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Abstract

In the near term, Moore’s law will continue to provide an in-
creasing number of transistors and therefore an increasing num-
ber of on-chip cores. Limited pin bandwidth prevents the integra-
tion of a large number of memory controllers on-chip. With many
cores, and few memory controllers, where to locate the memory
controllers in the on-chip interconnection fabric becomes an im-
portant and as yet unexplored question. In this paper, we show
how the location of the memory controllers can reduce contention
(hot spots) in the on-chip fabric, as well as lower the variance in
reference latency which provides for predictable performance of
memory-intensive applications regardless of the processing core
on which a thread is scheduled. We explore the design space of on-
chip fabrics to find optimal memory controller placement relative
to different topologies (i.e. mesh and torus), routing algorithms,
and workloads.

1 Introduction

Increasing levels of silicon integration are motivating system
on chip (SoC) and chip multiprocessor (CMP) designs with large
processor counts and integrated memory controllers. Proof-of-
concept designs from both Tilera [22, 26] and Intel [13, 25] in-
tegrate as many as 80 cores on a single piece of silicon. System
architects are faced with the trade-off of many lightweight cores
(with simple, in-order issue) versus fewer heavyweight cores (with
aggressive speculation, multiple issue, etc); however, both design
points require abundant DRAM bandwidth to feed the memory hi-
erarchy.
The most significant design impediment to increasing scale, is

limited pin bandwidth to memory devices. Memory bandwidth
has improved with recent high-speed differential signaling [10],
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FB-DIMM technology [8] and on-board memory buffers to serve
as pin expanders converting from narrow serial channels to a wide
address/data/control bus used by the memory part. Nonetheless,
packaging constraints limited primarily by the number of available
pins restrict the number of memory controllers to a small fraction
relative to the number of processing cores. The reality of many
cores with few memory controllers raises the important question
of where the memory controllers should be located within the on-
chip network.

The Tilera “Tile Architecture” [26] is implemented as an 8×8
two-dimensional mesh of tiles (Figure 1a). Packets are routed
using dimension-order routing and wormhole flow control. The
Tilera on-chip network uses five independent physical networks to

Figure 1. Two recent many-core CMPs that
use a two-dimensional mesh of tiles.
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isolate traffic1, where each full-duplex link is 32-bits wide in each
direction. Each of the physical networks has a 5-ported router in
each tile that flows packets in the north, south, east, and west di-
rections of the 2D mesh, as well as ingress and egress traffic from
the processor. In aggregate, the five networks provide 1.28 Tb/s
of bandwidth per tile, or 2.56 Tb/s of minimum bisection band-
width for the 8×8 mesh. Each physical network corresponds to
a different communication model, either shared memory or direct
communication via user-level messaging.
The Intel 80-core design [25] is organized as a 10×8 two-

dimensional mesh (Figure 1b) of tiles, where each tile embod-
ies a processing core which interfaces to a 5-ported router. The
switch operates at 4GHz and routes packets using wormhole flow
control between tiles. Two virtual channels are provided for dead-
lock avoidance2. Each input queue is only 16 flits deep (each flit
is 39-bits), since it only has to cover the latency × bandwidth
product between tiles. Each full-duplex router link can move a
39-bit flit (32-bits of data and 7-bits of sideband) on every 4GHz
clock, providing 16GB/s per direction. The processor has 16GB/s
of ingress/egress bandwidth into/from the router, for a total non-
blocking bandwidth of 80GB/s per tile. A round-robin arbitration
across the router input ports is used for fair access to the output
ports.
The designs from Intel [25] and Tilera [26] both use a mesh

topology for the on-chip network and have the memory controllers
positioned near the top and bottom of the fabric (Figure 1). As
the number of processor cores grow, it is not practical to assume
each tile will have a memory controller directly attached3. As a
result, a many-core CMP with n processors and m memory ports
will have

(
n
m

)
possible permutations for where the memory con-

trollers could be located within the on-chip fabric. These differ-
ent memory controller configurations can have a dramatic impact
on the latency and bandwidth characteristics of the on-chip net-
work, especially for a mesh topology which is not edge symmetric
like a torus, for example. Furthermore, by reducing the variance
in packet latency as well as channel load, the on-chip network is
less sensitive to the processor core on which a thread is sched-
uled. Through careful placement of the memory controllers we can
improve performance and provide predictable latency-bandwidth
characteristics regardless of where a thread executes on the CMP.

1.1 Contributions

Modern flip-chip packaging allows sufficient escape paths from
anywhere on the chip, which leaves open the question of where to
place each memory controller within the on-chip network so that
we minimize both latency and link contention. The memory con-
trollers themselves do not have to be part of the on-chip network,
rather, the ingress/egress ports to/from the memory are. Addition-

1Four of the five networks use dimension-ordered routing. The static
network uses a circuit-switch-like mechanism to establish a channel from
source to destination and then efficiently streams data without requiring
route computation at each hop.

2The two virtual channels are used for to segregate request and reply
traffic, thus avoiding protocol deadlock.

