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ABSTRACT
Indexing and retrieval of speech content in various forms
such as broadcast news, customer care data and on-line me-
dia has gained a lot of interest for a wide range of appli-
cations, from customer analytics to on-line media search.
For most retrieval applications, the speech content is typi-
cally first converted to a lexical or phonetic representation
using automatic speech recognition (ASR). The first step
in searching through indexes built on these representations
is the generation of pronunciations for named entities and
foreign language query terms. This paper summarizes the
results of the work conducted during the 2008 JHU Summer
Workshop by the Multilingual Spoken Term Detection team,
on mining the web for pronunciations and analyzing their
impact on spoken term detection. We will first present meth-
ods to use the vast amount of pronunciation information
available on the Web, in the form of IPA and ad-hoc tran-
scriptions. We describe techniques for extracting candidate
pronunciations from Web pages and associating them with
orthographic words, filtering out poorly extracted pronunci-
ations, normalizing IPA pronunciations to better conform to
a common transcription standard, and generating phonemic
representations from ad-hoc transcriptions. We then present
an analysis of the effectiveness of using these pronunciations
to represent Out-Of-Vocabulary (OOV) query terms on the
performance of a spoken term detection (STD) system. We
will provide comparisons of Web pronunciations against au-
tomated techniques for pronunciation generation as well as
pronunciations generated by human experts. Our results
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cover a range of speech indexes based on lattices, confusion
networks and one-best transcriptions at both word and word
fragments levels.
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H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms:Algorithms, Experimentation, Performance

Keywords: Web Pronunciation extraction, Pronunciation
normalization, Spoken Term Detection, Open vocabulary

1. INTRODUCTION
The rapidly increasing amount of spoken data generated

in a wide range of applications, such as market intelligence
gathering, customer analytics, and on-line media search,
calls for solutions to index and search this data. Spoken
term detection (STD) is a key information retrieval tech-
nology which aims for open vocabulary search over large
collections of spoken documents.

The classical approach in STD consists of converting speech
to word transcripts using ASR and extending classical Infor-
mation Retrieval (IR) techniques to word transcripts. How-
ever, queries often relate to named entities that typically
have a poor coverage in the ASR vocabulary. The effects
of OOV query terms in spoken data retrieval are discussed
in [22]. An approach for solving the OOV issue consists
of converting the speech content to phonetic transcripts and
representing queries as sequence of phones. Such transcripts
can be generated by expanding the word transcripts using
the pronunciation dictionary of the ASR system or by the
use of subword based ASR systems. Retrieval is based on
searching the sequence of subwords representing the query
in the subword transcripts. Some of these works were done
in the framework of the NIST TREC Spoken Document Re-
trieval tracks in the 1990‘s and are described by [10]. Popu-
lar approaches are based on search on subword decoding [6,
18, 17, 19, 12] or search on the subword representation of
word decoding enhanced with phone confusion probabilities
and approximate similarity measures for search [5].
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The ability to correctly identify the pronunciation of a
word is critical for the performance of STD systems Pre-
vious approaches have either employed trained people to
manually generate pronunciations, or have used letter-to-
phoneme (L2P) rules, which were either hand-crafted or
machine-learned from a manually transcribed corpus [9, 8].
The first approach is expensive; the second can be of vari-
able quality, depending on the skill of the experts or size
and quality of the transcribed data. We investigate a novel
strategy of mining the huge quantities of pronunciation in-
formation on the Web and thus use the web as a vast but
noisy corpus for pronunciations.

Two kinds of pronunciations are common on the Web:
The first is expressed in the International Phonetic Alpha-
bet (IPA), for example ‘Lorraine Albright /Ol braIt/’. IPA
pronunciations use special symbols, such as ‘O’, which can
unambiguously denote a particular English phoneme. How-
ever, there are no universally accepted conventions for tran-
scribing pronunciations in IPA, and the use of IPA requires
some skill. It is then not surprising that we find consid-
erable variation in IPA strings captured on the Web and
there is a need to normalize them to follow a common set of
conventions.

The second, and more frequent, kind of pronunciation use
an ad-hoc transcription based on a simpler or less ambiguous
spelling than standard English orthography. For example,
when we see ‘bruschetta (pronounced broo-SKET-uh)’, the
intended pronunciation is more intuitively represented by
the letters ‘SKET’ than it is by ‘schet’. Ad-hoc transcrip-
tions follow the rules of English orthography and do not
require any specialized skills. However, they do not provide
a phonemic transcription, so one of our tasks is to predict
phonemes from a combination of the standard orthography
and ad-hoc transcription of a word.

