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ABSTRACT
In sponsored search, a number of advertising slots is available on
a search results page, and have to be allocated among a set of ad-
vertisers competing to display an ad on the page. This gives rise to
a bipartite matching market that is typically cleared by the way of
an automated auction. Several auction mechanisms have been pro-
posed, with variants of the Generalized Second Price (GSP) being
widely used in practice.

There is a rich body of work on bipartite matching markets that
builds upon the stable marriage model of Gale and Shapley and the
assignment model of Shapley and Shubik. This line of research
offers deep insights into the structure of stable outcomes in such
markets and their incentive properties.

In this paper, we model advertising auctions in terms of an as-
signment model with linear utilities, extended with bidder and item
specific maximum and minimum prices. Auction mechanisms like
the commonly used GSP or the well-known Vickrey-Clarke-Groves
(VCG) can be interpreted as simply computing a bidder-optimal
stable matching in this model, for a suitably defined set of bid-
der preferences, but our model includes much richer bidders and
preferences. We prove that in our model the existence of a stable
matching is guaranteed, and under a non-degeneracy assumption
a bidder-optimal stable matching exists as well. We give an algo-
rithm to find such matching in polynomial time, and use it to de-
sign truthful mechanism that generalizes GSP, is truthful for profit-
maximizing bidders, correctly implements features like bidder-spe-
cific minimum prices and position-specific bids, and works for rich
mixtures of bidders and preferences. Our main technical contri-
butions are the existence of bidder-optimal matchings and strate-
gyproofness of the resulting mechanism, and are proved by induc-
tion on the progress of the matching algorithm.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity—Nonnumerical Algorithms and Problems; G.2.2
[Mathematics of Computing]: Discrete Mathematics—Graph The-
ory

∗Work done during summer 2007 internship at Google New York.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

General Terms
Algorithms, Economics, Theory

Keywords
Game Theory, Sponsored Search Auctions, Stable Matchings

1. INTRODUCTION
Internet advertising is a prime example of a matching market:

a number n of advertisers (bidders) are competing for a set of k
advertising slots (items) offered for sale by a content publisher or a
search engine. Internet advertising and sponsored search auctions
have attracted wide attention in the academic literature, and there
are several papers discussing various aspects of pricing ad slots and
allocating them to interested advertisers.

Classical matching market models include the stable marriage
model of Gale and Shapley [15] and the assignment model of Shalp-
ley and Shubik [25]. For these models and many of their exten-
sions, we have a good understanding of the structure of their stable
outcomes (“equilibria”) and their incentive properties. We take ad-
vantage of existing body of work on stable matchings and apply it
to sponsored search.

We observe that existing auction mechanisms for sponsored search,
most notably, variants of Generalized Second Price (GSP) and Vick-
rey-Clarke-Groves (VCG), merely compute a stable matching in a
suitably defined model. We make this model explicit, and propose
a new auction mechanism that includes the existing mechanisms as
special cases. The model is flexible enough to allow for bidder and
position specific minimum and maximum prices, as well as differ-
ent values for different slots. Much of the existing literature does
not address these features (like minimum prices) that are important
in practice. Beyond that, our model of bidder preferences allows
for a wider range of bidder behaviors than just profit maximization
(i.e. we do not assume that the bidder’s payoff is quasi-linear in
payment). As an example, a bidder who desires to win the high-
est slot possible subject to the constraint that his price be at most m
(for some parameter m) is clearly not maximizing profit, but can be
expressed in our model. It is important for us to include such bid-
ders in order to correctly model the variants of GSP auction which
have not been previously analyzed; it also happens that the basic
GSP mechanism is truthful for such class of bidders.

Our proposed auction mechanism solicits bidder preferences from
each bidder and then simply computes a bidder-optimal stable match-
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ing given those preferences. The mechanism is truthful (and even
group strategyproof if money transfers among players are not per-
mitted).

On the algorithmic side, we show how to compute the allocation
and prices corresponding to a bidder-optimal stable matching in
time O(nk3), where n is the number of bidders and k is the num-
ber of slots to sell. Our algorithm is an extension of the Hungar-
ian algorithm for finding maximum-weight matchings in bipartite
graphs. The idea of the algorithm is simple, although some atten-
tion to detail is required to ensure correctness, and the algorithm
has to be made fast enough for search advertising. Our proofs of
existence of bidder-optimal matchings as well as proof of a key
lemma establishing truthfulness of our auction mechanism follow
by induction on the execution of the matching algorithm.

2. RELATED WORK
Matching Markets. The marriage model of Gale and Shapley [15]
and the assignment model of Shapley and Shubik [25] are two stan-
dard models in the theory of matching markets.

In the marriage model, a set I of men and a set J of women
is given, where each man and woman is endowed with a ranked
list of members of the opposite sex. Men and women are to be
matched in a one to one fasion. A matching is considered stable
if there is no man and a woman who would simultaneously prefer
each other to their respective assigned partners. A stable matching
is guaranteed to exist, and the deferred acceptance algorithm can be
used to find it. The stable matching found by this algorithm is man-
optimal, in that every man prefers it to any other stable matching.
Moreover when using the deferred acceptance algorithm, no man
has an incentive to misreport his true preference order [23].

The assignment model [25], (see also [22, 10]) differs in that
each player derives a certain value from being matched to each per-
son of the opposite sex, and side payments between partners are
allowed. The goal of each player is to maximize his or her payoff
which is the sum of partner’s value and monetary payment (posi-
tive or negative negative) from the partner. The set of stable out-
comes is non-empty by a linear programming argument. In fact,
each stable outcome corresponds to a maximum-weight matching,
and player payoffs correpond to dual variables of the maximum
matching LP. A man-optimal outcome is guaranteed to exist, and
its allocation and prices are identical to the VCG mechanism for
maximum weight matchings [20, 7].

Many variations and extensions of each model have been stud-
ied; see the monograph [24] for a nice overview. Payoff functions
that are not necessarily linear in the payment were considered by [9,
10, 5, 6]. Even in such generality, there exists a man-optimal sta-
ble matching [9], and in a man-optimal auction mechanism, it is
weakly dominant for each bidder to reveal his true utility (payoff)
function. These results require the utility functions to be continu-
ous, strictly monotone and defined on the whole range (−∞, +∞),
and therefore are not directly applicable in our setting.

Kelso and Crawford [18] and others have proposed a many to
one variant in which firms may hire multiple workers. Recently,
Fujishige and Tamura [14] proposed a very general many to many
model with linear utility functions in which each worker can engage
multiple firms, and allow lower and upper bounds to be placed on
the range of payments allowed between any pair of players. Under
an assumption on the payoff functions called M \ concavity, they
give a proof of existence of a stable outcome and give an algorithm
to find it.

The model considered in this paper is an assignment model with
linear payoffs. It is a special case of the model of Fujishige and
Tamura [14], in that we assume one to one matching of bidders

to items. In addition to non-emptiness, we show that the set of
stable matchings in our model has a bidder-optimal element, and
prove that an auction mechanism based on bidder-optimal match-
ings is truthful and present an efficient algorithm. Fujishige and
Tamura [14] show existence of a stable matching in their very gen-
eral model by running an algorithm somewhat similar to ours, but
do not give any results on bidder-optimality or truthfulness.
Sponsored Search Auctions. Flavors of the Generalized Second
Price (GSP) auction are the dominant vehicles for selling ads on
the internet. In its basic form, GSP solicits a numeric bid from
each advertiser, orders them in decreasing order of bids, and as-
signs slots to the first up to k bidders in this order. Each bidder is
required to pay a price equal to the bid of the next bidder in the
ordering (or a minimum price if this is the last bidder). In a per-
click GSP, each bidder pays only in the event that his ad is clicked
on. In a per-impression GSP, the advertiser pays each time her ad
is displayed.