3Due to limited number of pins, it is not practical since each FB-DIMM
interface, for example, requires 10 northbound differential signals, and 14
southbound differential signals.

ally, the number of on-chip network ports to/from memory does
not need to be equal to the number of memory controllers. The
combination ofwhere the memory controllers are located and rout-
ing algorithm will significantly influence how much traffic each
link will carry. In this paper, we make several contributions to
on-chip interconnection networks:

• Most prior research has focused on intra-chip (processor-to-
processor) communication. This is the first work to evaluate
the impact location of memory controller and the influence
of processor-to-memory traffic for on-chip networks.

• We propose class-based deterministic routing (CDR)4 to
load-balance the processor-to-memory traffic in a 2D on-chip
mesh topology. Other routing algorithms such as O1turn [19]
cannot effectively load balance processor-to-memory traffic.

• We explicitly enumerate all possible permutations of mem-
ory controllers in both mesh and torus topologies that are
common in two-dimensional on-chip networks, and use ex-
tensive simulation to find the configuration that minimizes
themaximum channel load. We show that exhaustive simula-
tion is possible for modest-sized on-chip networks (k < 7),
however, larger networks such as an 8×8 mesh, require a
heuristic-guided search to deal with the computational com-
plexity that arises from a large search space.

• We explore the design space of on-chip networks to show
how memory controller location and routing algorithm can
improve the latency and bandwidth characteristics as well as
reduce variance of the network for both synthetic and full
system workloads. Our solution provides predictable perfor-
mance regardless of which processor core is used to execute
a memory-intensive thread.

1.2 Paper organization

The remainder of this paper is organized as follows. Section
2 provides further background and motivation for optimal place-
ment of memory controllers. In Section 3, we briefly describe our
methodology and present results for initially pruning the design
space in Section 4. We then describe the our more detailed sim-
ulation methodologies and discuss the impact of placement and
routing on the latency and bandwidth characteristics of the on-
chip network in Section 5. In Section 6 we discuss other prior
work. Finally, Section 7 summarizes our contributions.

2 Motivation

Typical multi-core processor designs, common in most modern
servers, use a conventional crossbar design [2] that provides a 1:1
ratio of memory controllers and processor cores. Compared to an
aggressive out-of-order processor with substantial hardware dedi-
cated to handling multiple outstanding cache misses per core, the
simpler processing cores of a many-core architecture will demand
less memory bandwidth. Architectures that increase memory-level
parallelism, by allowing more outstanding cache misses from each
core, increase link contention in the on-chip fabric.

4pronounced “cedar”
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Figure 2. Different memory controller config-
urations.

Figure 2 shows some point specific designs that we evaluate
for 16 memory controller ports embedded in an 8×8 array of tiles
(shaded squares represent a memory port co-located with a pro-
cessor tile). The number of memory ingress/egress ports, or taps
does not have to be the same as the number of physical memory
channels. As shown in Figure 1a, the Tilera chip has 16 tiles with
memory taps, and only four memory controllers. This organiza-
tion makes it very important to uniformly spread the processor-
to-memory traffic across all the available memory ports. Al-
though [26] does not specifically discuss how the references are
distributed, we use the address bits immediately above the cache
line address to choose the memory port for a given address. Our
baseline design (Figure 2a) was chosen because it was representa-
tive of how both Intel and Tilera chose to implement their memory
interface.

We assume that a mesh or torus on-chip network with radix k
will have 2k memory ports. These 2k memory ports will be mul-
tiplexed to a smaller number of memory controllers as dictated by

the available pin bandwidth of the design 5. Guided by intuition,
we then chose several other configurations we thought might per-
form better (Figures 2c-f). However for scientific rigor, we did not
limit our search of the design space to a small handful of config-
urations. Instead, we enumerated all possible configurations and
simulated each one with 10,000 trials of random permutation traf-
fic.
Intuitively, the row2 5 configuration will have a lower aver-

age hop count for each processor to access all of the memory con-
trollers. To the first order, this will improve average performance
over the row0 7. However, the goal of this work is to find con-
figurations that provide good performance and fair access to each
memory controller. To that end, we examine the variation in la-
tency experienced by processors to access each memory controller.
A lower variance indicates that a memory controller configuration
provides both fair and predictable access from all processors.

3 Simulation Methodology

We use several simulation environments, corresponding to dif-
ferent levels of abstraction and detail, to explore this broad design
space. The first is a simple, and fast, link contention simulator
which traces the path a packet takes through the network and incre-
ments a count on each link that it traverses. This count represents
the channel load, or contention, that would be observed by the link
if the processors were simultaneously active. The second environ-
ment is a detailed, event-driven simulator used to explore topology
and routing sensitivity to different memory controller placement
alternatives. It provides flit-level granularity and detailed simula-
tion for synthetic workloads. Lastly, we have a detailed full sys-
tem simulator that allows real workloads to be applied to what we
learned from the previous two environments.
By providing multiple simulation approaches at differing levels

of abstraction, we are able to validate and gain a better understand-
ing of issues that may exist in one simulation environment, but not
others. For example, after studying the distribution of memory ref-
erences (Figure 4) in the TPC-H benchmark, it was apparent that
some memory controllers were accessed much more frequently
than others – with some memory controllers having up to 4× the
load of others. To mimic this hot spot traffic pattern, we applied
this traffic pattern as input to the event-driven network simulator
by choosing the destination memory controller according to the
distribution observed by the full system simulator. In this way,
we were able to validate simulation models at differing levels of
abstraction.