Processing IPA and ad-hoc transcriptions proceeds in three
major phases. In the extraction phase (Sec. 2) we find a
candidate pronunciation and its corresponding orthographic
form on a web page. In the second phase, extraction valida-
tion (Sec. 3), we determine if an orthography/pronunciation
pair was correctly extracted. For example, most instances of
‘pronounced dead’ do not correspond pronunciations that we
would like to keep. In the final normalization phase (Sec. 4),
we canonicalize irregularities in the IPA pronunciations and
map the ad-hoc pronunciations to their phonemic form.

To measure the effectiveness of the web as a pronuncia-
tion corpus, we will present extensive experiments compar-
ing web pronunciations with automatically generated pro-
nunciations as well as pronunciations generated by human
experts. We also provide comparisons of the performance
of these pronunciations on STD systems built on a range of
index types including lattices, confusion networks and one-
best transcriptions at both word and word fragments levels.

2. PRONUNCIATION EXTRACTION
The extraction, validation and normalization steps used

in this paper require letter-to-phoneme, letter-to-letter, or
phoneme-to-phoneme models. Methods for constructing such
models include those based on decision trees [4], pronunciation-
by-analogy [13], and hidden Markov models [21]. We chose
to use n-gram models over pairs [7, 3].

Our pronunciations are extracted from Google’s web and
news page repositories. The pages are restricted to those
that Google has classified as in English and from non-EU

countries. The extraction of IPA and of ad-hoc pronuncia-
tions uses different techniques.

2.1 IPA Pronunciation Extraction
The Unicode representation of most English words in IPA

requires characters outside the ASCII range. For instance,
only 3.8% to 8.6% (depending on transcription conventions)
of the words in the 100K Pronlex dictionary1 have com-
pletely ASCII-representable IPA pronunciations (e.g., ‘beet’
/bit/). Most of the non-ASCII characters are drawn from
the Unicode IPA extension range (0250–02AF), which are
easily identified on web pages. Our candidate IPA pro-
nunciations consist of web terms2 that are composed en-
tirely of legal English IPA characters, that have at least one
non-ASCII character3, and that are delimited by a pair of
forward slashes (‘/ . . . /’), back slashes (‘\ . . . \’), or square
brackets (‘[. . .]’).

Once these candidate IPA pronunciations are identified,
the corresponding orthographic terms are next sought. To
do so, an English phoneme-to-letter (L2P) model, Pr[λ|π], is
used to estimate the probability that an orthographic string
λ corresponds to the given phonemic string π.

L2P models are bootstrapped from a seed pronunciation
lexicon as follows. Each orthographic-phonemic training
pair is first aligned, e.g. (w, w) (i, i) (m, m) (b, b) (–, @) (l, l)
(e, –) (d, d) (o, @) (n, n). Alignments are derived by training
a unigram model of (letter, phoneme) pairs (including let-
ter deletions and phoneme insertions) using EM from a flat
start and subsequently finding the most likely sequence of
pairs under the model. Each aligned (letter, phoneme) pair
is then treated as a single token for a Kneser-Ney n-gram
model [11]. Once built, the n-gram model is represented as
a weighted finite-state transducer (FST), mapping letters to
phonemes, using the OpenFst Library [1], which allows easy
implementation of the operations that follow. Note that this
results in a joint model Pru[λ, π].

For pronunciation extraction, a unigram letter-phoneme
model Pru[λ, π] is trained on the Pronlex dictionary using
the method described above. We use n = 1 both to ensure
wide generalization and to make it likely that the subse-
quent results do not depend greatly on the bootstrap En-
glish dictionary. With this model in hand, we extract that
contiguous sequence of terms λ, among the nearby4 terms
preceding each candidate pronunciation π, which maximizes
Pr[λ|π] = Pru[λ, π]/Σλ Pru[λ, π]. We found 2.53M candi-
date orthographic and phonemic string pairs (309K unique
pairs) in this way. These are then passed to extraction vali-
dation in Sec. 3.