It has been observed that although it is not truthful for “profit
maximizing” bidders, the per-click GSP mechanism does have a
Nash equilibrium (under some assumptions on the structure of click
probabilities across different positions) that is efficient and its re-
sulting prices are equal to VCG prices; see [12, 2]. A variant of
GSP in which the bidder can specify the lowest (maximum) ac-
ceptable position has been proposed in [3], which also has a Nash
equilibrium equivalent to a suitably defined VCG auction. Even-
Dar et al. [13] show that a Nash equilibrium of GSP exists even
if minimum prices are bidder-specific, but that equilibrium is no
longer related to a naturally defined VCG outcome.

One reason GSP works well in practice is that in most situations,
bidders universally agree that higher slots are preferable to lower
slots. With increasingly complex web page layouts and increas-
ingly sophisticated advertisers this assumption may become less
valid over time. Features like Google’s Position Preference aim to
rectify this by allowing advertisers to only bid for a specified subset
(range) of positions.

The general class of VCG mechanisms follows from works of
Vickrey [27], Clarke [8] and Groves [17]. For an overview of the
VCG mechanism applied to sponsored search, see e.g. [1, 2]. VCG
is a very natural mechanism and is truthful for profit maximizing
bidders, but it is sufficiently different from GSP and bidders may
find it difficult to interpret the prices they are charged.

In section 3 we describe the assignment model with minimum
and maximum prices and state the main results. Section 5 gives a
description of an algorithm to find a bidder-optimal stable match-
ing. Sections 6.1 and 7 give high level overview of the proofs,
with the details delegated to Appendix A and B. Appendix 4.1 dis-
cusses how current auction mechanisms for sonsored search fit in
our model.

3. ASSIGNMENT MODEL WITH MAXIMUM
AND MINIMUM PRICES

Our model that we call the max-value model, consists of the set
I = {1, 2, . . . , n} of bidders and the set J = {1, 2, . . . , k} of
items. We use letter i to denote a bidder and letter j to denote an
item. Each bidder i has a value vi,j for each slot j how much is
that slot worth to her, and a maximum price mi,j she is able and
willing to pay for the slot.1 In addition to bidder preferences, the

1To motivate why vi,j and mi,j might be different, consider buy-
ing a house whose value to you is higher than the amount of money
your bank is willing to lend you. Allowing the bidder to specify
both a value and a maximum is also needed to model the GSP auc-
tion.
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vi,j

vi,j

vi,j − ri,j

vi,j −mi,j

mi,jri,j

ui – utility of bidder i

pj – price of slot j

(pj , ui)

Figure 1: Matching is stable whenever for each bidder i ∈ I
and each slot j ∈ J the point with coordinates (pj , ui) lies out-
side the gray region.

seller may specify for each item j a reserve or minimum price ri,j .
For simplicity we assume that the minimum prices are known

to the bidders in advance. For each i and each j we assume that
ri,j ≥ 0, vi,j ≥ 0, mi,j ≤ vi,j . If bidder i is interested in the slot
j he specifies mi,j ≥ ri,j . Otherwise, if bidder i has no interest in
slot j he specifies negative mi,j . We denote by v, m, r the n × k
matrices with entries vi,j , mi,j , ri,j respectively. We refer to the
triple (v, m, r) as an auction instance or simply auction.
Stable Matching. We formalize the notion of a matching in the
following definitions.

DEFINITION 1 (MATCHING). A matching is a triple (u, p, µ),
where u = (u1, u2, . . . , un) is a non-negative utility vector, p =
(p1, p2, . . . , pk) is a non-negative price vector, and µ ⊆ I × J is
a set of bidder-slot pairs such that no slot and no bidder occurs in
more than one pair.

If a pair (i, j) ∈ µ, we say that bidder i is matched to slot j.
We use µ(i) to denote the slot matched to a bidder i, and µ(j) to
denote to denote the bidder matched to a slot j. Bidders i and slots
j that do not belong to any pair in µ are said to be unmatched.

DEFINITION 2 (FEASIBLE MATCHING). A matching (u, p, µ)
is said to be feasible for an auction (v, m, r), whenever for every
(i, j) ∈ µ,

pj ∈ [ri,j , mi,j ] , (1)
ui + pj = vi,j , (2)

and for each unmatched bidder i is ui = 0 and for each unmatched
slot j is pj = 0.

DEFINITION 3 (STABLE MATCHING). A matching (u, p, µ) is
stable for an auction (v, m, r) whenever for each (i, j) ∈ I × J at
least one of the following inequalities holds:

ui + pj ≥ vi,j , (3)
pj ≥ mi,j , (4)

ui + ri,j ≥ vi,j . (5)

A pair (i, j) ∈ I × J which does not satisfy any of the three in-
equalities is called blocking.

Geometric interpretation of inequalities (3), (4), (5) is explained in
Figure 1. Note that if a bidder i is not interested in a slot j, then (4)
is trivially satisfied.

A feasible matching does not have to be stable, and a stable
matching does not have to be feasible. However, we will be inter-
ested in matchings that are both stable and feasible, and in addtion
bidder-optimal.

DEFINITION 4 (BIDDER OPTIMALITY). A stable, feasible match-
ing (u∗, p∗, u∗) is bidder-optimal if for every stable feasible match-
ing (u, p, µ) and every bidder i ∈ I we have u∗i ≥ ui.

Bidder Preferences. To study strategic behavior of bidders in an
auction, we need to model bidder’s preferences. We assume that
each bidder is indifferent among various outcomes as long as her
assigned slot (if any) and payment is the same. Let us define the
utility (payoff) of a bidder i who is offered a slot j at price p as
follows. If p ≤ mi,j , we set u = vij − p. If p > mi,j , we set
u = −1. This payoff, interpreted as a function of the price, is not
continuous at p = mi,j . If the bidder is unmatched (at zero price),
her payoff is 0. Given a choice between slot j1 at price q1 ≤ mi,j1

and slot j2 at price p2 ≤ mi,j2 , the bidder prefers the offer with
higher payoff, and is indifferent among offers that have the same
payoff. In particular, the bidder prefers to be not matched to being
matched to a slot j at price that exceeds her maximum price mij .
The bidder is indifferent between being matched with payoff 0 and
not being matched.

We call a bidder whose preferences can be described by a vec-
tor of maximum prices and values a max-value bidder. We point
out two classes of bidders that are of interest. For a more detailed
discussion of bidder types and auction modeling issues, refer to
Section 4.

A profit maximizing bidder i only cares about the values vij he
can gain from each position, and seeks to maximize value of the
item received minus payment. For such bidder we can render the
maximum price mij ineffective by setting it to vij .

A maximum price bidder is parametrized by a maximum price
mi he is willing to pay. He seeks to get the lowest-index position
whose price is less than or equal to m.

