ¢ (over the choice of samples from each source),

N 2

ai  [dlog2m —logd 1
Zﬁij g27ng+2<'7a+2dHAH(Da7DT>> .
j=1"7

er(h) < ep(h) +2




(a) Source. More girls than boys (b) Target. Separator from (c) Weighting sources to match
uniform mixture is suboptimal target is optimal

- --Females H ---Females
—Males |- B 1 —Males

h

.

—Target

H optimal
+ learned separator
\ 1 separator -

. a

optimal &
learned
separator

Figure 3: A 1-dimensional example illustrating how nonfann mixture weighting can result in
optimal error. We observe one feature, which we use to prgdicder.(a) At train time we observe
more females than malef) Learning by uniformly weighting the training data causetouigarn a
suboptimal decision boundarfg) but by weighting the males more highly, we can match the targe
data and learn an optimal classifier.
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The full proof is in appendix C. Like the proof of Theorem Zsisplit into two parts. The first part
bounds the difference between theweighted error and the target error similar to lemma 1. The
second is a uniform convergence bounddg(h) similar to lemma 2.

Theorem 3 reduces to Theorem 2 when we have only two sounce®favhich is the target domain
(that is, we have some small number of target instancesy rttdre general, though, because by
manipulatinga. we can effectively change the source domain. This has tweezprences. First,
we demand that there exists a hypothésisvhich has low error on both the-weighted convex
combination of sources and the target domain. Second, weuredistance between the target and
a mixture of sources, rather than between the target andjbe siaurce.

One question we might ask is whether there exist settingserdn@on-uniform weighting can lead
to a significantly lower value of the bound than a uniform viriigg. This can happen if some
non-uniform weighting of sources accurately approximabestarget domain. As a hypothetical
example, suppose we are trying to predict gender from hékjgure 3). Each instance is drawn
from a gender-specific Gaussian. In this example, we can i@dptimal classifier by weighting
the “males” and “females” components of the source to matehdrget.

6 Reated Work

Domain adaptation is a widely-studied area, and we cannpé ho cover every aspect and ap-
plication of it her€. Instead, in this section we focus on other theoretical @aghres to domain
adaptation. While we do not explicitly address the relatigmsn this paper, we note that domain
adaptation is closely related to the setting of covariaift, sthich has been studied in statistics. In
addition to the work of Huang et al. [10], several other atgh@mve considered learning by assigning
separate weights to the components of the loss functioegponding to separate instances. Bickel
at al. [5] and Jiang and Zhai [11] suggest promising emgdi@dgorithms that in part inspire our
Theorem 3. We hope that our work can help to explain when takggeithms are effective. Dai et
al. [9] considered weighting instances using a transfearawariant of boosting, but the learning
bounds they give are no stronger than bounds which compligtebre the source data.

Crammer et al. [8] consider learning when the marginal ifistion on instances is the same across
sources but the labeling function may change. This cormedpadn our theory to cases where
dnuan = 0 but X is large. Like us they consider multiple sources, but thetiam of weighting

is less general. They consider only including or discardirsgurce entirely.

Li and Bilmes [13] give PAC-Bayesian learning bounds for@déon using “divergence priors”.
They place source-centered prior on the parameters of alreadtaed in the target domain. Like

5The NIPS 2006 Workshop on Learning When Test and Training Inpate IDifferent Distributions
(http://ida.first.fraunhofer.de/projects/different06/) contains a good set of refer-
ences on domain adaptation and related topics.



our model, the divergence prior also emphasizes the trhdetfieen source and target. In our
model, though, we measure the divergence (and consequbethias) of the source domain from
unlabeled data. This allows us to choose the best tradewiEles source and target labeled data.

7 Conclusion

In this work we investigate the task of domain adaptationiwve have a large amount of train-
ing data from a source domain but wish to apply a model in aetatgmain with a much smaller
amount of training data. Our main result is a uniform coneaag learning bound for algorithms
which minimize convex combinations of source and targetigogb risk. Our bound reflects the
trade-off between the size of the source data and the agcofabe target data, and we give a
simple approximation to it that is computable from finitedédd and unlabeled samples. This ap-
proximation makes correct predictions about model test éor a sentiment classification task. Our
theory also extends in a straightforward manner to a maliee setting, which we believe helps to
explain the success of recent empirical work in domain adtipt.

Our future work has two related directions. First, we wistighten our bounds, both by considering
more sophisticated measures of complexity [15, 2] and byding our distance measure on the most
relevant features, rather than all the features. We alsotplanvestigate algorithms that choose a
convex combination of multiple sources to minimize the bimTheorem 3.
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