4 Pruning the Design Space

We use a link contention simulator, a genetic algorithm and
a random simulation to prune the large design space of memory
controller placement. Once a small subset of memory controller
placements has been selected, we will describe, in detail the eval-
uation methods and results that provide further insight into this
problem (Section 5).

5The Tilera design multiplexes 4 memory ports to 1 memory controller.
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4.1 Link contention simulator

To gain a better understanding of how placement affects con-
tention, or specifically, the maximum channel load, within the on-
chip network we develop a simple simulator that traces the path of
each packet. The maximum channel load is the load (in packets)
on the channel carrying the largest fraction of traffic [5]. The net-
work is modeled as a group of nodes interconnected with unidirec-
tional channels. As a packet traverses each unidirectional channel,
we increment a counter associated with that channel, and com-
pare the count to the current max channel load value. We keep
track of the maximum channel load as a proxy for the delivered
bandwidth, since the accepted bandwidth will ultimately be lim-
ited by the channel with the highest contention, or channel load.
All processor-to-memory references are modeled by having each
processor choose a random memory controller in which to send a
request. Once the request packet reaches the destination memory
controller, the reply packet is sent back – again, tracing the path
of the packet as it heads back to the requesting processor tile. We
perform 10,000 trials averaging the maximum channel load across
all the trials. This average value is used as a figure of merit for
evaluating different memory configurations.
We use the contention simulator to enumerate all possible

placement options, and then simulate 10,000 trials for each con-
figuration. We do this for both mesh and torus topologies. For
symmetric topologies, such as the torus, there is a lot of symmetry
that can be exploited, however, our simulator does not take this
symmetry into account. So, it is possible for multiple configura-
tions to be viewed as best (i.e. perform identically). An on-chip
network with n tiles andmmemory controllers will have

(
n
m

)
pos-

sible memory configurations that must be compared against each
other in order to choose the best .
For small on-chip networks, say 4×4 mesh, with 8 memory

ports, we have a total of
(
16
8

)
, or 12,870 different placements to

evaluate. A 5×5 mesh with 10 memory ports has 3,268,760 dif-
ferent possibilities, and a 6×6 mesh has over one billion possi-
ble placements. Thus an 8×8 mesh with 16 memory ports has
4.9×1014 different configurations.making exhaustive search of the
design space intractable for any network larger than 6×6. To deal
with this complexity we use two approaches: genetic algorithms,
and random simulation.

4.1.1 Genetic algorithm

Genetic algorithms [7] (GAs) take a heuristic-based approach to
optimization. GAs are inspired by DNA’s ability to encode com-
plicated organisms into simple (if lengthy) sequences. Each se-
quence represents a potential solution to the problem under opti-
mization. In our case, we represent our solutions as a bit vector;
set bits in the vector represent locations of memory controllers in
our topology. In the course of execution, solutions are combined to
produce new solutions (analogous to chromosomal crossover), and
new solutions are randomly perturbed (i.e., mutated) with some
probability to prevent convergence on local minima. Each new
solution is evaluated, and assigned a fitness.
The nature of crossover, mutation, and fitness evaluation oper-

ations is specific to the problem to be solved. The fitness of each
solution is the reciprocal of the maximum channel load for that

configuration. Our crossover algorithm selects two parent solu-
tions from a large population, with probability proportional to the
potential parents’ fitness, then randomly selects bits from the par-
ents to form a new solution. The mutation operation simply swaps
adjacent bits in the vector. In order to maximize the effectiveness
of our heuristic, we never evaluate a particular bit vector more
than once. Instead, we repeatedly apply mutation to redundant so-
lutions until a new solution is discovered. Our genetic simulator
executes a fixed number of generations or returns a solution when
stagnation occurs in the population6.

4.1.2 Random simulation

We extended our link contention simulator to perform a random
walk of the design space. We begin by randomly selecting a valid
memory controller configuration, and keep track of which config-
uration has the least contention. Again, as our figure of merit, we
use maximum channel load as a proxy for accepted bandwidth.
The configuration with the lowest maximum channel load will
have less congestion and as a result, the best delivered bandwidth.
When we find a configuration that is better than all other previ-
ously explored, we annotate the configuration and clear the ef-
fort counter. An effort parameter to the simulator determines how
many configurations we search before terminating the simulation
and declaring a solution. Through experimentation, we found that
an effort level of 7,000 provided a reasonable trade-off between
search quality and time to solution, which was usually less than a
few hours.