2.2 Ad-hoc Pronunciation Extraction
Ad-hoc pronunciations are identified by matches to the

regular expressions indicated in Table 1. To find the cor-
responding conventionally-spelled terms, we use an English
letter-to-letter (L2L) model Pr[λ2|λ1] to estimate the prob-
ability that the conventionally-spelled string λ2 corresponds
to a given ad-hoc pronunciation string λ1. Assuming that λ1

and λ2 are independent given their true underlying phone-

1CALLHOME American English Lexicon, LDC97L20.
2By terms we mean tokens exclusive of punctuation and
HTML markup.
3This, unfortunately, excludes pronunciations in SAMPA,
ARPABet, etc.
4We used an empirically-determined twenty term window.
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Type Pattern Count
paren \(pronounced (as |like )?([^)]+)\) 3415K
quote pronounced (as |like )?"([^"]+)" 835K

comma , pronounced (as |like )?([^,]+), 267K

Table 1: Ad-hoc pronunciation extraction patterns
and counts.

mic pronunciation π, Pr[λ2 |λ1] =
∑
π Pr[λ2 |π] Pr[π |λ1]

(implemented by weighted FST composition). The unigram
model Pru[λ, π] of Sec. 2.1 is used to derive the estimates

Pr[λ2|π] = Pr
u

[λ2, π]/Σλ Pr
u

[λ, π]

Pr[π|λ1] = Pr
u

[λ1, π]/Σπ Pr
u

[λ1, π]

We then extract that contiguous sequence of terms λ2, among
the nearby5 terms preceding each candidate pronunciation
λ1, which maximizes Pr[λ2|λ1]. We found 4.52M candi-
date orthographic and “pronunciation” pairs (568K unique
pairs) with pair counts for specific patterns indicated in Ta-
ble 1. These pairs are then passed to extraction validation
described in the next section.

3. PRONUNCIATION EXTRACTION VAL-
IDATION

Once extraction has taken place, a validation step is ap-
plied to check whether the items extracted are correct in
the sense that they find each orthographic term and the
corresponding pronunciation provided word-for-word. We
manually labeled 667 randomly selected (orthography, IPA
pronunciation) pairs and 1000 (orthography, ad-hoc pronun-
ciation) pairs for correctness of extraction. We used this
data to build and test classifiers for winnowing the extracted
pronuniciations.

Sixteen features of the IPA pronunciations and 57 features
of the ad-hoc pronunciations are computed for this data.
Features shared among both types of pronunciations include
the string length of the extracted orthography and pronun-
ciation, the distance between them, the presence of certain
substrings (e.g. spaces, function words, non-alphabetic char-
acters), and the log probabilities assigned by the L2P/L2L
alignment models used during extraction. In the IPA case,
the extracted IPA pronunciation is aligned with a predicted
pronunciation – predicted from the extracted orthography
by a 5-gram model trained on Pronlex – and per-phoneme
alignment features are computed. These include the frac-
tion of mismatched consonants and vowels, since we noticed
that vowel mismatches are common in good extractions but
consonant mismatches are highly indicative of bad extrac-
tions. In the ad-hoc case, additional features include letter-
to-letter log probabilities of unigram, bigram and trigram
letter-pair models, counts of insertions and deletions in the
best alignment, and capitalization styles, which often signal
bad extractions.

SVM classifiers were constructed separately for the IPA
and ad-hoc pronunciation data using these features. Five-
fold cross validation on the 667/1000 labeled examples was
used to produce the precision-recall curves in Fig. 1, param-
eterized by the SVM-margin. In particular, the IPA extrac-
tion classifier has a precision of 96.2% when the recall was
88.2%, while the ad-hoc classifier has a precision of 98.1%
when the recall was 87.5% (indicated by dots in Fig. 1).

5We used an empirically-determined eight term window.

Figure 1: Precision vs. recall in pronunciation ex-
traction validation.

To summarize, our extraction consists of a simple first-
pass extraction step, suitable for efficiently analyzing a large
number of web pages, followed by a more comprehensive val-
idation step that has high precision with good recall. Given
this high recall and the fact that most extraction errors, in
our error analysis of a subsample, have no correct alterna-
tives on the given page, we feel confident about this two-step
approach.

4. PRONUNCIATION NORMALIZATION
Up to this point, we have extracted millions of candidate

IPA and ad-hoc pronunciations from the Web with high pre-
cision. We refer to the collection of extracted and validated
data as the Web-IPA lexicon and the ad-hoc lexicon. The
Web-IPA lexicon is based on extractions from websites that
use idiosyncratic conventions (see below), while the ad-hoc
pronunciations are still in an orthographic form. In both
cases, they need to be normalized to a standard phonemic
form to be useful for many applications.