3.1 Our Results
Every auction instance in our model has a stable matching by the

result of [14]. We show that it also has a bidder-optimal matching,
and to give an algorithm to find it.

THEOREM 5. If the auction (v, m, r) is in a “general posi-
tion”, it has a unique bidder-optimal stable matching. This match-
ing can be found in time O(nk3).

We defer the precise definition of general position to Defini-
tion 14. In essence, any auction (v, m, r) can be brought into
general position by arbitrarily small (symbolic) perturbations. In
practice this assumption is easily removed by using a consistent
tie-breaking rule.

Consider the following mechanism for auctioning off k items to
n bidders. The auctioneer (seller) sets an arbitrary minimum price
rij for each bidder-item pair. It then solicits vectors of maximum
prices mi = (mi1, mi2, . . . , mik) and values vi = (vi1, vi2, . . . , vik)
from each bidder i. Finally, the auctioneer computes a bidder-
optimal stable matching (u∗, p∗, µ∗) for the auction instance (m, v, r).
It assigns each bidder i the item (if any) j = µ∗(i) and charges him
price p∗j (or 0 if µ∗(i) = ∅). Let us call this mechanism the Stable
Matching Mechanism. Our second technical contributionis to show
that the Stable matching Mechanism is truthful for max-value bid-
ders.

THEOREM 6 (TRUTHFULNESS). In the Stable Matching Mech-
anism, it is a (weakly) dominant strategy for each bidder i to submit
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her true vectors vi and mi, as long as i’s preferences can be ex-
pressed in the max-value model.

4. MODELING ADVERTISING AUCTIONS
In this section, we present examples of auction mechanisms com-

monly used in sponsored search. We show how to model these
mechanisms in our max-value model. In the next section we give
examples of novel combined mechanisms that can be implemented
in our model.
Translating between impressions and clicks. Typically, an auc-
tion is run to determine the placement of ads every time a results
page is rendered; however, the advertiser only pays when a user
actually clicks on the ad. It is straightforward to translate between
the pay-per-impression and the pay-per-click model, provided that
we know the probability ctr that a user will click on the ad: paying
pc per click is the same in expectation as paying pi = ctr · pc per
impression. In the following, let ctri,j be the probability that a user
clicks on ad i if it is displayed in position j (and that this probability
does not vary depending on the set of competing ads shown on the
page). The click separability assumption says that ctri,j = qi · αj

is the product of a quality score qi of the advertiser and a position
normalizer αj specific to the position j. Typically the position nor-
malizers are assumed to be decreasing, i.e. α1 ≥ α2 ≥ · · · ≥ αk.
GSP pay-per-impression. In a Generalized Second Price auction,
each advertiser i submits a single number bi as her bid, which is
the maximum amount she is willing to pay for displaying her ad.
The auctioneer orders bidders in decreasing order of their bids, and
assigns the first k advertisers to the k available slots in this order.
The i-th allocated advertiser pays amount equal to the (i+1)-st bid
for each impression.
GSP pay-per-click. An alternative is to charge the advertiser only
in the event of a click on her ad. The bid bi is interpreted as a
maximum the advertiser is willing to pay for a click. Again, the
advertisers are ordered by their per-click bid, and each allocated
advertiser pays the next highest bid in the event of a click. In a
quality-weighted variant, the ads are ordered by the product of their
quality score qi and bid bi; the i-th advertiser pays bi+1

qi+1
qi

in
the event of a click. Note that the expected cost per impression
bi+1

qi+1
qi

ctri,i depends not only on the next highest bid but also on
the position, as long as the probability ctri,j of clicking on the ad i
in position j depends on the position. Thus, there is no direct way
to translate a per-click bid to a per-impression bid, without looking
at the competitor’s bids.
The VCG mechanism for profit-maximizing bidders. In a vari-
ant of the VCG mechanism considered e.g. in [2], each bidder i
states her value Vi for a click. The auctioneer derives the expected
value of each slot vi,j = Vi · ctri,j for that bidder by using an es-
timate ctri,j of the probability that the ad i would be clicked on if
placed in position j. The auctioneer computes a maximum-weight
matching in the bipartite graph on bidders and positions with vi,j

as edge weights. The maximum weight matching µ∗ gives the final
allocation. For pricing, the VCG formula sets the price per impres-
sion of slot j = µ∗(i) to be pj =

P
k∈I\{i} vk,µ′(k) − vk,µ∗(k)

where µ′ is a maximum-weight matching with the set of bidders
I \ {i}. Note that the per-impression price pj can be translated to a
per-click price by charging bidder i price pj/ctri,j for each click.
(Similar translation can be done for a generally defined user action
other than a click, as long as the probability of the action can be
estimated.)

For each of the above mechanisms, we define a corresponding
type of bidder in the max-value model.
Max-per-impression bidder has a target cost per impression bi.

She prefers paying bi or less per impression to any outcome where
she pays more than bi. Given that her cost per impression is at most
bi, she prefers higher (with lower index) position to lower position.
Given a fixed position, she prefers paying lower price to higher
price. A max-per-impression bidder i can be translated into the
max-value model by setting her mi,j = bi for all positions j ∈ J ,
and setting her value vi,j = M(k+1−i) where M is a sufficiently
large number (M > bi is enough).
Max-per-click bidder differs from a max-per-impression bidder in
that she is not willing to pay more than bi per click. We translate
her per-click bid into our framework using predicted click proba-
bilities: set mi,j = bi · ctri,j for i ∈ I and vi,j = M(k + 1 − i)
where M > bi maxj ctri,j .
Profit-maximizing bidder seeks the position and payment that
maximizes her expected profit (value from clicks minus payment).
If we assume that her value per click is Vi, such bidder is modeled
by setting vi,j = mi,j = Vi · ctri,j .

We formalize the correspondence between the mechanisms and
corresponding bidder types in the following theorem.

THEOREM 7. The outcome (allocation and payments) of a (1)
per-impression GSP, (2) per-click GSP, (3) VCG auction, respec-
tively is a bidder-optimal stable matching for a set of (1) max-per-
impression bidders, (2) max-per-click bidders, (3) profit-maximizing
bidders, respectively.

PROOF. Part (3) of the theorem has first been shown by [20].
Chapter 7 of [24] as well as [7] discuss the relationship of the VCG
mechanism for assignments and stable matchings.

We give a proof for part (1), per-impression GSP. The proof of
part (2) for per-click GSP is very similar and is omitted. For sim-
plicity, we assume that n > k and all reserve prices are zero. Let
b1 > b2 > · · · > bn be the per-impression bids of the bidders.
Without loss of generality, the bidders are ordered by decreasing
order of their bids. (By the general position assumption, assume
bids are distinct.)

Recall that we encode a max-per-impression bidder by setting
vi,j = M(k − j + 1) and mi,j = bi. The matching produced
by the GSP auction is as follows: the matched pairs are µ =
{(1, 1), (2, 2), . . . , (k, k)}, bidder’s utilities ui = M(k− i+1)−
bi+1 for 1 ≤ i ≤ k, ui = 0 for i > k, and prices pi = bi+1 for
i = 1, 2, . . . , k. It is easy to verify this matching is feasible and
stable according to Definitions 2 and 3.

First we show that any feasible matching in which the assign-
ment is different from µ is not stable. Indeed, such a matching
(u′, p′, µ′) must have a bidder i ≤ k such that i was not allocated a
slot among the first i slots, and a slot j ≤ i that is either unmatched
or matched to some bidder i′ > i.