4.2 Results

At a high level, our link contention simulator is used to provide
a first-order comparison of different memory controller configura-
tions and exhaustively search for an optimal solution in relatively
small on-chip networks (e.g. k ≤ 6). When exhaustive search be-
comes intractable (k > 6) we use heuristic-guided search to find
near-optimal solutions.
We began by exhaustively simulating 4×4, 5×5, and 6×6

mesh and torus on-chip networks. From the exhaustive simulation,
a clear pattern emerged – configurations that spread the processor-
to-memory traffic across the diagonal of the mesh performed no-
tably better than others. Intuitively, this makes sense, since the
link contention simulator uses dimension-ordered routing (X then
Y) to route packets. If the memory controllers were all in the same
row (as in Figure 2a) then the reply packets would get very con-
gested. Table 1 shows the simulation results for an 8×8 array of
tiles organized as shown in Figure 2. These configurations were
chosen by extrapolating analogous patterns from smaller network
sizes such as 6 × 6 which could be exhaustively searched. The
diamond and diagonal X configurations perform 33% better
than the baseline row0 7 (i.e. Tilera memory configuration).
For larger networks, we had to rely on heuristic-guided search

to find near-optimal solutions. The best solution we found via ran-
dom search had a maximum channel load of 9.35, within 5% of

6Stagnation is defined as no improvement in observed fitness over some
interval.
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Memory Controller Max. Channel Load
Configuration Mesh Torus

row0 7 Figure 2a 13.50 9.25
col0 7 Figure 2b 13.50 9.25
row2 5 Figure 2c 13.49 9.22
diagonal X Figure 2d 8.93 7.72
diamond Figure 2e 8.90 7.72
checkerboard Figure 2f 10.24 7.69

Table 1. Summary of link contention for mem-
ory configurations shown in Figure 2.

the diamond and diagonal X configurations. The genetic al-
gorithm with a population size of 500 configurations for 100 gen-
erations, yielded a near optimal solution with a maximum chan-
nel load of 9.21, within 4% of the diamond and diagonal
X memory configurations.The solutions generated from the ge-
netic algorithm followed the trend of memory controllers clustered
along the diagonals of the mesh.
Since diamond has better physical layout properties than

diagonal X and the same performance, we will focus our dis-
cussion on it. Specifically, the diamond does not locate multiple
memory controllers in the center of the chip, increasing escape
complexity. By locating the memory controllers in an optimal
manner, we can reduce the average latency and reduce the amount
of energy expended per bit transported. Spreading the memory
ports in a uniform manner such as the diamond will spread the
thermals across a wider area. The diagonal pattern would in-
crease accesses in the center of the chip would could increase ther-
mals there.
In addition to search for the optimal configuration, we use the

randomized search to sweep through the design space to deter-
mine the impact of having many processor cores and few memory
controllers. As we vary the number of memory controllers, we
search for the best memory configuration, and note the maximum
channel load for that configuration (Figure 3). For an 8×8 array,
at least 12 memory controllers are required to adequately spread
the processor-to-memory traffic across enough links to avoid hot
spots, as shown in Figure 3. Even if every tile had a memory
controller attached resulting in a perfectly uniform random traffic
distribution, a mesh would still have a maximum channel load that
was 3× the average channel load. Clearly, not all the congestion is
due to the many-to-few traffic patterns in the processor-to-memory
links; some contention is due to routing.

5 Detailed Evaluation

After first narrowing the design space to a smaller number of
configurations, we perform more detailed simulation to gain fur-
ther insight into the issues surrounding memory controller place-
ment. We use a cycle-accurate network simulator with synthetic
traffic to evaluate the impact of alternative memory controller
placement within the on-chip fabric and explore different routing
algorithms.

# mem ctrls mesh torus

1 32 32

2 20.59 18.96

3 17.68 14.3

4 15.29 11.95

5 13.9 10.89

6 12.87 10.07

7 12.01 9.3

8 11.49 8.83

9 10.92 8.48

10 10.45 8.14

12 9.7 7.77

14 9.67 7.63

16 9.35 7.41 0x401528a145028810x5088241091422284

20 9.2 7.09

24 9.05 6.85

28 8.76 6.72

32 8.71 6.58
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Figure 3. Maximum channel load versus num-
ber of memory controllers for an 8×8 array of
tiles.

5.1 Routing algorithms

We evaluate the following memory controller placements de-
scribed in the previous section which include row0 7, diamond,
and row2 5 using synthetic traffic patterns. We start by evaluat-
ing an 8×8 mesh with well-understood dimension-order routing
(DOR) algorithms, including: XY, YX, and XY-YX randomized
routing.

• XY routing: dimension-ordered routing (DOR) where pack-
ets are first routed in the X dimension followed by the Y
dimension.

• YX routing: DOR with where packets are first routed in the
Y dimension followed by the X dimension.

• XY-YX routing (O1Turn [19]): at the source, the routing
path to the destination is randomly selected, routing either
XY DOR or YX DOR. This routing algorithm has been
shown to be near-optimal for 2D mesh network [19].

From the link contention simulator, we determined that not all
contention could be alleviated by smart memory controller place-
ment. To further reduce contention we propose a new determin-
istic routing algorithm. Our proposed class-based deterministic
routing (CDR) is simulated and compared against the above DOR
algorithms.

• Class-based Deterministic Routing (CDR): takes advantage
of both XY and YX routing but the path is determined by
the message type: memory request packets use XY routing
while memory reply packets take YX routing.

For both XY and YX routing, no additional virtual channels (VCs)
are needed to break routing deadlock, but additional VCs are need
to break protocol deadlock [4]. For XY-YX routing, in addition
to VCs needed to break protocol deadlock, additional VCs are
needed to break routing deadlock. However, for CDR routing, the

5



!"

!#!$"

!#!%"

!#!&"

!#!'"

