
Going Mini: Extreme Lightweight Spam Filters

D. Sculley
Google, Inc.

dsculley@google.com

Gordon V. Cormack
University of Waterloo

gvcormac@uwaterloo.ca

ABSTRACT
In this paper, we examine the practicality of extreme light-
weight “mini” spam filters, which rely on only a small hand-
ful of inexpensive features for classification. Such filters
would be cheap enough to store and serve in RAM even
for email systems with very large user bases, allowing effec-
tive personalization at scale. In this paper, we propose and
test a variety of both traditional and novel methods for su-
pervised training of effective mini-filters reliant on only 21

through 26 features, rather than the more typical 220 fea-
tures. The best of these mini-filters are found to approach
the classification performance of strong classifiers trained on
the full feature set of millions of features. This is most no-
tably the case in the real-world scenario of noisy training
labels provided by non-expert humans. When mini-filters
are used to augment a generic global filter, the combination
is found to equal or surpass the performance of state of the
art classifiers using the full feature set. These results suggest
that mini-filters may be an effective approach for achieving
large-scale personalized filters at low cost.

1. INTRODUCTION: WHY MINI?
In recent years, state of the art supervised spam filter-

ing methods for separating email spam from ham (non-spam
messages) have commonly employed very large large, sparse
feature sets. An example of this is the success of Logistic
Regression and Support Vector Machine (SVM) methods at
the TREC 2007 spam filtering benchmark competition, in
which top performing filters used a binary 4-mer feature
space of all possible four-byte character strings [8].

While it is not particularly challenging for a large-scale
email system to serve a single, global filter containing mil-
lions or billions of features, it may be problematic if we wish
to serve a large number of personalized filters which vary by
user. Because fast serving requires models to be stored in
RAM, rather than cheaply on disk, there is significant in-
centive to find models for filtering that rely not on millions
but on dozens of features. Furthermore, mini-filters reliant
on very few features may allow extremely fast classification
due to excellent memory locality of the model. Finally, mini-
filters may be effective in resource-constrained environments
such as hand-held mobile devices.

In this paper, we attempt to construct effective email
spam filters using very small feature sets, containing be-

CEAS 2009 Sixth Conference on Email and AntiSpam July 1617, 2009,
Mountain View, California USA

tween 21 and 26 features drawn from the same binary 4-mer
feature space that gave strong performance when each of
the millions of possible features were considered [8]. To our
knowledge, this is the first systematic study of training and
evaluating spam filters that use very few features for classi-
fication. We call such filters mini-filters.

Somewhat to our surprise, we found several inexpensive
methods capable of training mini-filters that are competitive
with filters using state of the art training methods such as
linear SVM, regularizard Logistic Regression, and the popu-
lar Naive Bayes. This suggests that typical high-dimensional
feature sets for email spam filtering are composed of many
redundant or irrelevant features. The performance of the
mini-filters is most notably competitive with filters trained
on all features for the real-world setting in which filters are
provided with potentially noisy training labels. Part of this
effect may be ascribed to the low VC dimension of a typical
mini-filter.

Finally, we investigate a natural scenario for a large scale
system, in which a personalized mini-filter is used to aug-
ment the performance of a generic global filter. We find that
when used together, the combined performance of a mini-
filter and a generic global filter as a combined ensemble gives
improvement over either method individually, and exceeds
the performance levels of linear SVMs using all possible fea-
tures. This result shows that personalization of a generic
global filter can be effectively achieved at low cost through
the addition of lightweight, personalized mini-filters, and en-
courages the development and application of further work
in personalized mini-models for message filtering, foldering,
and prioritization.

The remainder of this paper proceeds as follows. The for-
mal problem definition and preliminaries are given in Sec-
tion 2. Background in related general techniques for train-
ing models reliant on few features and specific detail for
methods used in our experimental comparison are given in
Section 3. The fourth section describes two new methods
for training mini-models: a novel tournament-based feature
selection method and a fast decision list variant for sparse
data. Our data sets are described in Section 5, including the
low-cost acquisition of labels from non-expert “normal” hu-
mans using crowd-sourcing methods. Section 6 contains our
experimental results, and the final two sections of this paper
contain a brief overview of related work in personalization
for spam filtering and a concluding discussion.

2. PRELIMINARIES
In this section, we briefly give a formal definition of the

problem we examine in this paper and the notation used,
and pay some attention to the definition of what constitutes
a feature to ensure fair comparisons.

2.1 Problem Statement
We are interested in finding a model f(·), that maps mes-

sages represented as m-dimensional vectors x ∈ Rm from
some distribution D to predicted class labels f(x) ∈ {+1,−1}
for spam and ham (not spam), respectively, such that the
predicted class label agrees with y, the true class of the
message. Furthermore, we wish f(·) to rely on at most t
features. For example, if our classifier is a linear function
f(x) = sign < w,x > (where sign(x) returns +1 for x ≥ 0
and −1 otherwise) dependent on a weight vector w, we re-
quire that ||w||0 ≤ t. That is, we require that w have at
most t non-zero values.

More generally, we say that a model f(·) is t-reliant if there
exists a diagonal transformation matrix T with every T(i,i) ∈
{0, 1} and ||T ||0 ≤ t such that ∀x ∈ D : f(x) = f(Tx). That
is, if we can zero out all but a particular subset of t features
without changing any predictions by our model, then our
model is t-reliant. In this paper, we define a mini-filter as a
filter that is t-reliant with t ∈ [21, 26].

2.2 Defining Features
For fair comparison in this preliminary investigation, it is

necessary to restrict the definition of a feature in this paper.
This is because a mini-filter that uses the output of t costly
spam filters as features would be t-reliant, but would be
unfair to compare with a filter using only t character-level
substrings. Thus, we leave the investigation of using mini-
filters in systems deploying a larger number of sophisticated
models to future work, and use the same feature space for
all methods to ensure fair comparison.