The training and test data used for the pronunciation nor-
malization experiments are based on the subset of words
common to both the web-derived data and Pronlex.We use
a 97K word subset of the Web-IPA lexicon for these ex-
periments, which has 30K words in common with Pronlex,
with an average of 1.07 Pronlex and 1.87 Web-IPA pronun-
ciations per word. In Sec. 4.1 we consider subsets of this
dataset where only data from a single website was used. The
training data for ad-hoc normalization was augmented by
words whose pronunciations could be assembled from hy-
phenated portions of the ad-hoc transcription (e.g. if the
ad-hoc transcription of ‘Circe’ is ‘Sir-see’, we look up the
Pronlex phonemic transcriptions of ‘sir’ and ‘see’).

We evaluate pronunciations by aligning a predicted phoneme
string with a reference and computing the phoneme error
rate (PhER) – analogous to word error rate in automatic
speech recognition – as the number of insertions, deletions,
and substitutions divided by the number of phonemes in the
reference (times 100%). In cases of multiple predicted6 or
reference pronunciations, the pair with the lowest PhER is
chosen.

4.1 IPA Pronunciation Normalization
We first compare the quality of the Web-IPA lexicon de-

rived from a website with Pronlex, by performing 5-fold
cross-validation experiments on their orthographic intersec-
tion. For each cross-validation run, two L2P models are
trained on the same 80% subset of the intersection – one
using the Pronlex pronunciations, and the other using the

6Multiple predicted pronunciations for an orthographic form
result only if it was extracted with multiple distinct IPA (or
ad-hoc) pronunciations.
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Figure 2: Cross-validation results by website.

Web-IPA pronunciations. Each model is used to generate
candidate pronunciations for the words in the 20% subset
left out of training, which are then scored against their pro-
nunciations from both lexica, giving us four PhER numbers.

Figure 2 shows these four PhER numbers for 7 of the 10
websites with the most extracted pronunciations. We notice
that for several websites, L2P models trained using the Web-
IPA are almost as good at predicting the Web-IPA pronun-
ciations (red bars) as a model trained on Pronlex is at pre-
dicting Pronlex pronunciations (dark blue bars). However,
in all cases, models trained on web data are poor predictors
of Pronlex data (light blue bars), and vice versa (light tan
bars).

These experiments demonstrate that websites vary in the
quality of pronunciations available from them. Also, the
Web-IPA pronunciations are different from those found in
Pronlex. The differences can be caused both by improper
use of IPA symbols, as well as other site-specific conventions.
For instance, ‘graduate’ is pronounced as either /gôædZuIt/
or /gôædZueIt/ in Pronlex, but appears as /gôadjUeIt/, /gôæd-
jUIt/, /gôædju@t/, /gôædjuIt/, and /gôædZU@t/ among the
ten most frequent websites.

Site-specific normalization The considerable variabil-
ity of pronunciations across websites strongly motivates the
need for a site-specific normalization of the pronunciations to
a more site-neutral target form. Here we use Pronlex as our
target. Using the Pronlex and Web-IPA pronunciation pairs
in the orthographic intersection, we train a website-specific
phoneme-to-phoneme (P2P) transduction model, which takes
a pronunciation obtained from the website and converts it
to a Pronlex-like form.7

The L2P models are then trained on these normalized
pronunciations. The PhER results of these L2P models are
presented in Fig. 3 for P2P transducers of varying n-gram
orders. As one can clearly see, normalization helps to im-
prove the quality of the pronunciations obtained from the
web. In fact, normalized pronunciations generated by a 5-
gram model (light tan bars) have a PhER that’s comparable
to the pronunciations predicted by a model trained on Pron-
lex (dark blue bars). Based on this, we conclude that L2P
models trained on normalized Web-IPA pronunciations are
as good as models trained on comparable amounts of Pronlex.

7The P2P transducer is identical to the L2P models de-
scribed earlier, but trained on aligned (phoneme, phoneme)

Figure 3: L2P models trained on normalized data
are better at predicting ref. pronunciations.

Figure 4: Performance on rare words – normalized
web pronunciations help a lot on rare words.

Performance on rare words To test performance on rare
words, we remove from Pronlex any word with a frequency
of less than 2 in the Broadcast News (BN) corpus. Among
these rare words, the ones that are found in the extracted
Web-IPA lexicon form our test set (about 3.8K words). To
estimate the size of hand-crafted lexicon (Pronlex in the
present case) needed for normalization, we subdivide the
frequent (BN frequency > 2) Pronlex words, into 5 subsets
based on decreasing frequency, using respectively 20%, 40%,
60%, 80%, and 100% of the most frequent words.

For each of the subsets of Pronlex, we generate candidate
pronunciations for the words in our rare-word test set us-
ing each of the following three methods: (1) an L2P model
trained on the subset of Pronlex; (2) pronunciations looked
up from the normalized Web-IPA lexicon; and (3) an L2P
model trained on the normalized Web-IPA and the Pronlex
subset combined together.