!#("

!#($"

!#(%"

!#(&"

!#('"

(" $" )" %" *" &" +" '" ," (!" ((" ($" ()" (%" (*" (&"

!
"
#$
"
%
&'
(
"
)*
+)
&*
&'
,)
-
"
-
*
#.
)#
"
/
0
"
1&
1)

2"-*#.)3*%&#*,,"#)4)

2"-*#.)3*%&#*,,"#)51'(")671&#7809*%)

-./01"

2.3/455"

-./06"

2.3/785"

-./069-./01"

Figure 4. Distribution of Memory Controller
access from several workloads

VCs used to break routing deadlock can also be used to break pro-
tocol deadlock, thus the number of VCs needed is reduced com-
pared to XY-YX routing.

5.2 Setup

To maximize the effective memory bandwidth, the traffic of-
fered to each memory controller should be as close to uniform as
possible. However, some applications may exhibit non-uniform
traffic because of shared locks, for example. Thus, we evaluate
alternative memory controller placement using both uniform ran-
dom traffic, where each processor emits packets destined to a ran-
domly selected memory controller, and hot spot traffic based on
the distribution (as a percentage of total memory accesses) shown
in Figure 4 with benchmarks and setup described in Section 5.4.
Four out of five workloads, distribute accesses fairly uniformly
across 16 memory controllers which validates the use of the uni-
form random traffic pattern; TPC-H’s distribution generates hot
spot traffic.
In the synthetic traffic evaluation, we use both open-loop simu-

lation and closed-loop simulation. Open-loop simulation involves
traditionally used metric of measuring latency vs. load to obtain
network characteristics such as zero-load latency and the through-
put. We also use closed-loop simulation where we measure the
response of the network to compare overall performance [5]. For
open loop simulation, packets were injected using a Bernoulli pro-
cess. The simulator was warmed up under load without taking
measurements until steady-state was reached. Then a sample of
injected packets were taken during a measurement interval. Pa-
rameters used in both closed and open loop simulations can be
found in Table 2.
To understand the impact of memory traffic, we separate the

memory traffic into three different simulations in the open-loop
evaluation using synthetic traffic patterns.

• Request traffic only (REQ) – processors only injected traffic
destined for the memory controllers.

Table 2. Synthetic traffic simulation parame-
ters

Parameters Values
processors 64
memory controllers 16
router latency 1 cycle
inter-router wire latency 1 cycle
buffers 32 flits per input

divided among the VCs
packet size 1 flit for request

4 flit for reply
virtual channels 2 for XY, YX, CDR

4 for XY-YX

• Reply traffic only (REP) – only the memory controllers inject
traffic into the network.

• Request and reply traffic – both request and reply traffic are
injected into the network.

5.3 Detailed Simulation Results

Using the results from Section 4, we discuss our detailed sim-
ulation results using synthetic traffic patterns for row0 7 and
diamond memory controller placements. As Table 1 shows,
diamond and diagonal X perform about 33% better than the
baseline row0 7 placement. Due to better layout properties, we
focus on the diamond as the optimal design over the diagonal.

5.3.1 row0 7 Placement

The latency versus offered load curve is shown Figure 5 for the
row0 7memory controller placement with uniform random (UR)
traffic. For request traffic only, XY routing is sufficient and
reaches maximum throughput of 0.25 7. However, YX routing per-
forms poorly as it only achieves approximately half the through-
put of XY routing. The use of randomization in routing (XY-YX)
does not increase the performance and the achieved throughput is
between XY and YX routing (Figure 5a). Since the row0 7 place-
ment distributes the memory controllers uniformly within the same
row with, XY DOR routing load-balances the traffic to find the ap-
propriate Y-dimension before sending the traffic to its destination.
However, YX routing sends all the traffic initially to the two X co-
ordinates where the memory controllers are located – thus, causing
significant congestion on the channels in the X direction for rows
0 and 7 which contain the memory controllers.
The impact of memory controller placement and routing algo-

rithm on memory traffic can be estimated by measuring the chan-
nel load (γ) since the network throughput (θ) is inversely propor-

7Since there are only 16 memory controllers and 64 processors, the
maximum injection rate at each processor is 64/16 = 0.25.
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Figure 5. Latency vs. offered load using uniform random traffic for (a,b,c) row0 7 placement and
(d,e,f) diamond placement with with (a,d) request only traffic (b,e) reply only traffic and (c,f) both
request and reply traffic combined.

tional to the worst-case (maximum) channel load [5]. The maxi-
mum channel load for an oblivious routing algorithm such as XY
can be found by taking advantage of linearity of channel load-
ing [23]. A block diagram of a k×k 2D mesh is shown in Figure 6
with γXi (γYi ) corresponding to the channel load of row (column)
i. For request only traffic, with uniform traffic distribution and XY
routing,

max(γXi) =
k
2
× λ

2

max(γY i) = k(k − 1)× λ
16

(1)

where λ is the injection rate of each processor. The max(γXi)
occurs in the middle or bisection of the network where k/2 nodes
send 1/2 (or λ/2) of their traffic to memory controllers located
on the opposite half of the chip. The max(γYi) occurs at the top
near the memory controllers as shown in Figure 6b with k/(k−1)
nodes sending traffic to the memory controller contributing to this
channel. Since we assume uniform distribution among the 16
memory controllers, the actual load contributed from each pro-
cessor will be λ/16. Thus, the throughput with XY routing is
determinedmax(γXi, γY i).