The feature space used for all methods in this paper is
the binary 4-mer feature space that gave best results with
several learning methods at the TREC 2007 spam filtering
benchmarks [8]. A 4-mer is a consecutive substring of four
byte characters; mapping a string to the space of binary 4-
mers requires finding all the unique (possibly overlapping)
4-mers in the string. For example, the 4-mers in the string
abc ba are abc , bc b, and c ba. Each 4-mer found in the
string is given a score of 1 in its corresponding feature, and
each 4-mer not found is scored 0 in its corresponding feature.

An exception to this strict limitation on features is given
in our final set of experiments, in which a personalized mini-
filter is combined with a generic global filter. In this case,
the output of the generic global filter is used as an additional
input feature to the mini-filter. In these experiments, all
tested methods are given the same augmented feature set.

Finally, methods reliant on a bias term (for example, a
term x0 always set to 1) are considered to be using an extra
feature compared to methods not reliant on a bias term.

3. BACKGROUND: FEATURE SELECTION
The problems of feature selection and sparse model (mod-

els relying on few features) is an established and current
area of research in machine learning [14]. In this section, we
review several general approaches and note their associated
tradeoffs. We also give specific detail on those methods used
in our experimental comparisons.

3.1 Global Feature Selection Methods
The most widely used feature selection methods, in prac-

tice, are global methods such as selecting the top t features
by information gain [31], as measured with respect to fea-
tures and class labels in the training set. The model is then
trained only on the t features. Similar ideas include selecting
the top t features using other global quality measures such as
those based on rank order statistics [23] or the magnitudes
of weights in a linear model [1].

Global feature selection methods have the benefit of being
cheap to apply, but they do not take into account relation-
ships among features. In the context of this paper, the main
drawback is that global methods may be prone to selecting
many redundant features, rather than independent features.
In practice, this drawback is dealt with by letting t be rel-
atively large (on the order of hundreds or thousands). To
our knowledge, the performance of global information gain
for selecting very small feature sets for email spam filtering
has not been previously evaluated.

We include the global information-gain (also called mutual
information) approach in our experimental comparisons in
Section 6, as this is a popular and effective choice for fea-
ture selection in many domains [14]. In the case of discrete
variables and discrete class labels (as we have with binary
4-mers and class labels of {+1,−1}), the information gain
I(f) of feature f is defined:

X

X∈{0,1}

X

Y ∈{+1,−1}

P (xf = X, y = Y) log
P (xf = X, y = Y)

P (xf = X)P (y = Y)

Here, P (xf = X) is the observed probability that the given
feature f has value X in an example x randomly selected
from D, P (y = Y) is the observed probability that the ran-
domly chosen x has class label Y , and P (xf = X, y = Y) is
the probability that a randomly selected x has both feature
value f with value X and class label Y . Each of these quan-
tities is traditionally estimated by counting occurrences in
the training data.

3.2 Greedy Methods
The general problem of finding the t best features for a

model is NP hard, as
`

m
t

´

subsets must be considered. One
practical strategy for finding an approximate solution to this
problem is the greedy heuristic [14], for which there are sev-
eral variants commonly used in machine learning.

The most generic form of this greedy approach involves
the use of a wrapper method around a learner [17]. In the
forward-selection wrapper approach, for each of t iterations,
a unique model is trained for each of the m features using
the current feature set (beginning with the empty set) aug-
mented with the feature under consideration. At the end
of each round, the model with the best classification per-
formance is selected and its feature set is used as the base
feature set in the next round. Although this wrapper ap-
proach may be used with any learning algorithm, it may
involve considerable cost (for example, in conjunction with
an SVM learner) and is not applied in this paper. Similarly,
we do not consider wrapper methods using more expensive
search heuristics such as genetic algorithms.

In this paper, we do test two greedy methods in the spirit
of the forward-selection wrapper method. These are short
decision trees and boosting with early stopping.

3.2.1 Short Decision Trees
A decision tree is a tree containing conditions (based on

features and thresholds) at interior nodes, and prediction
values at leaves [22]. For the purposes of this paper, it is
sufficient to assume that the decision tree is a binary tree,
and that the condition at interior nodes is a test for the
presence or absence of a binary 4-mer.

Decision trees are commonly trained using a recursive
strategy, successively partitioning the training data set based
on the feature that gives the best information gain for the
current partition [22]. Because of this recursive partitioning,
redundant features tend not to be selected at different levels
of the tree as they do not increase information gain.

Furthermore, we can make a decision tree t-reliant by lim-
iting the depth of the tree to at most 1 + ceil(log2 t). Thus,
short decision trees appear to be a good candidate for mini-
filter models, and are tested in our experimental evaluation.

3.2.2 Boosting with Early Stopping
The idea behind boosting is that weak learners, that pro-

duce models with at least 0.5 + ϵ accuracy on any distri-
bution, can be combined into an aggregate strong classifier
with accuracy as close to 1.0 as desired through a process of
training new weak learners on successively more “difficult”
distributions of training data and aggregating the resultant
weak learners with a weighted linear combination [13].

The AdaBoost algorithm is a practical boosting algorithm,
managing the weighting of the weak learners and the con-
struction of each successive distribution of training data [13].
A commonly used weak learner in such situations is a de-
cision stump, which is a decision tree with a single feature;
boosted decision stumps often give strong classification per-
formance.

Because boosting proceeds in iterative rounds, with each
round focusing on a more difficult training distribution, we
may stop early after the completion of any iteration. (Early
stopping for boosting can also be used as a defense against
over-fitting [33].) Stopping after t rounds means that the
model will contain t weak learners; if these weak learners
are decision stumps then the aggregate model depends on
at most t features and is therefore t-reliant. In this paper,
we use decision-stumps boosted with the AdaBoost algo-
rithm stopping after t rounds for mini-filter training. As
experiments in Section 6 show, this approach is extremely
effective.