From feasibility we have that pj = 0 if slot j is unmatched and
pj ≤ bi′ in case it is matched. In either case, pj < bi. Also, since
bidder i is matched to some slot j′ > i (or unmatched), we know
that u′i ≤ vi,j′ = M(k − j′ + 1). We now claim that (i, j) is a
blocking pair. Since vi,j−u′i ≥ M [(k−j+1)−(k−j′+1)] ≥ M ,
inequalities (3) and (5) are violated, and since p′j < bi, inequality
(4) is violated as well.

Consider any matching with the assignment µ = {(1, 1), . . . , (k, k)}.
It is easy to verify that in order to be stable, it must be that pi ≥
bi+1, otherwise the pair (i + 1, i) would be a blocking pair. Hence
the matching with prices pi = bi+1 has the lowest possible prices
and hence is bidder-optimal.

Minimum prices. Some search engines impose a minimum price
ri for each ad (for example, based on perceived quality of the ad).
In GSP, only bidders whose bid is above the reserve price can par-
ticipate. The allocation is in decreasing order of bids, and each
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bidder pays the maximum of her reserve price and the next bid.
Minimum GSP prices are easily translated to the max-value model
by setting rij = ri (if paying per impression) or rij = ri ·ctri,j (if
paying per click). Our model allows for separate reserve prices for
different slots (e.g. higher reserve price for certain premium slots)
that are not easily implemented in the GSP world.

4.1 New Auction mechanisms
Let us give a few examples of new auction mechanisms that are

special cases of the max-value model.
GSP with arbitrary position preferences. Consider an advertiser
i who wishes for her ad to appear only in certain slots. For example,
[3] propose a GSP variant in which each bidder has the option to
specify a prefix of positions {1, 2, . . . , βi} for some βi she is inter-
ested in and exclude the remaining slots. Also, tools like Google’s
Position Preference allow the advertiser to specify arbitrary posi-
tion intervals [αi, βi]. We are however not aware of any published
work that discusses more sophisticated position preferences. One
would imagine that in the world of content advertising where there
may be multiple areas designed for ads on a single page, having
a richer language in which to express the preferences over slots
would be beneficial to the advertiser. Such preferences are readily
expressible in the max-value model.
Combining click and impression bidders in GSP. Since both pay
per click and pay per impression models are widely used in prac-
tice, it is useful to have a way of combining these two bidding
modes. This can be easily done by computing a stable matching
for a mixed pool of bidders. The following simpler approach is not
appropriate, as it does not have the proper incentive structure.

Suppose we allow each bidder i to specify both a maximum price
bi, as well as a payment type τi ∈ {I, C}. A naive combined auc-
tion orders bidders by decreasing bi. Each advertiser with τi = I is
charged the next highest bid bi+1 for showing the ad. Each adver-
tiser with τi = C is charged bi+1 in the event that the user clicks on
the ad. Note, this scheme gives advertisers a strong incentive to re-
port τi = C regardless of their true type (as long as the probability
of user clicking is less than 1).

To offset this incentive, the auctioneer may introduce multipliers
0 < qC < 1 and qI = 1 and set the effective bid of each bidder
to be beff

i = biqτi . In the modified GSP auction, bidders are be
sorted by their effective bid. Each bidder i who reports type τi = I
is charged beff

i+1 for each impression, while each bidder reporting
τi = C is charged beff

i+1/qC in the event of a click.
For any value of 0 < qC < 1, there is a simple instance in which

some bidder can gain by misreporting her type. Let ctr1 and ctr2
be the probability that an user will click on an ad in position 1 and
2 respectively. Assume this probability is the same for all ads, and
that ctr1 > ctr2. Suppose that the first slot is won by a bidder of
type I, the second slot is won by a bidder of type C, and that there is
at least one more bidder with positive bid. If qC > ctr2, the bidder
in the second position can lower her overall cost while keeping the
same position by reporting type C and keeping the same effective
bid. On the other hand, if qC < ctr1, bidder in the first position can
lower her cost by reporting type I, and adjusting her bid so that her
effective bid stays the same.
Diverse bidders. There are many types of bidders with different
goals. Some like to think in terms of a maximum price per click or
impression. Some prefer to target only certain positions (e.g. top of
the page) for consistency or branding reasons. Others try to maxi-
mize their profit and are able to estimate the value of a specific user
action. Each bidder may specify her goal in a language familiar to
her. We are not aware of any prior research on auction mechanisms
for such diverse set of bidders.

5. ALGORITHM TO COMPUTE A BIDDER-
OPTIMAL MATCHING

We now describe algorithm STABLEMATCH that computes a fea-
sible and stable matching for a given auction instance (v, m, r).
Later in Section 6 we show that the matching is also bidder-optimal,
as long as the auction instance is in a general position (Definition
14).

The STABLEMATCH algorithm is an extension of the well known
Hungarian Method [28, 19] for computing a maximum-weight match-
ing in a bipartite graph. The Hungarian Method is a primal-dual
algorithm that starts with an empty matching and repeatedly in-
creases the size of the matching using a maximum-weight aug-
menting path. STABLEMATCH works the same way, except that
it is designed to handle events correponding to reaching minimum
and maximum prices.

STABLEMATCH starts with an empty matching (u(0), p(0), µ(0))

which is defined as follows. Utility of each bidder i is u
(0)
i = B,

where B is a large enough number, such that B > max{vi,j | (i, j) ∈
I×J}. Price of each slot j is p

(0)
j = 0. There are no matched pairs,

i.e. µ(0) = ∅.
In each iteration, STABLEMATCH finds an augmenting path, and

updates the current matching (u(t), p(t), µ(t)) to the next matching
(u(t+1), p(t+1), µ(t+1)). The algorithm stops when no more up-
dates can be made, and outputs the current matching (u(T ), p(T ), µ(T ))
at the end of the last iteration. We now describe an iteration in more
detail. To do so, we introduce the concept of an update graph.

DEFINITION 8 (UPDATE GRAPH). Given an auction (v, m, r),
the update graph for a matching (u, p, µ) is a directed weighted bi-
partite multigraph with partite sets I and J ∪{j0}, where j0 is the
dummy slot. The update graph consists of five types of edges. For
each bidder i and each slot j ∈ J there is

• a forward edge from i to j with weight ui + pj − vi,j , if
pj ∈ [ri,j , mi,j);

• a backward edge from j to i with weight vi,j − ui − pj , if
(i, j) ∈ µ,

• a reserve-price edge from i to j with weight ui + ri,j − vi,j ,
if ui + ri,j > vi,j and mi,j > ri,j ,

• a maximum-price edge from i to j with weight ui + mi,j −
vi,j , if ui + mi,j > vi,j and mi,j > ri,j ,

• a terminal edge from i to j0 with weight ui if ui > 0.

An alternating path in the update graph starts with an unmatched
bidder vertex i0 with ui0 > 0, follows a sequence of forward and
backward edges, and ends with a reserve-price, maximum-price or
terminal edge. We place the restriction that all vertices of the al-
ternating path must be distinct, with the possible exception that the
last vertex is allowed to appear once again along the path. The
weight w(P ) of an alternating path P is the sum of weights of its
edges.