θXY =
16

k(k − 1)λ
(2)

With YX routing, the load on the channels will be

max(γXi) = k
k
2
× λ

4

max(γY i) = (k − 1)
λ
2

(3)

For i $= 0 or k−1, γXi = 0 since all memory traffic is initially
routed in the Y direction. Thus, the throughput with YX routing is
determined by γX .

θY X =
8

k × kλ
(4)

Based on Eqn 2 and Eqn 4, it can be seen that XY provides
2k/(k − 1) increase in throughput compared to YX routing and
with k = 8, XY results in ≈2.3 increase in throughput compared
to YX as illustrated in Figure 5a.
With randomized XY-YX routing, XY routing is used for ap-

proximately 50% of the packets and the rest of the packets use YX
routing. Thus, the channel load for XY-YX routing can be found
as the following:

γY (XY − Y X) =
1
2
γY (XY ) +

1
2
γY (Y X)

γX(XY − Y X) =
1
2
γX(XY ) +

1
2
γX(Y X)

The actual channel load for XY-YX can be calculated by using
Eqn 1 and Eqn 3 and it can be seen that XY-YX routing does not
provide any performance benefits but achieves throughput that is
between XY and YX routing as illustrated in Figure 5a.

7



0

0

k-1

!
x

!
k-1

0

0

k-1

k-1

!
y

x

0
k-1

(a) (b)

Figure 6. Channel load on a 2D mesh topol-
ogy memory traffic with row0 7memory con-
troller placement, illustrating the channel
load on the (a) x-dimension and the (b) y-
dimension.

For REP only traffic, the opposite is true in terms of the impact
of routing. The use of XY routing creates a similar problem as
the YX routing with REQ only traffic. Thus, YX routing provides
better load-balancing for REP traffic, – i.e. transmits the packets
to the appropriate row (or X dimension) and then, traverses the X
dimension. Similar to REQ traffic, XY-YX does poorly.
When both the request and the reply traffic are combined (Fig-

ure 5c), both XY and YX routing perform similarly as the reply
traffic creates a bottleneck for XY routing and request traffic cre-
ates a bottleneck for YX routing. However, the proposed CDR
algorithm significantly outperforms other routing as it provides a
nearly 2x increase in throughput. Both CDR and XY-YX routing
take advantage of path diversity as some packets are routed XY
and others are routed YX. However, by taking advantage of the
characteristics of memory traffic (where 1/2 the traffic will be re-
quest and the remaining 1/2 is reply traffic), and the load-balanced
traffic pattern, our deterministic routing based on the message type
(CDR) load-balances all of channels to provide high throughput
while adding randomization (XY-YX) achieves performance sim-
ilar to XY or YX routing.

5.3.2 diamond Placement

With the diamond placement of the memory controllers, the dif-
ferent routing algorithms have very little impact on the overall
performance as shown in Figures 5(d-f). Unlike row0 7 place-
ment which creates a hot spot row in the topology, the diamond
placement distributes the memory controllers across all rows and
columns. Thus, even with CDR, there is very little benefit in terms
of latency or throughput (Figure 5f).

5.3.3 Closed-loop evaluation

We also evaluate the impact of routing algorithms and memory
controller placement through closed-loop evaluation using a batch
experiment to model the memory coherence traffic of a shared
memory multiprocessor. Each processor executes a fixed number
of remote memory operations (N ) (e.g., requests to the memory
controller) during the simulation and we measure the time required

for all operations to complete. Each processor is allowed to have
r outstanding requests before the processor needs to halt injection
of packets into the network and wait until replies are received from
the memory controller. This setup models the impact of MSHRs
and increasing amount of memory level parallelism in a multipro-
cessor system; we evaluate the on-chip network using values of
4 and 16 for r and 1000 for N . Simulations showed that larger
values for N do not change the trend in the comparisons.
Using CDR, we see that the underlying limitations of the mem-

ory controller placement are overcome; CDR results in significant
improvements for the row0 7 configuration as it balances the load
to reduce the execution time by up to 45% with r = 4 and up to
56% with r = 16 (Figure 7a). With higher r, the network be-
comes more congested and thus, proper load-balancing through
the use of CDR enables significant performance advantage. With
the diamond placement and uniform random traffic (Figure 7b),
the benefit of CDR is reduced but it still provides up to 9% im-
provement in performance. With the hot spot traffic, the benefit
of CDR is reduced as it provides up to 22% improvement with the
row0 7 placement and up to 8% improvement with the diamond
placement.
For the batch simulations, we also plot the distribution of com-

pletion time for each of the processors in Figure 8. With the
row0 7 placement, CDR provides not only higher performance in
terms of lower completion time but also results is a much tighter
distribution of completion – leading to a tighter variance. Tighter
variance implies more fairness to access the memory controllers
from all processors. Balancing the load through XY-YX and CDR
with the diamond placement also results in a tighter distribution
when compared to DOR.