3.3 SparsityEncouraging Regularization
The problem of finding sparse models has been cast as

an optimization problem involving an L0-norm penalty1 for
regularization:

min λ||w||0 + loss(w, D)

over models represented as weight vectors w, with respect
to a given loss function and a given set of training data D,
and with the parameter λ determining how much weight to
give to the possibly conflicting goals of minimizing test error
and minimizing model complexity [14].

Because this optimization problem using an L0-norm penalty
is non-convex (and NP-hard to solve in general), a standard
solution is to approximate this using an L1-norm penalty,

1Recall that the L0 norm is equivalent to the number of
non-zero elements of a vector.

which restores convexity and allows efficient solution [3].
However, using λ to tune training so that models contain
specific numbers of features is problematic in practice. In
our preliminary experiments using an L1-norm regulariza-
tion method suitable for high-dimensional data (using a tru-
cated gradient descent method [19]), we were unable to train
effective models with 26 or fewer features, and left further
investigation of this and similar approaches to future work.
(The difficulty for us was finding a suitable value for λ to
produce feature sets of the desired size.)

3.4 Dimensionality Reduction Methods
Dimensionality reduction methods are another area of ma-

chine learning and information retrieval that has seen an
explosion of work. Several such methods revolve around
the concept of reduced-rank approximation of the matrix of
training data, via singular value decomposition or related
methods [29], a popular example of which is the latent se-
mantic analysis algorithm from information retrieval [11].
Graphical models for topic modeling are another rich set
of techniques that are applicable for dimensionality reduc-
tion of this form, and include probabilistic latent semantic
analysis [15] and author-topic models [25]. A particularly
relevant example of this technique is the Author-Recipient-
Topic model of McCallum et al. [21] for modeling topics and
network relationships on a per-author, per-recipient, and
per-message basis for email data.

Such methods may be applicable and effective for the task
of learning personalized mini-filters; it is possible to imag-
ine that different users prefer different mixtures of topics, for
example. However, as noted in Section 2.2, applying such
methods here would be effectively equivalent to creating fea-
tures representing sophisticated models. This is outside the
scope of this preliminary investigation into the training and
effectiveness of mini-filters based on simple, cheap features.

4. ALGORITHMS
In this section, we describe two new methods for training

sparse models: a fast greedy decision list algorithm suited
for sparse data, and a feature selection method based on a
tournament system.

4.1 Fast Decision List Training on Sparse Data
Decision lists are a hypothesis class that are well studied

in the machine learning theory community [24, 2], but are
relatively unrepresented in application. Formally, a decision
list L of length m is a list of m + 1 if-then decision rules
linked by else clauses as follows:

If xL1 > t1 then predict y1

else if xL2 > t2 then predict y2

else if ...

else predict ym+1

where each Li is the index of a particular feature in the fea-
ture set, each ti is a threshold for that feature, and each yi

is a decision value in {−1, +1} to return if rule i is satisfied.
It is commonly known that a decision list on boolean fea-
tures can be represented with a linear weight vector w, with
wLi = sign(yi)2

1−i, where the function sign(y) returns 1
for y ≥ 0 and -1 for y < 0. (To see this, observe that if rule
i is the first of the t rules to be satisfied, then its weight of

Algorithm 1: DecisionList-H(S, t, c)
Given: Training set S of labeled examples with boolean features, number of iterations t, correction term c
Produce: Weight vector (w) with new weights for classification.

w = 0
For i from 1 to t do:

counts[][] = 0

For each example (x, y) in S do:

For each feature index j where xj == 1 do:

counts[j][y] := counts[j][y] + 1

H[j] = 0

For each feature index j do:

prob-j-pos = (counts[j][1] + c) / (counts[j][1] + counts[j][-1] + 2c)
prob-j-neg = (counts[j][-1] + c) / (counts[j][1] + counts[j][-1] + 2c)
H[j] = prob-j-pos * log(1 / prob-j-pos) + prob-j-neg * log(1 / prob-j-neg)

Choose j with minimum value in H[j]
Set wi = sign(counts[j][1]) - counts[j][-1]) * 21−t

Remove all (x, y) with xj == 1 from S
If |S| == 0 then break

Return w

Figure 1: A greedy decision list algorithm, using Laplace-smoothed entropy as the purity function.

21−i is greater than
Pt

k=i+i 21 −k, which is the largest pos-
sible total weight for all the remaining rules.) Classification
of a new example x may then be performed with the familiar
linear classification function f(x) = sign(< x,w >).

There exist algorithms for finding the shortest consistent
decision list with a set of data, if one exists to fit the data
[2]. However, finding the shortest decision list to minimize
classification errors is in general an NP hard problem if there
is no decision list that fits the data perfectly (as is likely in
the case of class label noise). Thus in practice we must resort
to a greedy approximation strategy.

In this paper, we train decision lists in greedy fashion
using the algorithm outlined in Figure 1. The main idea is
that at each iteration, we select a feature that slices off a
subset of the data that is as close as possible to being purely
single-class as possible, while also being as large as possible.
We define a slice Si from S as the subset of examples x in S
that have xi = 1. We measure the goodness of a slice using
its entropy, H(Si) =

P

y∈{+1,−1} py,i(− log py,i) where py,i

is the probability that a randomly selected example from Si

has class label y.
This approach of using entropy as the purity function for

decision lists goes back to the CN2 algorithm by Clark and
Niblett [6]. However, for small slices the estimates of each
py,i may be severely under or over estimated which may
overly encourage the selection of small pure slices, rather
than a large nearly-pure slice. Thus, we use a Laplacian
correction term c in the estimation of these probabilities
to encourage the preference of large, relatively pure slices
over small, perfectly pure slices. (The value of c is found by
tuning on separate tuning data.) To our knowledge, this ap-
proach has not been used, although a Laplacian correction
for a similar purity function based on accuracy has been ap-
plied [5]. The inclusion of this correction term significantly
improved performance over a version of this algorithm with-
out the correction term in preliminary experiments.