Let (u(t), p(t), µ(t)) be a matching and G(t) be the correspond-
ing update graph. A single iteration of the STABLEMATCH algo-
rithm consists of the following steps.

1. If there is no alternating path, stop and output the current
matching. Otherwise, let P be an alternating path in G(t) of
minimum weight. Let w(t)(P ) denote its weight, and let

P = (i0, j1, i1, j2, i2, . . . , j`, i`, j`+1) for some ` ≥ 0 .

2. Let d(t)(i0, y) be the length of the shortest path in G(t) from
i0 to any vertex y, using only forward and backward edges.
If a vertex y is not reachable from i0, d(t)(i0, y) = ∞.
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3. Compute utility updates for each bidder i ∈ I . The vector
u(t+1) gives the final utilities for the iteration.

u
(t+1)
i = u

(t)
i −max

“
w(t)(P )− d(t)(i0, i), 0

”
(6)

4. Compute price updates for each slot j ∈ J .

p
(t+)
j = p

(t)
j + max

“
w(t)(P )− d(t)(i0, j), 0

”
(7)

The final prices p
(t+1)
j are equal to p

(t+)
j with one exception.

In case the last edge of P is a reserve-price edge, we set
the price of slot j`+1, the last vertex of P to be p(t+1) =
max(p(t+), ri`,j`+1).

5. Update the assignment µ(t) along the alternating path P to
obtain the new assignment µ(t+1).

We have not specified how should the set of assignment edges be
updated. Before we do that, let us state two invariants maintained
by STABLEMATCH.

(A1) The matching (u(t), p(t), µ(t)) is stable for the auction (v, m, r).

(A2) For every matched pair (i, j) ∈ µ(t), u
(t)
i and p

(t)
j satisfy (1)

and (2).

An important consequence of invariant (A1) is that forward edges
have non-negative weight. Indeed, it can be easily checked that a
forward edge with a negative weight would be blocking pair. Invari-
ant (A2) guarantees that backward edges have zero weight. Simi-
larly, invariant (A2) implies that the weight of every backward edge
must be zero. Finally, each reserve-price, maximum-price and ter-
minal edges has non-negative weight by definition.

LEMMA 9. All edge weights in each update graph G(t) are
non-negative.

With non-negative edge weights, single-source shortest paths can
be computed using Dijkstra’s algorithm in time proportional to the
square of the number of vertices reachable from the source. Since
no unmatched vertex is reachable from any other vertex, there are at
most 2k reachable vertices at any time, thus the shortest alternating
path P and distances d(t)(i0, y) can be computed in time O(k2).

Finally, let us deal with updating the assignment µ. Since the al-
ternating path alternates between using forward (i.e. non-matching)
and backward (i.e. matching) edges, a natural move is to remove all
the matching edges of P and replace them by non-matching edges
of P . Care must be taken however to take into account the special
nature of the last edge of P as well as the fact that the last vertex of
P may be visited twice. We consider three cases:

Case 1: P ends with a terminal edge, i.e. j`+1 is the dummy slot.
Flip matching and non-matching edges along the whole length of
P . Bidder i` ends up being unmatched, and for x = 0, 1, . . . , `−1,
bidder ix will be matched to slot jx+1.

Case 2: P ends with a maximum-price edge. Consider two sub-
cases:

(a) j`+1 = j`. This means that the price bidder i` was matched
to reached his maximum price. Flip matching an non-matching
edges along P . This leaves bidder i` unmatched, and for
x = 0, 1, . . . , `− 1 bidder ix is matched with slot ix+1.

(b) Otherwise, the maximum price was reached on a non-matching
edge. Keep the matching unchanged. That is, µ(t+1) = µ(t).

Case 3: P ends with a reserve-price edge. This is the most com-
plex case. Consider three subcases:

(a) Item j`+1 is unmatched in µ(t). This case increases the size
of the matching. For x = 0, 1, . . . , `, match bidder ix with
slot jx+1 .

(b) Item j`+1 is matched in µ(t) and the reserve price ri`,j`+1

offered by bidder i` does not exceed the current price p
(t+)
j`+1

of the slots. Keep the matching unchanged, that is, µ(t+1) =
µ(t).

(c) Item j`+1 is matched in µ(t) to some bidder i`+1 and ri`,j`+1 >

p
(t+)
j`+1

. If P is a path, that is, if P does not visit slots ji`

twice, we simply unmatch bidder i`+1, and flip matching and
non-matching edges of P . (This keeps the size of the match-
ing the same, as bidder i0 gets matched and bidder i`+1 un-
matched.)

If P visits j`+1 twice, it must be that j`+1 = jd for some d.
Note that it is not the case that d = `, since this would mean
that i` was matched to j`+1. This is impossible because the
reserve price on this edge has been reached just now. This
way, the end of P forms a cycle with at least 2 bidders and
2 slots. We flip the matching and non-matching edges along
the cycle, but leave the rest of P untouched. This leaves
bidder ix matched to slot jx+1, for x = d, d + 1, . . . , `.

6. ANALYSIS
We sketch a proof that the STABLEMATCH algorithm from Sec-

tion 5 computes a bidder-optimal stable matching for any auction
instance (v, m, r) in general position. We do this by establishing
several invariants that hold throughout the execution of the STA-
BLEMATCH algorithm.

Besides invariants (A1) and (A2) introduced in Section 5, we
claim three more invariants.

(A3) Each unmatched slot has zero price.

(B1) if a bidder i is interested in slot j and u
(t)
i + mi,j = vi,j ,

then (i, j) 6∈ µ(t).

(B2) If a bidder i is interested in a slot j and u
(t)
i + ri,j = vi,j ,

then (i, j) ∈ µ(t) or p
(t)
j ≥ ri,j .

To prove that all five invariants hold from the beginning to the
end of an executoin of STABLEMATCH, we proceed by induction
on t. The proof itself is technical and tedious and is available in
the full version [4]. Invariants (B1) and (B2) are needed in the
induction step to prove the first three invariants. They rely on the
general position assumption.

Invariants (A1) and (A2) are enough to show that the resulting
matching is feasible and stable.

LEMMA 10. The matching (u(T ), p(T ), µ(T )) computed by the
STABLEMATCH algorithm is feasible and stable.

PROOF. Stability follows directly from invariant (A1). Feasibil-
ity follows from invariant (A2) and the fact that since there are no
alternating paths, it must be that u

(T )
i = 0 for every unmatched

bidder i.

Running Time. The number of iterations is bounded by O(nk) in
Lemma 11 below (see proof in Appendix A.1). Since each iteration
can be implemented in time O(k2), this gives us overall running
time O(nk3).
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LEMMA 11. STABLEMATCH finishes after at most n(2k + 1)
iterations.

6.1 Bidder Optimality
While the matching returned by STABLEMATCH is always sta-

ble and feasible, it may not be bidder-optimal. As the following
example shows, a bidder-optimal matching does not always exist.

EXAMPLE 12. Consider the case of a single slot and two bid-
ders with identical maximum bids. There are two stable matchings.
In each matching, the slot is allocated to one of the bidders at max-
imum price. Each matching is preferred by one bidder over the
other, hence there is no matching preferred by both of them.

This example is degenerate in that the maximum bids of both
bidders are the same. However it turns out that except for such de-
generate cases, a bidder-optimal matching always exists and STA-
BLEMATCH will find it. We make this precise in the following two
definitions.