5.4 Full System Simulation

To gain additional insight, full system simulation [1,15] is used
in conjunction with the above methods. Results are presented
for the following commercial workloads: TPC-H, TPC-W [24],
SPECweb99 and SPECjbb2000 [20]. Benchmark descriptions
can be found in Table 3 with simulation configuration parameters
listed in Table 4. In the link-contention and network-only simula-
tors, only processor-to-memory and memory-to-processor traffic
is considered. Full-system simulation includes additional traffic,
e.g. cache-to-cache transfers that can interact with the memory-
bound requests.
In order to evaluate large systems (8×8), we configure our sim-

ulation environment to support server consolidation workloads [6].
Each server workload runs inside of a virtual machine with a pri-
vate address space; threads of the same virtual machine are sched-
uled in a 4×4 quadrant to maintain affinity. Memory requests from
each virtual machine access all memory controllers on chip.

5.4.1 Full System Results

Full system simulation is used to validate results from the synthetic
traffic simulations as well as provide inputs to the event driven
network simulator. This simulation setup was used to generate the
hot spot traffic used in the previous section.
Near-optimal placement can provide predictable and fair access

to the memory controllers through the on-chip network. With the
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Figure 7. Batch experiment comparison with memory controllers placed at (a,c) row0 7 and (b,d)
diamond using (a,b) uniform random traffic and (c,d) hot spot traffic. The x-axis label varies the
routing algorithm as well as the r parameter.
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Figure 8. Distribution of completion time for the batch workload. (a-d) row0 7 placement and (e-h)
diamond placement with alternative routing algorithm – (a,e) XY routing, (b,f) YX routing, (c,g) XY-YX
routing and (d,h) CDR.

closed-loop batch experiment results presented above, it is clear
that placement can impact the performance distribution for syn-
thetic workloads. In Figure 9, we show the average latency each
processor observes to access the memory controllers versus the
standard deviation across all processors with dimension-ordered
XY routing. Down and to the left are the results with the lowest
average latency and smallest standard deviation. Each workload is
simulated with a diamond and a row0 7 configuration; we sim-
ulate four homogeneous server consolidation mixes and one het-
erogeneous mix of TPC-H and TPC-W. With the diamond con-
figuration, each processor not only experiences lower latency, but
there is less variation in the latencies observed by each processor.
Choosing a good placement improves network latency to memory
controllers by an average of 10% across the various workloads.

A lower standard deviation across the observed latencies be-
tween processors and memory controllers indicates that with a

diamond configuration and simple routing, access to memory
is both predictable and fair regardless of which processor core
a thread is scheduled to execute on. The tight cluster of results
for the diamond configuration indicates that an architect can size
buffers and hardware structures to tolerate the average latency plus
a small delta; these structures do not need to be sized to accom-
modate a long tail distribution of memory latencies as would be
necessary with a poor placement.

5.5 Results Summary

To explore the design space, we use simulation techniques at
multiple levels of abstraction starting with a fast link contention
simulator that exhaustively simulates all possible permutations of
memory controller placement, choosing the memory configuration
that minimizes the maximum (worst-case) channel load. These
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Table 3. Benchmark Descriptions
Benchmark Description
TPC-H TPC’s Decision Support System

Benchmark, IBM DB2 v6.1 running
query 12 w/ 512MB database,
1GB of memory

SPECjbb Standard java server workload utilizing
24 warehouses, executing 200 requests

TPC-W TPC’s Web e-Commerce Benchmark,
DB Tier Browsing mix, 40 web
transactions

SPECweb Zeus Web Server 3.3.7 servicing 300
HTTP requests

Table 4. Full System Simulation Configura-
tion

Parameters Values
Processors 64 in-order cores
L1 I& D caches 16KB (2 way set associative)

1 cycle latency
L2 (Private) 64 KB (4 way set associative)

6 cycle latency
L3 (Shared) 8 MB (16 way set associative)
Memory Latency 150 cycles
Network Parameters See Table 2

simulations narrowed down the field of candidates to those shown
in Figure 2, with diamond placement performing the best us-
ing dimension-ordered routing because it was able to spread traf-
fic across all rows and columns. We showed that the diamond
placement has 33% less link contention compared to the baseline
row0 7 placement used by Tilera [26]. We used two well-known
simulation approaches: genetic algorithms [7] and randomized
simulation to show our solutions for an 8×8 mesh could not be
improved upon when exhaustive search proved to be computation-
ally intractable.
We show that existing routing algorithms, including

dimension-ordered routing (DOR) with either XY and YX
as well as randomized XY-YX (O1Turn [19]) are not sufficient
to load balance the processor-to-memory traffic on a 2D mesh.
We show through detailed simulation that even a naive memory
controller placement could be improved upon using better routing
algorithm to avoid hot spots that would otherwise arise in the
processor-to-memory traffic. Our proposed class-based determin-
istic routing (CDR – pronounced “cedar”) routes request packets
using XY dimension-ordered routing, and reply packets route
using YX dimension-ordered routing. We show that implementing
the baseline row0 7 placement with CDR routing can improve
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Figure 9. Standard Deviation vs Network La-
tency for Requests to Memory Controllers

performance by up to 56% for uniform random (UR) traffic, and
22% improvement with hot spot memory traffic. With diamond
placement, we see a more modest 8% improvement from the
CDR routing algorithm because the diamond placement nicely
spreads the offered load among the rows and columns of the mesh
leaving less room for improvement from the routing algorithm.
Our full system simulation results show that the diamond