Finally, we note that prior theoretical work on decision
lists and applications in natural language processing have

Algorithm 2: TWFS(S, G(), t)
Given: Training set S of labeled examples with boolean
features, global scoring method G(), number of features t to
select
Produce: Weight vector (w) with new weights for classifi-
cation.

For each feature f present in S do:

Compute G[f] := G(f)
winners[] := 0

For each x in S do:

Select feature f with highest G[f] and xf ̸= 0
winners[f] := winners[f] + 1

Return t top-scoring features f in winners[]

Figure 2: Tournament Winners Feature Selection
Algorithm.

focused on lists with complex conjunctions [24] in decision
nodes resulting in slow algorithms that include a beam-
search step at each iteration [32] and models as expressive
(and susceptible to over-fitting) as decision trees. Because
we do not require complex conjunctions for our small mod-
els, and furthermore optimize for the case of binary-valued
features, we are able to construct a fast training algorithm
for decision lists that exploits sparsity. This algorithm is
fast, as each of the t iterations may be completed in time
O(ns) where n is the number of examples remaining for the
iteration, and s is the maximum number of non-zero fea-
tures in any example. This efficient algorithm for decision
list training of sparse, high-dimensional data has not previ-
ously appeared.

trec05p1 trec07p ceas08-1

train set size 10,000 10,000 3,067
test set size 82,189 65,419 206,207

spam rate 0.57 0.67 0.80
human error rate 0.04 0.05 0.16

Table 1: Summary of the benchmark data sets.

4.2 TWFS: Tournament Winners
Feature Selection

As noted in Section 3.1, selecting features by a global
method such as global information gain may result in the
selection of many redundant features with little additional
value. This may be especially problematic in email spam
settings, in which spammers send many duplicate or near-
duplicate messages. In this case, the near-duplicate spams
will contain many redundant features with high information
gain (increasing with the number of near-duplications) that
could dominate a global information gain selection process.

To combat this effect, while maintaining the low cost of
a two-pass algorithm, we propose a method called Tourna-
ment Winners Feature Selection (TWFS). Unlike the deci-
sion list algorithm described above, TWFS does not itera-
tively partition the data, and is thus amenable to incremen-
tal updates.

The main idea of TWFS is to conduct feature selection
as a tournament, with each message representing a single
competition. Before the tournament begins, each feature is
given a global score (described below). For each message,
the features in that message are ranked by score, and the
top scoring feature in the message is considered the winner
of the competition. Ties are broken arbitrarily but con-
sistently. For the tournament, features are ranked by the
number of competitions they have won, and the top t of
these winners are selected as features for model training. In
our experiments with TWFS, we test both linear SVM and
regularized Logistic Regression for training models on the
features selected with TWFS.

Pseudo-code for the TWFS method is given in Figure 2.
We tried two methods for the global scoring function G().
The first was global information gain, and the second was
the magnitude of per-feature log-odds multipliers found by
training a Logistic Regression model (using a simple stochas-
tic gradient descent method). We found the log-odds multi-
pliers to give better performance in preliminary trials com-
pared with global information gain, and used this method
in all TWFS experiments reported in Section 6.

TWFS can be considered a single-vote election strategy,
and has several qualities of a desirable election method [10].
Among these, TWFS is monotonic: monotonic transforma-
tions of the global scores do not change the outcome of the
tournament. Additionally, TWFS is Pareto-optimal: if ev-
ery competition results in i beating j, then feature j is not
selected. Furthermore, in the absence of ties and when run
to exhaustion, TWFS satisfies the Condorcet criterion: if
there is feature i that wins every pairwise-preference com-
parison with other features, then feature i will be selected.
(Note that other features not winning every pairwise pref-
erence contest may also be selected.)

5. EXPERIMENTAL DATA
This section describes the benchmark data sets used for

experimental evaluation, with both gold-standard training
labels and noisy labels from non-expert humans. Because
human-labels were not available for two data sets, we ac-
quired them at low cost using Amazon’s Mechanical Turk.

5.1 Benchmark Data Sets
We performed experiments on three large, publicly avail-

able benchmark data sets: trec05p-1 [9], trec07p [8], and
ceas08-1.2 A summary of each data set is given in Table 1.
Although these data sets contain messages sent to several
recipients, the scope of these recipients is narrow enough in
each data set that we feel it mimics the personalization task
we aim to model in our experiments. (This intuition is fur-
ther supported by the similarity in benchmark results from
these corpora and the private, single-user corpora from the
TREC spam filtering benchmark evaluations [9, 7, 8]). Fur-
thermore, we use relatively small, fixed training sets rather
than the online filtering scenario to mimic the setting of
training on a limited number of messages, as in the typical
personalization setting.

For ceas08-1, the training set was composed of the train

messages, and the batch train/test filtering task is equiv-
alent to the pretrain-nofeedback task in the CEAS 2008
public corpus data set. For trec07p, the training set is com-
posed of the first 10,000 messages in the ordered corpus, and
the batch train/test filtering task is nearly equivalent to the
delay task from TREC 2007, with the exception that in the
TREC task filters were trained and evaluated incrementally
for these first 10,000 messages in addition to being evaluated
without additional training on the remaining test set. The
training set we use for trec05p-1 is composed of the first
10,000 messages in the ordered corpus, for repeatability.

We used separate tuning data for all parameter tuning
and initial experiments, drawn from the spamassassin cor-
pus.3 To simulate the effect of class label noise, we injected
synthetic class label noise by flipping the class label of each
message in the training set with probability p = 0.1. (The
specific train/test split for this data set and the training set
with synthetic class noise are available on request.)

5.2 Gathering Human Labels
Because we wished to assess the performance of mini-

filters trained using not only gold-standard label feedback,
but also noisy feedback from non-expert human users, it
was necessary for us to collect noisy human labels for each
training set. For all experiments involving human labels, the
(possibly noisy) human labels were used only for training;
gold-standard labels were used for test evaluation.