DEFINITION 13 (AUCTION GRAPH). The auction graph of an
auction (v, m, r) is a directed weighted bipartite multigraph with
partite sets I and J ∪ {j0}, where j0 is the dummy slot. The auc-
tion graph contains five types of edges. For each bidder i and each
slot j ∈ J there exist

• a forward edge from i to j with weight −vi,j ,
• a backward edge from j to i with weight vi,j ,
• a reserve-price edge from i to j with weight ri,j − vi,j ,
• a maximum-price edge from i to j with weight mi,j − vi,j ,
• a terminal edge from i to j0 with weight 0.

DEFINITION 14 (GENERAL POSITION). An auction (v, m, r)
is in general position if for every bidder i, no two alternating walks
in the auction graph that start at bidder i, follow alternating for-
ward and backward edges and end with a distinct edge that is either
a reserve-price, maximum-price or terminal edge, have the same
weight.

Any auction (v, m, r) can be brought into general position by a
symbolic perturbation. In the algorithm implementation, this can
be achieved by breaking ties lexicographically by the identity of
the final edge of the walk.

All we need now to prove Theorem 5 is the following lemma,
proof of which appears in Appendix A.2.

LEMMA 15. Let (v, m, r) be an auction in general position,
and let (u′, p′, µ′) be any feasible stable matching. Then in any
iteration t of STABLEMATCH, we have that u′i ≤ u

(t)
i for all i ∈ I

and p′j ≥ p
(t)
j for all j ∈ J .

PROOF OF THEOREM 5. Consider an auction instance (m, v, r)
in general position. The STABLEMATCH algorithm on this instance
outputs a matching u∗, p∗, µ∗ that is stable and feasible by Lemma
10. Applying Lemma 15 to the current matching after the last iter-
ation of the algorithm implies that u∗, p∗, µ∗ is weakly preferred to
any stable matching by every bidder and hence is bidder-optimal.
Running time of the algorithm follows from Lemma 11.

7. INCENTIVE COMPATIBILITY
In this section we will prove Theorem 6. A mechanism based

on computing men-optimal stable matching has been shown to be
truth-revealing in several contexts. For the basic stable matching
problem without payments, a concise proof can be found in [21].

For the case of continuous utilities, a proof was given in [9]. Our
proof for the max-value model mimics the overall structure of its
predecessors. First, we show that there is no feasible matching in
which every single bidder would be better off than in the bidder-
optimal matching. (Note that if an agent or set of agents were to
successfully lie about their preferences, the mechanism would still
output a matching that is feasible with respect to the true prefer-
ences.) This property is known as weak Pareto optimality of the
bidder-optimal matching.

LEMMA 16 (PARETO OPTIMALITY). Let (v, m, r) be an auc-
tion in general position and let (u∗, p∗, µ∗) be the bidder-optimal
matching. Then for any matching (u, p, µ) that is feasible for (v, m, r),
there is at least one bidder i ∈ I such that ui ≤ u∗i .

Second, we show that every feasible matching is either stable, or
has a blocking bidder-slot pair that involves a bidder who is not bet-
ter off in this matching than in the bidder-optimal matching. Ver-
sions of the following lemma appear in [16, 11, 24]. The original
statement in a model without money is attributed to J. S. Hwang.

LEMMA 17 (HWANG’S LEMMA). Let (u, p, µ) be a match-
ing that is feasible for an auction (v, m, r) in general position and
let (u∗, p∗, µ∗) be the bidder-optimal matching for that auction.
Let

I+ = {i ∈ I | ui > u∗i } .

If I+ is non-empty, then there exists a blocking pair (i, j) ∈ (I −
I+)× J .

Proofs of Lemmas 16 and 17 appear in Appendix B. Theorem 6
directly follows from Lemma 17. In fact, the lemma implies the
following stronger statement.

THEOREM 18. There is no way for a bidder or a coalition of
bidders to manipulate their bids in a way such that every bidder in
the coalition would strictly benefit from the manipulation.

PROOF. Suppose there is a coalition I+ of bidders that can ben-
efit from submitting false bids. Let (v, m, r) be an auction that
reflects the true preferences of all bidders, and let (v′, m′, r) be
an auction that reflects the falsified bids. Note that v′i = vi and
m′

i = mi except for bidders i ∈ I+.
Let (u, p, µ) be the bidder-optimal stable matching for the auc-

tion (v′, m′, r). First observe that the matching (u, p, µ) must be
feasible for the true auction (v, m, r). This is because for each bid-
der i ∈ I − I+, the feasibility constraints are the same in both
auctions. For bidders i ∈ I+, we need to verify that pj ≤ mi,j

whenever (i, j) ∈ µ. This follows because the true bidder-optimal
matching (u∗, p∗, µ∗) respects maximum prices, and any outcome
that respects maximum prices is preferred over an outcome that
doesn’t.

Since (u, p, µ) is feasible, we can apply Lemma 17 and conclude
that there is a pair (i, j) with i ∈ I − I+ that is blocking for the
auction (v, m, r).

8. CONCLUSIONS
We have successfully applied the theory of stable matchings to

sponsored search auctions. Several open questions remain.

Fujishige and Tamura [14] propose a general model in which a
worker can engage several firms and vice versa, of which ours is a
special case. It would be interesting to see if (and under what con-
ditions) worker and firm-optimal equilibria exist, and whether our
strategyproofness result carries through to this very general model.
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Our max-value model assumes a constant “exchange rate” in that
each dollar paid by the bidder is perceived as a dollar received by
the seller, independent of the identity of the bidder and the item.
Suppose the payment is conditioned on some event (such as a user
clicking or making a purchase), as is common practice. At a mutu-
ally agreed (say) cost per click, the total revenue estimated by the
seller may not be equal to the total cost estimated by the buyer, if
they have different estimates of the probability of a click occurring.
This discrepancy suggests that we introduce an exchange rate into
equations (2) and (5). In such a model with exchange rates, we do
not know if a stable (let alone bidder optimal) matching exists, or
how to find such matching efficiently.

Existence of bidder-optimal matchings in our model has clear
implications on the existence of Nash equilibria in (say) GSP auc-
tions under various assumptions on bidder valuations / preferences.
(For example, can the result of [13] be re-derived and extended by
using guaranteed existence of bidder-optimal matchings?)
Acknowledgments. We would like to thank Hal Varian, Adam Juda
and anonymous referees for helpful comments and pointers to lit-
erature.
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APPENDIX
A. ANALYSIS OF STABLEMATCH

Proofs of statements from Section 6.1.

A.1 Proof of Lemma 11
PROOF OF LEMMA 11. Consider the number of edges in the

update graph. Initially, the graph G(0) has at most nk reserve-
price, nk maximum-price and n terminal edges. We claim that in
each iteration, the number of edges in the update graph is reduced
by one. Since STABLEMATCH must stop when there are no more
edges left, this bounds the total number of iterations.

Consider an iteration t of STABLEMATCH. We claim that in
the alternating path P = (i0, j1, i1, . . . , j`, i`, j`+1), the last edge
(i, j) = (i`, j`+1) will not appear in the update graph G(t+1). This
is easily verified by considering three cases:

Case 1: If (i, j) is a terminal edge, then w(t)(P ) = d(t)(i0, i) + u
(t)
i

and hence u
(t+1)
i = u

(t)
i − (w(t)(P )− d(t)(i0, i)) = 0.