Fig. 4 shows the PhER on the rare words using these
three methods. The normalized Web-IPA data clearly pro-
duces better pronunciations for rare words. Note that the
Web-IPA, normalized using only 20% of the hand-crafted
Pronlex dictionary (roughly 10K most frequent words), pro-
duces pronunciations that are as good as those generated by
an L2P model trained on the whole of Pronlex.

pairs, instead of (letter, phoneme) pairs.
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4.2 Ad-hoc Pronunciation Normalization
For ad-hoc normalization our task is to predict phone-

mic transcriptions from the extracted ad-hoc transcriptions,
which are in orthographic form, but presumably reveal the
intended pronunciation of a word more easily than the stan-
dard orthography. We investigated four ways of predict-
ing phonemes from the extracted (orthography, ad-hoc tran-
scription) pairs: (1) Apply a letter-to-phoneme model to the
standard orthography (a competitive baseline). (2) Apply
a letter-to-phoneme model to the ad-hoc transcription. (3)
Model the phonemes as the latent source in a noisy channel
model with independent channels for the orthography and
ad-hoc transcription. (4) Train a language model on aligned
(orthography, ad-hoc, phoneme) triples and apply it to the
orthography and ad-hoc transcription.

We evaluate the predicted phoneme strings on a test set
with 256 words that are associated with extracted ad-hoc
and phonemic pronunciations manually transcribed to cor-
respond both to the orthographic and ad-hoc forms. This
yielded a total of 1181 phonemes.

For (1) we trained a 5-gram L2P model on a subset of
Pronlex from which the vocabulary was removed, achieving
29.5% PhER. Next (2) we trained a 5-gram L2P model on
the 43K word training dictionary described earlier. This ig-
nores the orthography and predicts phonemes directly from
ad-hoc transcription, giving 20.5% PhER.

By contrast, the remaining two models use both the or-
thography and ad-hoc transcription to predict the phonemes.
Model (3) is the noisy channel model given by

Pr[λ1, λ2, π] = Pr[λ1 |π] Pr[λ2 |π] Pr[π]

which generates a latent pronunciation π and, conditional
on π, generates the orthography λ1 and ad-hoc transcrip-
tion λ2 independently. It can be implemented straightfor-
wardly in terms of the joint and conditional transducer mod-
els discussed in Sec. 2. This achieves 19.4% PhER. The last
model (4) drops the independence assumption. It is a 5-gram
language model on (orthography, ad-hoc, phoneme) triples,
trained on the 43K lexicon by first aligning ad-hoc tran-
scriptions with phonemes and then aligning the orthography
with the already aligned (ad-hoc, phoneme) pairs. During
testing the model is first combined with the orthography to
predict (ad-hoc, phoneme) pairs, and those are further com-
bined with the observed ad-hoc transcription to predict the
phonemes. This model achieves 18.8% PhER – a 36% rel-
ative error rate reduction over the baseline model (1). We
conclude that ad-hoc pronunciations – alone or in combina-
tion with the standard orthography – are extremely useful
for predicting the pronunciations of unseen rare words.

5. SPOKEN TERM DETECTION
In the previous sections of the paper, we described a strat-

egy for mining the web for pronunciations expressed either
as IPA or ad-hoc transcriptions. We discussed various meth-
ods to validate the extraction and normalize the extracted
pronunciations. The remainder of the paper will provide
a comparative analysis of these pronunciations against au-
tomatically generated pronunciations and human generated
pronunciations for the task of detecting OOV query terms
in a spoken term detection system. We will first provide a
brief description of our FST based spoken term detection
system and the experimental setup.

General indexation of weighted automata [2] provides an
efficient means of speech indexing used for spoken utterance
retrieval (SUR) [17] or spoken term detection (STD) [16].
In STD, the goal is to determine the time interval contain-
ing the query. Here, each occurrence of the query has to
be detected separately. Therefore, retrieval is based on the
posterior probability of substrings (factors) in a given time
interval. In this work, the weighted automata to be indexed
are the preprocessed lattice outputs of the ASR system.
The input labels are phones, the output labels are quan-
tized time-intervals and the weights are normalized negative
log probabilities. The index is represented as a weighted fi-
nite state transducer where each substring (factor) leads to
a successful path over the input labels whenever that par-
ticular substring was observed. Output labels of these paths
carry the time interval information followed by the utterance
IDs. The path weights give the probability of each factor oc-
curring in the specific time interval of that utterance.