placement has significantly lower variance than the row0 7
placement, as shown in Figure 9. This lower variance provides
more predictable latency-bandwidth characteristics in the on-chip
network regardless of which processor core the application is us-
ing. We also observe a 10-15% improvement in network latency
with the diamond placement.
In this work we propose two complimentary solutions to ad-

dress latency and bandwidth problems for on-chip access to mem-
ory ports. The first solution improves performance by relocating
memory ports. Implementing this solution comes at no extra cost
or power consumption for the architect. However, if relocation
is not feasible, then an alternative solution of implementing CDR
would improve latency and throughput for processor-to-memory
and memory-to-processor traffic. CDR is a low cost routing al-
gorithm. Due to its deterministic nature, only two virtual chan-
nels are need to break protocol deadlock (same as XY and YX).
Combining these two techniques results in the best overall perfor-
mance.

6 Related Work

In this work, we advocate for intelligent memory controller
placement and routing of processor-memory traffic in on-chip net-
works. Both intelligent placement (such as the diamond) and
CDR improve on-chip network load balancing which effectively
increases fairness to the memory ports. In this section, we explore
related work in the areas of quality of service and fairness as well
on-chip placements solutions.
Recent work in quality of service (QoS) focuses on spreading

accesses to uniformly utilize the memory controllers; efficiently
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distributing memory references will reduce interconnect pressure
near the memory controllers as well. Recent NoC innovations [14]
have explored techniques to provide quality of service within the
on-chip network. This work provides quality of service for traf-
fic with a single hot spot but does not address the impact on net-
work performance when the placement of hot spot(s) can be cho-
sen at design time. Our work shows that certain latency and band-
width bottlenecks in the network can be avoided to a certain extent
through near-optimal placement of memory controllers assuming
memory controllers are likely to represent the hot spots in a large
scale on-chip network going forward. Our work considers the im-
pact that network hot spots have on each other due to proximity
and through the use of TPC-H hot spot traffic with three memory
controller hot spots.

Proposals to provide quality of service at the memory con-
trollers [16–18] to date have not considered the impact of memory
controller placement or how the on-chip network delivers those
requests but rather focus on fair arbitration between different re-
quests once they arrive at the memory controller. This work on
fair memory controllers compliments our work on optimizing the
on-chip network for memory traffic.

Significant research in the system-on-chip and application spe-
cific design communities addresses the challenge of how best to
map tasks to physical cores on-chip [11, 21]. Application specific
designs are unique from general purpose ones in that communi-
cation patterns are known a priori and can be specifically targeted
based on communication graphs. In the application-specific do-
main, research has been done to find the optimal mapping of tasks
to cores and the optimal static routes between cores to achieve
bandwidth and latency requirements. Due to the embedded na-
ture of many application-specific designs, these algorithms often
use energy minimization as their primary objective function. Work
by Hung et al. [12] uses a genetic algorithm to minimize thermal
hot spots through optimized IP placement. General purpose CMPs
see less predictable traffic patterns; we model two traffic patterns
derived from real workload behavior.

Significant research has focused on the impact of different
memory technologies and their respective trade-offs in providing
adequate off-chip latency and bandwidth [3, 8]. Our work takes
an alternative view of the system by considering the on-chip inter-
connect bandwidth and latency to the memory controllers.

In this work, we propose CDR, a simple deterministic routing
algorithm that load balances processor-memory traffic. Similarly,
an adaptive routing algorithm could be used to balance load; how-
ever, the use of adaptive routing in on-chip networks will signif-
icantly increase the complexity (i.e., increase in number of VCs,
router pipeline latency, etc) such that the overall benefit will be
minimal. Prior work [19] showed that if the pipeline delay of adap-
tive routing is considered, their O1Turn routing algorithm outper-
formed adaptive routing. Furthermore, adaptive routing can only
be used for response packets – deterministic routes are necessary
to preserve order of the read/write request packets to the memory
controllers. Response packet could be adaptively routed; however,
a 2D mesh will have limited path diversity and be subject to turn
model constraints [9]. As a result, it will have only a few minimal
adaptive candidates.

7 Conclusion

Aggressive many-core designs based on tiled microarchitec-
tures will have dozens or hundreds of processing cores, but pack-
aging constraints (i.e. the number of pins available) will limit the
number of memory controllers to a small fraction of the process-
ing cores. This paper explores how the location of the memory
controllers within the on-chip fabric can play a central role in the
performance of memory-intensive applications.
Intelligent placement can reduce maximum channel load by

33% with a diamond configuration, compared to the baseline
row0 7 configuration that is used by Tilera [26] and Intel [25].
We further improve upon this result by introducing the class-based
deterministic (CDR) routing algorithm, which routes request and
reply traffic differently to avoid hot spots introduced by the mem-
ory controllers. The CDR algorithm improves performance by
56% for uniform random traffic compared to the baseline row0 7
placement and 8% with the diamond placement. Full system
simulation further validates that the diamond placement reduces
interconnect latency by an average of 10% for real workloads.
The small number of memory ports and memory controllers

relative to the number of on-chip cores opens up a rich design
space to optimize latency and bandwidth characteristics of the on-
chip network. We demonstrate significant potential improvements
in performance and predictability through an exploration of this
design space.
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