Case 2: If (i, j) is a maximum-price edge, then w(t)(P ) = d(t)(i0, i)+

(u
(t)
i + mi,j − vi,j) and hence u

(t+1)
i + mi,j = u

(t)
i −

(w(t)(P )− d(t)(i0, i)) + mi,j = vi,j .
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Case 3: If (i, j) is a reserve-price edge, then w(t)(P ) = d(t)(i0, i) +

(u
(t)
i +ri,j−vi,j) and hence u

(t+1)
i +ri,j = u

(t)
i −(w(t)(P )−

d(t)(i0, i)) + ri,j = vi,j .

The utilities never increase and the prices never decrease through-
out the algorithm, thus the edge (i`, j`+1) does not appear in any
update graph G(t′) for any t′ > t.

A.2 Proof of Lemma 15
Without loss of generality assume that (u, p, µ) is such that there

does not exist a pair (i, j) ∈ µ such that pj = mi,j . If there was
such a pair, then we can decrease prices of some of the items and
increase utilities of some of the bidders such that pj < mi,j . This
is possible because of the general position assumption. See full
version of the paper.

We prove Lemma 15 by induction on t. The base case, t = 0,
trivially holds true, since by feasibility of (u′, p′, µ′), p′j ≥ 0 for
all j ∈ J and u′i ≤ B for all i ∈ I . In the inductive case, assume
that u(t) ≥ u′ and p(t) ≤ p′. We first prove that

PROPOSITION 19. u(t+1) ≥ u′ and p(t+) ≤ p′.

We look “continuously” at updates (6) and (7). For that pur-
pose we define for each i ∈ I a continuous non-increasing function
ui(x),

ui(x) = u
(t)
i −max

“
x− d(t)(i0, i), 0

”
,

and for each j ∈ J a continuous non-decreasing function pj(x),

pj(x) = p
(t)
j + max

“
x− d(t)(i0, j), 0

”
.

Clearly, u(t+1) = u(w(t)(P )) and p(t+) = p(w(t)(P )). To prove
that u(t+1) ≥ u′ and p(t+) ≤ p′, suppose by contraction that there
exists y ∈ [0, w(t)(P )] such that either ui(y) < u′i for some i ∈ I
or pj(y) > p′j for some j ∈ J . We choose infimal such y. Clearly,
u(y) ≥ u′, p(y) ≤ p′ and y < w(t)(P ). Consider the sets

I ′ = {i ∈ I | ui(y) = u′i and d(t)(i0, i) ≤ y} ,

J ′ = {i ∈ J | pj(y) = p′j and d(t)(i0, j) ≤ y} .

CLAIM 20. Each slot j ∈ J ′ is matched in µ(t) to some i ∈ I ′.

PROOF. Let j ∈ J ′. If j was unmatched, then either d(t)(i0, j) =

w(t)(P ) or d(t)(i0, j) = ∞; however both options contradict the
choice of y and that j ∈ J ′. Thus j is matched to some i ∈
I , hence in G(t) there is a backward edge from j to i and thus
d(t)(i0, i) = d(t)(i0, j) and therefore ui(y) + pj(y) = vi,j . Fur-
ther, invariants (A2) and (B1) imply that p

(t)
j ∈ [ri,j , mi,j). Con-

sequently, there is a maximum-price edge from i to j, w(t)(P ) ≤
d(t)(i0, i)+(u

(t)
i +mi,j−vi,j), and hence p′j = pj(y) < p

(t+)
j =

p(t)+(w(t)(P )−d(t)(i0, j)) ≤ mi,j . Therefore p′j ∈ [ri,j , mi,j),
and since (u′, p′, µ′) is stable, u′i + p′j ≥ vi,j and hence ui(y) =
vi,j − pj(y) = vi,j − p′j ≤ u′i. On the other hand, by infimality of
y, ui(y) ≥ u′i. Thus i ∈ I ′.

CLAIM 21. Each bidder i ∈ I ′ is matched in µ′ to some j ∈
J ′.

PROOF. Since in G(t) there is a terminal edge from i to the
dummy slot, w(t)(P ) ≤ d(t)(i0, i) + u

(t)
i . Hence

u′i = ui(y) = u
(t)
i − (y − d(t)(i0, i))

> u
(t)
i − (w(t)(P )− d(t)(i0, i)) ≥ 0 ,

and thus bidder i is matched in µ′ to some slot j ∈ J .
By feasibility of (u′, p′, µ′), p′j ∈ [ri,j , mi,j ]. By the assump-

tion made at the beginning pj 6= mi,j . Therefore in G(t) there is a
forward edge from i to j and thus

d(t)(i0, j) ≤ d(t)(i0, i) + (u
(t)
i + p

(t)
j − vi,j) . (8)

Clearly, since i ∈ I ′,

ui(y) = u
(t)
i − (y − d(t)(i0, i)) . (9)

By the price update rule

pj(y) ≥ p
(t)
j + (y − d(t)(i0, j)) . (10)

We add (9) to (10) and subtract from that (8) and we obtain

pj(y) ≥ vi,j − ui(y) .

Hence, since by feasibility of (u′, p′, µ′), u′i + p′j = vi,j , we have

pj(y) ≥ vi,j − ui(y) = vi,j − u′i = p′j .

Recalling that p(y) ≤ p′ we see that pj(y) = p′j .
Subtracting (9) from (8) and cancelling common terms we have

d(t)(i0, j) ≤ y + (ui(y) + p
(t)
j − vi,j) .

We upper-bound the right side of the inequality using that ui(y) =

u′i, p
(t)
j ≤ pj(y) and u′i + p′j = vi,j and we have

d(t)(i0, j) ≤ y + (u′i + p′j − vi,j) = y .

Thus j ∈ J ′.

From the two claims it follows that |I ′| = |J |′ and that µ(t)

bijectively matches I ′ with J ′. In particular i0 6∈ I ′. Choose j ∈
J ′ with smallest d(t)(i0, j). Consider the minimum-weight path in
G(t) from i0 to j which uses only forward and backward edges.
The vertex on the path just before j is a bidder i 6∈ I ′. Clearly,
y ≥ d(t)(i0, j) > d(t)(i0, i) and hence ui(y) < u′i. There is a
forward edge from i to j, thus p

(t)
j ∈ [ri,j , mi,j) and also ui(y) +

pj(y) = vi,j , and hence (*) u′i + p′j < vi,j . Since in G(t) there
is a maximum-price edge from i to j, p′j = pj(y) < mi,j , which
together with (*) contradicts stability of (u′, p′, µ′). This proves
Proposition 19.

To prove Lemma 15 it remains to show that p(t+1) ≤ p′. This
amounts to show that if (u(t+1), p(t+1), µ(t+1)) was obtained from
(u(t), p(t), µ(t)) by updating along an alternating path P of which
the last edge, (i, j) = (i`, jl+1), was a reserve-price edge and
p
(t+)
j < ri,j , then

ri,j ≤ p′j . (11)

Since (u′, p′, µ′) is stable, either u′i + p′j ≥ vi,j or p′j ≥ mi,j . In
former case, (11) follows from that u

(t+1)
i = vi,j − ri,j , Propo-

sition 19 and that (u′, p′, µ′) is stable. In latter case, (11) follows
since the presence of the reserve-price edge from i to j guarantees
that mi,j > ri,j .