Figure 5.a illustrates the utterance index structure in the
case of single-best transcriptions for a simple database con-
sisting of two strings: “a a” and “b a”. Figure 5.b illustrates
the time interval index structure derived from the time-
aligned version of the same simple database: “a0−1 a1−2”
and “b0−1 a1−2”.

0

1a:!/1

2

b:!/1

3
a:!/1

5

!:1/2

!:2/1

!:2/1

4
a:!/1

!:1/1

!:2/1

(a) Utterance Index

0

1a:0-1/1

4a:1-2/1

2

b:0-1/1

3a:1-2/1

6

!:1/1

!:1/1

!:2/1
!:2/1

5
a:1-2/1

!:1/1

!:2/1

(b) Time Interval Index

Figure 5: Index structures

Prior to indexing, each ASR output lattice is preprocessed
to obtain the weighted automata. Preprocessing of the time
alignment information is crucial since every distinct align-
ment will lead to another index entry which means sub-
strings with slightly off time-alignments will be separately
indexed. First, distinct clusters are formed using non over-
lapping occurrences of each word (or sub-word). Then, the
other occurrences are assigned to the cluster with which they
maximally overlap. Each cluster has a time interval that is
the union of all its members. Finally, the time intervals are
adaptively quantized to an acceptable resolution. The input
labels are also preprocessed by converting the words (or sub-
words) into phone sequences. The weights are normalized to
form a probability distribution over the paths in the lattice.

Similar to the FST index construction algorithm presented
in [2], each FST in the database is processed separately and
the union of the resulting FSTs is optimized to yield the
index FST. For each FST representing an utterance, the
factors to be indexed are selected, utterance IDs are intro-
duced as a final output label and the resulting FST is opti-
mized for efficiency. Factor selection introduces a new start
state, a new final state, new transitions from the new start
state to each state, and new transitions from each state to
the new final state. The weights of these new transitions
are computed according to the probability distribution de-
fined by the lattice. The optimization step makes use of
weighted transducer determinization and minimization [14].
The OpenFst Library [1] is used for the construction of the
index FST as well as for retrieval.
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Searching for a user query is a simple weighted transducer
composition operation [14] where the query is represented
as a finite state acceptor and composed with the index from
the input side. For a string query and a deterministic index
FST, the search complexity is linear in the sum of the query
length and the number of times the query appears in the
archive. The query automaton may include multiple paths
allowing for a more general search, i.e. searching for different
pronunciations of a query word. The FST obtained after
composition is projected to its output labels and ranked by
the shortest path algorithm to produce results [14]. In the
end, we obtain results with decreasing posterior scores.

5.1 Data and Experimental Setup
The objective of this section is to validate and analyze

the impact of web extracted pronunciations on retrieval of
OOVs in a spoken-term detection system. A variety of OOV
types, comprising of names, places, and rare/foreign words
adding to a total of 1290 OOV terms were carefully se-
lected. We also selected speech data from English broadcast
news (BN) comprising of broadcasts from channels such as,
CNN, ABC, and NPR 8 [20]. These OOVs were selected
with a minimum of 5 acoustic instances per word to ensure
that metrics used to evaluate the performance of the system
were not biased. In addition, common, frequently occuring
English words were filtered out to obtain meaningful OOV
terms such as, NATALIE, PUTIN, QAEDA, HOLLOWAY.
Short terms, defined as words with pronunciations that con-
tain less than four phonetic units were excluded. Once the
OOV terms and speech data were selected, these terms were
removed from the recognizer’s vocabulary and all speech ut-
terances containing these terms were also removed from the
training data used to train the Large Vocabulary Speech
Recognition System (LVCSR).

The LVCSR system was built using the IBM Speech Recog-
nition Toolkit [20]. The acoustic models were trained on 300
hours of BN data. The excluded utterances containing the
OOV terms (100 hours) were used as the test set for spoken-
term detection. The language models for the LVCSR system
was trained on 400M words from various text sources [20].
The performance of this LVCSR system measured in terms
of its WER on a standard BN test set (RT04) was 19.4%.
This performance although not the very best, renders the
system state-of-the-art for the purpose of these experiments.
This LVCSR system was used to produce lattices and con-
sensus networks on the test set at word and sub-word levels,
subsequently indexed using the weighted finite state trans-
ducer WFST-based spoken-term detection system described
in Section 5. The LVCSR decoding dictionary was used for
the transduction of ASR output symbols (words and sub-
word units) to phonemes. The next section presents results
when different pronunciations for the OOV terms were used
during retrieval.