For the trec05p-1 data set, following the methodology
of [26], we sampled one human label per training message
from the labels provided to the SpamOrHam.org project4

organized by John Graham-Cummings. The rate of human
error in these labels and for the other hand-labeled training
sets are shown in Table 1, where error is with respect to the
gold-standard labels provided with the data sets.

2The ceas08-1 public corpus from the CEAS
2008 spam filtering challenge is available at
http://plg.uwaterloo.ca/∼gvcormac/ceascorpus
3Available at: http://www.spamassassin.org
4Formerly available at spamorham.org, derived labels avail-
able on request.

For both ceas08-1 and trec07p, it was necessary to ac-
quire human labels as none were previously available for
these data sets. For this data collection, we used human
raters working on Amazon’s Mechanical Turk.5 The email
messages were converted to HTML format using the MHonArc-
2.6.16 toolkit,6 with mailto links disabled and non-image
attachments removed for security.

For a given message, raters were asked to provide a rat-
ing of “Spam” or “Not Spam”. If the message was marked
as “Spam”, the raters were further asked to classify the
message into one of ten possible sub-categories (including
business proposal, adult content, and miracle cures).
The sub-categorization was intended both to assess inter-
annotator agreement and to make it difficult for any rater
to cheat by applying an existing spam filter to the mes-
sages. The rate of pay was $0.01 US per rating (plus $0.005
US commission); ratings were on average completed in 16
seconds per message.

For the 3,067 examples in ceas08-1, we asked for three
independent ratings per message, to allow measurement of
inter-annotator agreement, and required all raters working
on these messages to have a prior approval rating of 95%.7

These ratings were completed in roughly two hours. To
construct the final training set, we sampled one label at
random from each of the given labels for each message, for
consistency with the methodology of the trec05p-1 labels.

For the 10,000 examples in the trec07p data set, we asked
for only a single rating per message, but required raters to
have a prior approval rating of 98%. These ratings were
completed in roughly four hours. Note that there was a sig-
nificant gain in accuracy of the human ratings (with respect
to gold-standard ratings) through the application of a more
stringent prior approval rating for raters, at no additional
cost per rating, although some of this difference may be due
different degrees of difficulty of message evaluation in the
two corpora.

The human labels (including the results of the sub-categor-
ization) for both trec07p and ceas08-1 are freely available
for future researchers on request.

6. EXPERIMENTAL RESULTS
In this section, we report results from experiments com-

paring the mini-filter algorithms from Sections 3 and 4 on
the data sets described in Section 5. We also compare with
baseline methods using all features.

6.1 Methodology
Three scenarios are considered: the case where gold-standard

training feedback is given to filters for training, the case
where noisy labels from human are given to the filters for
training, and the case where filters are given noisy training
labels for training plus the output of a generic global fil-
ter as a feature to consider for training and classification.
In all scenarios, the gold-standard labels are used for test
evaluation.

The evaluation measure we use is the (1−ROCA)% mea-
sure (area above the ROC curve, expressed as a percent),

5http://www.mturk.com
6http://www.mhonarc.org
7Prior approval rating is a metric provided by the Mechan-
ical Turk system, noting the percentage of previous tasks
that the individual rater completed to the satisfaction of
the task requesters.

 0.05

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 50

 2 4 8 16 32 64

(1
-R

O
C

A
)%

 (
lo

w
er

 is
 b

et
te

r)

Number of Features in Model

trec05p-1 with Gold-Standard Training Labels

Limited-Depth Decision Trees
Logistic Regression with Global IG Feature Selection

Linear SVM with TWFS Feature Selection
Logistic Regression with TWFS Feature Selection

Boosting w/Early Stopping
Greedy Decision List

Baseline Logistic Regression: All Features
Baseline Linear SVM: All Features

 0.05

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 50

 2 4 8 16 32 64

(1
-R

O
C

A
)%

 (
lo

w
er

 is
 b

et
te

r)

Number of Features in Model

trec07p with Gold-Standard Training Labels

Limited-Depth Decision Trees
Logistic Regression with Global IG Feature Selection

Linear SVM with TWFS Feature Selection
Logistic Regression with TWFS Feature Selection

Boosting w/Early Stopping
Greedy Decision List

Baseline Logistic Regression: All Features
Baseline Linear SVM: All Features

 0.05

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 50

 2 4 8 16 32 64

(1
-R

O
C

A
)%

 (
lo

w
er

 is
 b

et
te

r)

Number of Features in Model

ceas08-1 with Gold-Standard Training Labels

Limited-Depth Decision Trees
Logistic Regression with Global IG Feature Selection

Linear SVM with TWFS Feature Selection
Logistic Regression with TWFS Feature Selection

Boosting w/Early Stopping
Greedy Decision List

Baseline Logistic Regression: All Features
Baseline Linear SVM: All Features

Figure 3: Results for Mini-Filters and Benchmark
Filters using Gold Standard Feedback

standard from the TREC benchmark evaluations for email
spam filtering [9]. This measure may be interpreted as the
percent chance that a randomly selected ham message will
be incorrectly scored as “more spammy” than a randomly
selected spam message. A completely random classifier is ex-
pected to give a (1−ROCA)% score of 50.0, while a perfect
set of classifications would yield a score of 0.

As described in Section 2.2, we use a feature space of
binary 4-mers drawn from the first 2500 characters of each
message for all tests. Preliminary experiments using bag-of-
words features showed qualitatively similar results.

For both short decision trees and boosting with early stop-
ping, we used the fest package by Nikos Karampatziakis.8

We used our own implementation of the decision list al-
gorithm given in Section 4.1, with the c parameter set to 20
by tuning on the spamassassin tuning data.