B. INCENTIVE COMPATIBILITY PROOFS
PROOF OF LEMMA 16. For the sake of contradiction, suppose

that there is a feasible matching (u, p, µ) such that ui > u∗i for
all i ∈ I . Note that every bidder must be matched in µ, since
ui > u∗i ≥ 0.

For each bidder i ∈ I , consider the slot j = µ(i) matched to
bidder i in the matching µ. Since the pair (i, j) is not blocking for
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the bidder-optimal matching (u∗, p∗, µ∗), it must be that p∗j > pj .
In particular, the existence of µ implies that there must be n slots
with positive prices in the bidder-optimal matching µ∗, and that
these slots are matched in µ as well.

If a slot ever becomes matched to a bidder in the STABLEMATCH
algorithm, it will never become unmatched. Thus before the last
iteration, at most n− 1 slots have positive prices. Suppose the last
iteration, iteration T − 1, increases the size of the matching to n,
and let j be the last slot to be matched. Let i′ = µ(j) be the bidder
matched to j in the hypothetical matching µ.

Let P be the shortest alternating path found in Step 1 of the last
iteration of STABLEMATCH. Recall that the first vertex of the path
is denoted by i0 and w(T−1)(P ) denotes its length. If P ends with
the reserve-price edge (i, j), it must be that i and j are matched in
both µ and µ∗ at the same reserve price, contradicting our assump-
tion that ui > u∗i .

On the other hand, if P does not end with the reserve-price edge
(i, j), we show that there is a shorter alternating path P ′ that does
include this edge, which again leads to a contradiction. From Step
3 of the last iteration we have u

(T−1)
i − u∗i = w(T−1)(P ) −

d(T−1)(i0, i). Let s be the length of the reserve price edge (i, j);
recall from Definition 8 that s = u

(T−1)
i + ri,j − vi,j . Now con-

sider the alternating path P ′ that consists of the shortest path from
i0 to i followed by the reserve price (i, j) edge. We have

w(T−1)(P )−w(T−1)(P ′) = u
(T−1)
i −u∗i −s = vi,j −ri,j −u∗i .

Since u∗i < ui ≤ vi,j − ri,j , this difference is positive and hence
P ′ must be a shorter alternating path than P .

PROOF OF LEMMA 17. Without loss of generality assume that
(u, p, µ) is such that there does not exist a pair (i, j) 6∈ µ such that
ui + ri,j = vi,j . If there was such a pair, then we can decrease
prices of some of the items and increase utilities of some of the
bidders such that ui + ri,j > vi,j . (This is possible because of the
general position assumption. See full version of the paper.) The set
I+ would only grow by such operation.

Let us denote by µ(I+), µ∗(I+) the set of slots matched to bid-
ders in I+ in matching respectively µ, µ∗. We consider two cases:

Case 1: µ(I+) 6= µ∗(I+). For any i ∈ I+ we have ui > u∗i ≥
0 and hence each bidder in I+ is matched in µ to some slot. There
exists a slot j ∈ µ(I+), j 6∈ µ∗(I+). Let i = µ(j). Since i ∈ I+,
ui > u∗i .

We argue that pj < p∗j : By the general position assumption
p∗j 6= mi,j , and hence by feasibility of (u, p, µ), pj ∈ [ri,j , mi,j)
and ui + pj = vi,j . Hence u∗i + p∗j ≥ vi,j . Therefore p∗j ≥
vi,j − u∗i > vi,j − ui = pj .

In particular, j is matched in µ∗ to some i′, and by the choice of
j, i′ 6∈ I+. Thus ui′ ≤ u∗i′ . By feasibility of (u∗, p∗, µ∗), p∗j ∈
[ri′,j , mi′,j ] and u∗i′ + p∗j = vi′,j . By the assumption on (u, p, µ)
that we made at the beginning of the proof, ui′ 6= vi′,j − ri′,j .

Now, it is not hard to see that (i′, j) is blocking pair for µ. This
is because

pj < p∗j ≤ mi,j ,

ui′ ≤ u∗i′ = vi′,j − p∗j ≤ vi′,j − ri,j and
ui′ 6= vi′,j − ri′,j ,

ui′ + pj < u∗i′ + p∗j = vi′,j .

Case 2: µ(I+) = µ∗(I+) = J+. Since ui > u∗i for i ∈ I+, by
stability of (u∗, p∗, µ∗) it follows that pj < p∗j for j ∈ J+.

Consider a reduced auction (v′, m′, r′) on the set of bidders I+

and set of slots J+. We set the reserve prices to reflect the influence
of bidders in I \I+. More specifically, let I ′ = {i ∈ I \I+ | u∗i′ ≥

vi′,j − ri′,j}. For every i ∈ I+ and j ∈ J+, we set

r′i,j = max
`
ri,j , max

i′∈I′
min(mi′,j , vi′,j − u∗i )

´
.

We also set v′i,j = vi,j and m′
i,j = mi,j except that if mi,j ≤ r′i,j

we set m′
i,j = −1. It is not hard to show that if v, m, r is in general

position, then so is (v′, m′, r′), using the fact that each utility u∗i
was at some point set to be equal to the length of some alternating
walk in the auction graph.

Now consider the matchings µ and µ∗ restricted to the sets I+,
J+. If the restricted µ is not feasible for (v′, m′, r′), it must be
because pj < ri,j for some position j = µ(i). This can only
happen if r′i,j > ri,j and hence r′i,j = max(mi′,j , vi′,j − u∗i′) for
some bidder i′ ∈ I \ I+.

On the other hand, it is easy to check that the restricted matching
µ∗ is feasible, stable and bidder-optimal for the auction (v′, m′, r′).
If the restricted µ is feasible for this auction, by Lemma 16, there
is a bidder i ∈ I∗ such that ui ≤ u∗i . This however contradicts the
definition of the set I+.

C. LATTICE PROPERTY
The set of feasible and stable outcomes in both the stable mar-

riage and the assignment model has the algebraic structure of a lat-
tice (see e.g. Chapter 3 in [24]). This result can be carried over
to our assignment model with minimum and maximum prices as
well. The following lemma can be proved using ideas and tech-
niques from Section A. The proof is relatively long and tedious
and is omitted.

LEMMA 22 (LATTICE PROPERTY). Let (v, m, r) be an auc-
tion in general position. If (uA, pA, µA) and (uB , pB , µB) are two
feasible stable matchings for (v, m, r), then there exists a feasible
stable matching (uC , pC , µC) for (v, m, r) such that

uC
i = max{uA

i , uB
i } for each i ∈ I ,

pC
j = min{pA

j , pB
j } for each j ∈ J ,

and there exists a feasible stable matching (uD, pD, µD) for (v, m, r)
such that

uD
i = min{uA

i , uB
i } for each i ∈ I ,

pD
j = max{pA

j , pB
j } for each j ∈ J .

The setM of feasible and stable matchings for an auction (v, m, r)
is non-empty by 10. If the auction instance is in general position
we know that M is also a lattice by Lemma 22. It is not hard to see
that M is closed and bounded, and hence must have a minimum
and maximum element. This gives us an alternate way of proving
that a bidder-optimal stable matching exists.
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