5.2 Results
To set an expectation of what the best performance could

approach, we used the reference pronunciations (reflex) for
the OOV terms to search through the indexes. The indexes
were obtained from word and subword (fragment) based
LVCSR systems. The output of the LVCSR systems were
in the form of 1-best transcripts, consensus networks, and

8This is a commonly used data set in evaluations that bench-
mark technologies.

lattices. The results are presented in Table 2. Three dif-
ferent metrics were used to evaluate the performance, False
Alarms, Misses and Actual Term-Weighted Value (ATWV)
defined below. The ATWV metric was used to evaluate STD
systems in the NIST 2006 STD Evaluation.

ATWV(θ) = 1− 1

Q

Q∑
k=1

{Pmiss(qk, θ) + β.PFA(qk, θ)} (1)

Pmiss(q) = 1− C(q)

R(q)
PFA(q) =

A(q)− C(q)

Tspeech − C(q)
(2)

where:
R(qk): Number of occurences of query qk,
A(qk): Total no. of retrieved documents for query qk,
C(qk): No. of correctly retrieved documents for query qk,
β: Weight assigned to false alarms that is proportional to
the prior probability of occurence of a specific term and its
cost-value ratio.

The best performance that trades false alarms and misses
is obtained using subword (fragment) lattices that were sub-
sequently converted to phonetic lattices and indexed. The
richness of the lattices, coupled with the fragment represen-
tation of the audio contribute to this performance.

Data P(FA) P(Miss) ATWV
Word 1-best .00001 .770 .215
Word Consensus Nets .00002 .687 .294
Word Lattices .00002 .657 .322
Fragment 1-best .00001 .680 .306
Fragment Consensus Nets .00003 .584 .390
Fragment Lattices .00003 .485 .484

Table 2: Baseline Results

The next set of experiments uses pronunciations derived
from the web with the methods described in Sections 2, 3
and 4.2. One can derive a good sense of the coverage of these
OOV terms in the web-derived prounciations from Table 5.

Table 5 illustrates the number of OOV queries that could
be represented by pronunciations from the web after various
filtering and cleaning processes. We could recover adhoc
pronunciations for around 25% more words than IPA based
pronunciations. We manually converted 50% of the adhoc
pronunciations to a phonetic representation to get an upper
bound on the impact of the adhoc pronunciation conversion
process described in Section 2.2. For query terms that did
not have pronunciations available from any of the web ex-
traction methods, we backed off to the ones generated by
a letter-to-phone system [7, 3]. This letter-to-sound system
was trained using the reflex pronuniations.

The various pronunciations that we explored are:

• Pronunciations obtained from a letter-to-sound system
trained on the gold standard (reflex) and n-best vari-
ations (L2P 00)
• Ad-hoc pronunciations from the web (Webpron 03)
• Cleaned and normalized IPA pronunciations obtained

by mining the web (Webpron 04, 05)
• Hand-cleaned ad-hoc pronunciations (Webpron 06)
• Best Pronunciation used by an LVCSR system
• Union of pronunciations (can have multiple pronunci-

ations for any word from different methods)

The baseline pronunciations for the OOV terms referred
to as L2P in the figures is derived from a letter-to-phone
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Figure 6: Results on pairwise union of pronunciations

Example Pronunciations Ref/Corr/FA/Miss
L2P Web Based L2P Web Based

ALBRIGHT ae l b r ay t ao l b r ay t 276/0/1/276 276/254/20/22
GREENSPAN g r iy n s p aa n g r iy n s p ae n 157/0/0/157 157/85/0/72

SHIMON sh ih m ax n sh ih m ow n 109/0/0/109 109/98/12/11

Table 3: Examples of L2P v/s Web-based pronunciations with positive impact

system. Figure 6 plots the DET curves for different pairwise
union of pronunciations from the set of OOVs. The subplots
in the figure are not directly comparable with each other
as each method of deriving pronunciations from the web
results in pronunciations for a subset of the total number
of OOV terms. Therefore there is a different baseline for
each of the subplots in Figure 6. In general, the use of web-
based pronunciations seems to improve the overall ATWV
measure when compared to the baseline performance(L2P).
The X mark in the DET curves refers to the False Alarm and
Misses tradeoff point at the which the ATWV measure is the
highest (Equal Error Rate is another commonly used metric
in place of ATWV). When Webpron 03 is used to derive
pronunciations, the false alarms increase, alluding to the fact
that there are too many confusion-causing pronunciations
for the OOVs in this set, resulting in too many incorrect hits.
On the other hand, Webpron 05, which are pronunciations
that have been cleaned and normalized, beats the baseline
with fewer false alarms and misses. It is interesting to note
that Webpron 06, despite being manually converted from
adhoc pronunciations, does not have fewer false alarms than
the baseline although the ATWV score is higher. In all
our experiments β was fixed at 1000 [15] to produce results
consistent with the literature. However, varying β, and in
effect varying the manner in which false alarms are weighted
relative to misses, might indicate a different impact of web-
derived pronunciations. Also, in observing the actual values
of ATWV, one can observe that this value is much less than
what is reported in the literature for the BN task, where the
query terms comprise both in-vocaulary and OOV terms.
This is because our query terms are all OOVs and there are
no in-vocabulary query terms used in our evaluation.