We tested both linear SVM and regularized Logistic Re-
gression with both the global information gain feature selec-
tion, and the TWFS method given in Section 4.2. For linear
SVM, we used a setting of the C = 0.05 found by tun-
ing on spamassassin data; we tested both the SVM-light

and libsvm packages with linear kernel, and found no sig-
nificant differences between them in terms of classification
performance. Results reported here are for the SVM-light

package [16]. The Logistic Regression package we used for
these experiments was lr trirls [18], with default param-
eters. We also tested a Naive Bayes classifier in conjunction
with both global information gain and TWFS, but found
that the results were not competitive and do not report the
results here.

6.2 Baseline Methods
We include two baseline methods to determine how well

a strong classifier would perform on these data sets, trained
in batch mode using all features. These baseline methods
were SVM using all features and Logistic Regression using
all features, both with L2-norm regularization. The regular-
ization parameter C was found to give best results with a
value of 0.05 for both methods in tuning trials. We used the
SVM-light linear SVM, and the liblinear L2-norm regu-
larized implementation of Logistic Regression [12] for these
trials.

A Naive Bayes classifier was also tested on all features as
an additional baseline. This classifier gave results roughly
an order of magnitude worse than the Logistic Regression
baseline, and is not included in the reported results.

6.3 Goldstandard Label Feedback
The first scenario tested used gold-standard labels for

training and testing. Results for these experiments are given
in Figure 3; note the log-log scale for all graph results in this
paper. (The baseline methods of Logistic Regression with
all features and linear SVM with all features both gave per-
formance levels of 0.01 on trec07p, which is below the range
displayed on the graph.)

There are several observations to make. First, the overall
performance of the mini-filters is surprisingly strong consid-
ering that they are using so few features. As a comparison
point, for trec07p, the best performing mini-filters (TWFS
using 64 features) gave what would have been median perfor-
mance at TREC 2007 on the nearly identical delay learning
task, out of 36 entrants.

8http://www.cs.cornell.edu/∼nk/fest/

 0.05

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 50

 2 4 8 16 32 64

(1
-R

O
C

A
)%

 (
lo

w
er

 is
 b

et
te

r)

Number of Features in Model

trec05p-1 with Noisy Training Labels

Limited-Depth Decision Trees
Logistic Regression with Global IG Feature Selection

Linear SVM with TWFS Feature Selection
Logistic Regression with TWFS Feature Selection

Boosting w/Early Stopping
Greedy Decision List

Baseline Logistic Regression: All Features
Baseline Linear SVM: All Features

 0.05

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 50

 2 4 8 16 32 64

(1
-R

O
C

A
)%

 (
lo

w
er

 is
 b

et
te

r)

Number of Features in Model

trec07p with Noisy Training Labels

Limited-Depth Decision Trees
Logistic Regression with Global IG Feature Selection

Linear SVM with TWFS Feature Selection
Logistic Regression with TWFS Feature Selection

Boosting w/Early Stopping
Greedy Decision List

Baseline Logistic Regression: All Features
Baseline Linear SVM: All Features

 0.05

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 50

 2 4 8 16 32 64

(1
-R

O
C

A
)%

 (
lo

w
er

 is
 b

et
te

r)

Number of Features in Model

ceas08-1 with Noisy Training Labels

Limited-Depth Decision Trees
Logistic Regression with Global IG Feature Selection

Linear SVM with TWFS Feature Selection
Logistic Regression with TWFS Feature Selection

Boosting w/Early Stopping
Greedy Decision List

Baseline Logistic Regression: All Features
Baseline Linear SVM: All Features

Figure 4: Results for Mini-Filters and Benchmark
Filters using Noisy (Human) Training Labels

Both decision lists and boosting with early stopping achieve
strong levels of performance with very few features, getting
most of the benefit with only eight features in most cases and
then reaching a performance plateau. Examining the models
learned, it appears that both methods stopped finding use-
ful features to add after ten or twenty iterations. In the case
of the decision lists, this was because all of the examples had
already been covered, and in the case of boosting the algo-
rithm continued to add the same feature ad infinitum with
near zero weight. (We tested up to 1000 iterations to confirm
this pattern.) The greedy forward-selection methods used
by both algorithms appears to be limited, paradoxically, by
achieving too much success in early rounds. Bagging may
be a way to gain additional benefit at t = 32 and t = 64; we
will investigate this possibility in future work.

In contrast, the TWFS method gives results that are more
than an order of magnitude poorer in early rounds, but
continues to benefit from the addition of features through
t = 64, and surpasses the greedy methods at these later iter-
ations on both trec07p and ceas08-1. Global information
gain lagged behind TWFS somewhat, but still gave surpris-
ingly strong performance at t = 64.

Another surprise to us was the poor performance of the
limited depth decision trees, whose performance was terrible
on trec05p-1 and ceas08-1 (although strong on trec07p

with 8 or fewer features), often getting worse with added
features. We ascribe this poor performance to overfitting of
the data enabled by the expressivity of the hypothesis class,
even at these limited tree depths.

6.4 Human Label Feedback
In our second set of experiments, we used the noisy human

labels for training, and evaluated on the gold-standard labels
for testing. These results are shown in Figure 4.

The striking result of these experiments is that, on these
more realistic training labels, the mini-filters appear to be
much more noise-tolerant than the baseline methods of lin-
ear SVM and regularized Logistic Regression using all fea-
tures, despite the heavy regularization employed by both
of these methods with C = 0.05. On both trec05p-1 and
ceas08-1, the decision list, boosting with early stopping,
and TWFS mini-filters actually exceed the performance of
the linear SVM using all features, and are not far off the
slightly better performance of regularized Logistic Regres-
sion. Furthermore, the performance of boosting with early
stopping was actually improved by the noisy labels in trec07p;
we conjecture that this improvement was due to the noisy la-
bels acting as a deterrent to overly-aggressive feature weight-
ing in the early boosting rounds seen with the gold-standard
labels. In general, the noise-tolerance of the mini-filters may
be explained in terms of their lower VC dimension [22]. Be-
cause the models are less expressive, they are less vulnerable
to over-fitting of noise.