Table 3 shows examples where the use of web-based pro-
nunciations worked well for certain OOV queries and Table 4
illustrates examples where web-based pronunciations had a
negative impact. In cases where the use of web-based pro-
nunciations had a positive impact, the gains were obtained
from far fewer misses (ALBRIGHT and SHIMON). In cases
where the use of these pronunciations have a negative im-
pact, it is usually due to the presence of several false alarms,
sometimes resulting from the query term being a part of a
bigger word or having too many variants. This can partly
be attributed to the fact that on the web, especially for the
case of ad-hoc pronunciations, people tend to put ’pronunci-

ations by example,’ using a common word as a base for the
pronunciation of a rare word. For example in Table 4 the
pronunciation of the word FREUND is based on the word
FRIEND leading to a large number of false alarms since the
word FRIEND occurs frequently in the speech index. Simi-
larly, for the case of the word THIERRY, which has a large
number of false alarms, the pronunciation extracted from
the web was based on the pronunciation of -TARY, which is
a common English suffix (MILITARY, VOLUNTARY). Fig-
ure 7 shows that the best performance was obtained when
a union of all the web-derived and letter-to-sound system
based pronunciations was used in retrieval.

Figure 7: Subword indexing using various pronunci-
ations

We also explored the effect of using the LVCSR system
as a means to select the the best pronunciation for an OOV
term, i.e. the LVCSR system has all variants in its lexicon
and picks one based on either a likelihood metric (Forced-
align) or during unsupervised decoding (unsup-reco) of speech
containing the OOV words in question. The results are pre-
sented in Figure 8. It can be seen that the LVCSR-based
pronunciations for OOVs performs just as well as plex−best
(which is the pronunciation that is the closest (in edit dis-
tance) to a reference pronunciation , i.e. an upper bound).

6. CONCLUSION
Large quantities of human-supplied pronunciations are avail-

able on the Web, which we exploit to build pronunciation
lexica. Our methods yield more than 7M occurrences of raw
English pronunciations (IPA plus ad-hoc). Our approach
can be used to bootstrap pronunciation lexica for any lan-
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Example Pronunciations Ref/Corr/FA/Miss
L2P Web Based L2P Web Based

FREUND f r oy n d f r eh n d 9/3/0/6 9/3/470/6
SANTO s ae n t ow s ax/ey/ax/eh n t 9/2/4/7 9/2/194/7

THIERRY th iy ax r iy t eh r iy 7/0/16/7 7/1/1271/6

Table 4: Examples of L2P v/s Web-based pronunciations with negative impact

Figure 8: Effect of LVCSR selected pronunciations

guage where IPA or similar resources are available; e.g. ex-
traction statistics (Section 2) for French and German are
very promising. There is a need for accurate pronunciations

Method Number of OOVs
Ad-hoc 343

Cleaned and Normalized IPA 269
Hand Cleaned Ad-hoc 109

Table 5: Number of OOVs that had pronunciations
on the web

for named entities or foreign language terms in speech re-
treival applications like spoken term detection, and the web
can serve as an important source. In this paper, we have pre-
sented an evaluation of the relative merits and weaknesses of
the web as a pronunciation corpus for spoken term detection.
Our experiments indicate that in general, web-extracted pro-
nunciations perform better than those generated by L2P sys-
tems. However, we observed that in many cases people tend
to put ‘pronunciations by example,’ using the pronunciation
of a common word for a rare word. To address false alarms
generated by the use of these pronunciations, we are investi-
gating a filtering process based on expected counts of phone
sequences in the speech index. Also, ad-hoc transcriptions of
common words often highlight unusual pronunciations (e.g.
‘cheenah’ for ‘China’, which is a Spanish first name); the
question of how many of these rare pronunciations to select
and its dependence to the task at hand is a research topic
for the future.
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