Note also that global information gain performs relatively
more poorly than the other mini-filter methods in the pres-
ence of noisy labels, and the short decision trees continue to
show poor performance.

 0.05

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 50

 2 4 8 16 32 64

(1
-R

O
C

A
)%

 (
lo

w
er

 is
 b

et
te

r)

Number of Features in Model

trec05p-1 with Noisy Training Labels and Generic Global Filter

Limited-Depth Decision Trees
Logistic Regression with Global IG Feature Selection

Linear SVM with TWFS Feature Selection
Logistic Regression with TWFS Feature Selection

Boosting w/Early Stopping
Greedy Decision List

Baseline Logistic Regression (All Features)
Baseline Linear SVM (All Features)

Baseline SpamAssassin (Live)

 0.05

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 50

 2 4 8 16 32 64

(1
-R

O
C

A
)%

 (
lo

w
er

 is
 b

et
te

r)

Number of Features in Model

trec07p with Noisy Training Labels and Generic Global Filter

Limited-Depth Decision Trees
Logistic Regression with Global IG Feature Selection

Linear SVM with TWFS Feature Selection
Logistic Regression with TWFS Feature Selection

Boosting w/Early Stopping
Greedy Decision List

Baseline Logistic Regression (All Features)
Baseline Linear SVM (All Features)

Baseline SpamAssassin (Live)

 0.05

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 50

 2 4 8 16 32 64

(1
-R

O
C

A
)%

 (
lo

w
er

 is
 b

et
te

r)

Number of Features in Model

ceas08-1 with Noisy Training Labels and Generic Global Filter

Limited-Depth Decision Trees
Logistic Regression with Global IG Feature Selection

Linear SVM with TWFS Feature Selection
Logistic Regression with TWFS Feature Selection

Boosting w/Early Stopping
Greedy Decision List

Baseline Logistic Regression (All Features)
Baseline Linear SVM (All Features)

Baseline SpamAssassin (Live)

Figure 5: Results for Mini-Filters and Benchmark
Filters using Noisy (Human) Training Labels, and
Output of Generic Global Filter

6.5 MiniFilters Augmenting a
Generic Global Filter

Our final set of experiments was aimed at investigating
one natural application of mini-filters, in which a personal-
ized mini-filter is used to augment the accuracy of a generic,
global filter.

In these experiments, the live SpamAssassin email filter
running on the University of Waterloo email system was
used as the generic global filter. This system-level filter
was not trained on the training data in these tasks, and
was not otherwise specially adapted to these data sets. The
performance of this global filter without a mini-filter is given
as an added baseline in the results reported in Figure 5.

To combine the generic global filter with the mini-filters,
we tested two methods: using the output of the generic fil-
ter as an additional real-valued feature in the feature vector,
and fusing the output of the mini-filter with the output of
the global filter. All methods except the decision lists (which
ran only binary features) gave better performance using the
global output as a feature. The decision list gave better per-
formance when its output was fused with the global filter’s
output, using p = d+cg, where p is the final score for a par-
ticular example, d is the score from the decision list, g is the
score from the global filter, and c is a constant (for these ex-
periments, set to 0.1 by tuning with a linear threshold unit
on the trec05p-1 training data).

Looking at the results of these augmented filters (Fig-
ure 5), the first thing we notice is that combination of a good
mini-filter and the generic global filter gives much improved
results over either filter in isolation. Indeed, for trec05p-1

and ceas08-1, the best of these combinations equal the per-
formance of regularized Logistic Regression and surpass the
linear SVM trained on all features.

This is an important result: lightweight personalization in
conjunction with a non-personalized global filter is able to
match the performance of the heavyweight personalization
given by the baseline methods.

7. RELATED WORK
The area of lightweight personalization for spam filtering

has received previous attention by Chang et al. [4], who used
a partitioned logistic regression scheme to train global and
personalized components together. The personalized com-
ponents in this paper were essentially equivalent to giving
a unique bias variable to each user; this approach reduced
misclassification of grey mail significantly. Our approach
differs by allowing more fine-grained personalization while
maintaining lightweight cost. Furthermore, our approach is
not limited to adjusting a single bias parameter (showing
more or less tolerance to grey mail), but may conceivably
used for more specific learning tasks such as personalized
foldering and prioritization of emails.

Heavyweight solutions to personalized spam filtering have
been investigated previously as well. Segal compared a sys-
tem deploying a large number of personalized filters (using
a large number of features) to a single global filtering sys-
tem, and found that the personalized filters (using Naive
Bayes) fared poorly in comparison to the global model.[27]
In this work, it was also found that these heavyweight per-
sonalized filters were able to augment the performance of the
global model. Our work follows along these lines, but uses
lightweight mini-filters for personalization at low cost. Fur-

thermore, in our experiments, the personalized mini-filters
tended to out-perform the generic SpamAssassin filter used
a global filter, but were not always competitive with heavy-
weight personalized filters using all features and regularized
Logistic Regression.

Weinberger et al. took a different approach to personaliza-
tion of email spam filtering, training a single model on both
global features from all models, and user-specific features
drawn from the cross product of user identification features
and features from a given email.[30] To avoid a combinatorial
explosion in the size of the feature set, they employ a fea-
ture hashing scheme for randomized dimensionality reduc-
tion. The use of mini-filters may be seen as a more modular
(and perhaps more interpretable) approach to lightweight
personalization.

Finally, the effectiveness of ensemble methods for spam
filtering, such as in the SpamGuru system of Segal et al.
[28], and the filter-fusion methods of Lynam and Cormack
[20], also suggest that the use of mini-filters to create per-
sonalized ensembles from a fixed set of diverse filters may
be a promising area for future work.

8. CONCLUSIONS
In this paper, we set out to determine if effective mini-

filters could be trained for email spam filtering, using a
drastically reduced feature set. The experimental results
presented suggest that several methods, including boosting
with early stopping, greedy decision lists, and TWFS meth-
ods all give effective, low-cost solutions to this problem. Fur-
thermore, the initially appealing ideas of global information
gain or decision trees of limited depth are shown to be less
than ideal, especially under conditions of class label noise.
We believe that the appropriate use of such mini-filters is
in a scenario of mass personalization, including situations
in which a generic global filter may be augmented with a
lightweight personalized model.

Despite these encouraging preliminary results, there is sig-
nificant future work to be done. Most of the successful al-
gorithms presented in this paper operate most naturally in
a batch train/test setting, rather than an online setting.
Mini-filters that could be updated incrementally would be
preferred. Furthermore, it is our hope that the low cost
of effective mini-filters may open new avenues for appli-
cation at scale, including automated personalized foldering
and prioritization systems, or deployment in other resource-
constrained settings such as hand-held devices.

9. REFERENCES
[1] J. Bi, K. Bennett, M. Embrechts, C. Breneman, and

M. Song. Dimensionality reduction via sparse support
vector machines. J. Mach. Learn. Res., 3, 2003.

[2] A. Blum. On-line algorithms in machine learning. In
In Proceedings of the Workshop on On-Line
Algorithms, Dagstuhl, 1998.

[3] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, New York, NY, USA,
2004.

[4] M. Chang, W. Yih, and R. McCann. Personalized
spam filtering for gray mail. In Proceedings of the Fifth
Conference on Email and Anti-Spam (CEAS), 2008.

[5] P. Clark and R. Boswell. Rule induction with CN2:
Some recent improvements. In EWSL-91: Porceedings

of the European Working Session on Machine
Learning, 1991.

[6] P. Clark and T. Niblett. The CN2 induction
algorithm. Machine Learning, 3, 1989.

[7] G. V. Cormack. TREC 2006 spam track overview. In
TREC 2006: Proceedings of the The Sixteenth Text
REtrieval Conference, 2006.

[8] G. V. Cormack. TREC 2007 spam track overview. In
TREC 2007: Proceedings of the The Sixteenth Text
REtrieval Conference, 2007.

[9] G. V. Cormack and T. R. Lynam. TREC 2005 spam
track overview. In The Fourteenth Text REtrieval
Conference (TREC 2005) Proceedings, 2005.

[10] L. F. Cranor. Delcared-strategy voting: an instrument
for group decision-making. Ph.D. Thesis, Washington
University, 1996.

[11] S. C. Deerwester, S. T. Dumais, T. K. Landauer, and
G. W. F. a nd Richard A. Harshman. Indexing by
latent semantic analysis. Journal of the American
Society of Information Science, 41(6):391–407, 1990.

[12] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. Liblinear: A library for large linear
classification. J. Mach. Learn. Res., 9, 2008.

[13] Y. Freund and R. E. Schapire. Experiments with a
new boosting algorithm. In In Proceedings of the
Thirteenth International Conference on Machine
Learning, 1996.

[14] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. J. Mach. Learn. Res., 3, 2003.

[15] T. Hofmann. Unsupervised learning by probabilistic
latent semantic analysis. Mach. Learn., 42(1-2), 2001.

[16] T. Joachims. Making large-scale SVM learning
practical. Advances in Kernel Methods - Support
Vector Learning, B. Scholkopf and C. Burges and A.
Smola (ed.), MIT-Press, 1999.

[17] R. Kohavi and G. H. John. Wrappers for feature
subset selection. Artif. Intell., 97(1-2), 1997.

[18] P. Komarek and A. W. Moore. Making logistic
regression a core data mining tool with tr-irls. In
ICDM ’05: Proceedings of the Fifth IEEE
International Conference on Data Mining, 2005.

[19] J. Langford, L. Li, and T. Zhang. Sparse online
learning via truncated gradient. In NIPS 2008: Neural
Information Processing Systems, 2008.

[20] T. Lynam, G. Cormack, and D. Cheriton. On-line
spam filter fusion. In SIGIR ’06: Proceedings of the
29th annual international ACM SIGIR conference on
Resea rch and development in information retrieval,
pages 123–130, 2006.

[21] A. McCallum, X. Wang, and A. Corrada-Emmanuel.
Topic and role discovery in social networks with
experiments on enron and academic email. Journal of
Artificial Intelligence Research, 30, 2007.

[22] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[23] M. Palatucci and A. Carlson. On the chance
accuracies of large collections of classifiers. In ICML
’08: Proceedings of the 25th international conference
on Machine learning, 2008.

[24] R. L. Rivest. Learning decision lists. In Machine
Learning, 1987.

[25] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth.

The author-topic model for authors and documents.
In AUAI ’04: Proceedings of the 20th conference on
Uncertainty in artificial intelligence, 2004.

[26] D. Sculley and G. V. Cormack. Filtering spam in the
presence of noisy user feedback. In Proceedings of the
Fifth Conference on Email and Anti-Spam (CEAS),
2008.

[27] R. Segal. Combining global and personal anti-spam
filtering. In In Proceedings of the Fourth Conference
on E-mail and Anti-Spam (CEAS), 2007.

[28] R. Segal, J. Crawford, J. Kephart, and B. Leiba.
Spamguru: An enterprise anti-spam filtering system.
In In Proceedings of the First Conference on E-mail
and Anti-Spam (CEAS), 2004.

[29] D. Skillicorn. Understanding Complex Datasets: Data
Mining with Matrix Decompositions. Chapman and
Hall, 2007.

[30] K. Weinberger, A. Dasgupta, J. Attenberg,
J. Langford, and A. Smola. Feature hashing for large
scale multitask learning, 2009.

[31] I. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques, 2nd ed.
Morgan Kaufman, 2005.

[32] D. Yarowsky. Hierarchical decision lists for word sense
disambiguation. In Computers and the Humanities,
1999.

[33] T. Zhang and B. Yu. Boosting with early stopping:
convergence and consistency. Annals of Statistics, 33,
2005.

