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Abstract

The choice of the kernel is critical to the success
of many learning algorithms but it is typically left
to the user. Instead, the training data can be used
to learn the kernel by selecting it out of a given
family, such as that of non-negative linear combi-
nations ofp base kernels, constrained by a trace
or L1 regularization. This paper studies the prob-
lem of learning kernels with the same family of
kernels but with anL2 regularization instead, and
for regression problems. We analyze the prob-
lem of learning kernels with ridge regression. We
derive the form of the solution of the optimiza-
tion problem and give an efficient iterative algo-
rithm for computing that solution. We present a
novel theoretical analysis of the problem based
on stability and give learning bounds for orthog-
onal kernels that contain only an additive term
O(

√
p/m) when compared to the standard ker-

nel ridge regression stability bound. We also re-
port the results of experiments indicating thatL1

regularization can lead to modest improvements
for a small number of kernels, but to performance
degradations in larger-scale cases. In contrast,L2

regularization never degrades performance and
in fact achieves significant improvements with a
large number of kernels.

1 Introduction

Kernel methods have been successfully used in a variety of
learning tasks (Schölkopf & Smola, 2002; Shawe-Taylor
& Cristianini, 2004) with the best known example of sup-
port vector machines (SVMs) (Boser et al., 1992; Cortes
& Vapnik, 1995; Vapnik, 1998). Positive definite sym-
metric (PDS) kernels specify an inner product in an im-
plicit Hilbert space where large-margin methods are used
for learning and estimation.

The choice of the kernel is critical to the success of the al-
gorithm but in standard frameworks it is left to the user. A

weaker commitment can be required from the user when in-
stead the kernel islearned from data. One can then specify
a family of kernels and let a learning algorithm use the data
to select both the kernel out of this family and determine
the prediction hypothesis.

The problem of learning kernels has been investigated in a
number of recent publications including (Lanckriet et al.,
2004; Micchelli & Pontil, 2005; Argyriou et al., 2005; Ar-
gyriou et al., 2006; Srebro & Ben-David, 2006; Ong et al.,
2005; Lewis et al., 2006; Zien & Ong, 2007; Jebara, 2004;
Bach, 2008). Some of this previous work examines fami-
lies of Gaussian kernels (Micchelli & Pontil, 2005) or hy-
perkernels (Ong et al., 2005). But, the most common fam-
ily of kernels considered is that of non-negative combina-
tions of some fixed kernels constrained by a trace condition,
which can be viewed as anL1 regularization.

This paper studies the problem of learning kernels with the
same family of kernels but with anL2 regularization in-
stead. Our analysis focuses on the regression setting also
examined by Micchelli and Pontil (2005) and Argyriou
et al. (2005). More specifically, we will consider the prob-
lem of learning kernels in kernel ridge regression, KRR,
(Saunders et al., 1998). Our study is motivated by ex-
periments carried out with a number of datasets, includ-
ing those used by previous authors (Lanckriet et al., 2004;
Cortes et al., 2008), in some of which using anL2 regular-
ization turned out to be significantly beneficial and other-
wise never worse than usingL1 regularization. We report
some of these results in the experimental section.

We also give a novel theoretical analysis of the problem
of learning kernels in this context. A theoretical study
of the problem of learning kernels in classification was
previously presented by Srebro and Ben-David (2006) for
SVMs and other similar classification algorithms. These
authors proved that previous bounds given by Lanckriet
et al. (2004) and Bousquet and Herrmann (2002) for the
problem of learning kernels were vacuous. They further
gave novel generalization bounds which, for linear com-
binations of kernels withL1 regularization, have the form
R(h) ≤ R̂(h) + Õ(

√
(p + 1/ρ2)/m), whereR(h) is the



true error of a classifierh, R̂(h) its empirical error,p the
number of kernels combined,m the sample size, andρ the
margin of the learned classifier (the notationÕ hides loga-
rithmic factors in its arguments). Since the standard bound
for SVMs has the formR(h) ≤ R̂(h) + Õ(

√
1/ρ2)/m),

this suggests that, up to logarithmic factors, the complexity
term of the bound is only augmented with an additive term
varying with p, in contrast with the multiplicative factor
appearing in previous bounds, e.g., that of Micchelli and
Pontil (2005) for the family of Gaussian kernels.

We give novel learning bounds with similar favorable guar-
antees for KRR withL2 regularization. The complexity
term of our bound as a function ofm andp is of the form
O(1/

√
m+

√
p/m) and is therefore only augmented by an

additive termO(
√

p/m) with respect to the standard stabil-
ity bound for KRR, with no additional logarithmic factor.
Our bound is proven for the case where the base kernels are
orthogonal. This assumption holds for the experiments in
which theL2 regularization yields significantly better re-
sults thanL1 but a similar, perhaps slightly weaker bound,
is likely to hold in the general case. Our bound is based
on a careful stability analysis of the algorithm for learning
kernels with ridge regression and thus directly relates to the
problem of learning kernels. A by-product of our analysis
is a somewhat tighter stability bound and thus generaliza-
tion bound for KRR.

The next two sections describe the optimization problem
for learning kernels with ridge regression and give the form
of its solution. We then present our stability analysis and
generalization bound, leaving to the appendix much of the
technical details. The last section briefly describes an iter-
ative algorithm for determining the solution of regression
learning problem that proved efficient in our experiments
and reports the results of our experiments with a number of
different datasets.

2 Optimization Problem

Let S = ((x1, y1), . . . , (xm, ym)) denote the training sam-
ple andy = [y1, . . . , ym]⊤ the vector of training set labels,
where(xi, yi) ∈ X×R for i ∈ [1, m], and letΦ(x) denote
the feature vector associated tox ∈ X . Then, in the primal,
the KRR optimization problem has the following form

min
w
‖w‖2 +

C

m

m∑

i=1

(w⊤Φ(xi)− yi)
2, (1)

whereC ≥ 0 is a trade-off parameter. For a fixed positive
definite kernel (PDS) functionK : X × X → R, the dual
of the KRR optimization problem (Saunders et al., 1998) is
given by:

max
α
−λα⊤α−α⊤Kα + 2α⊤y, (2)

whereK = (K(xi, xj))1≤i,j≤m is the Gram matrix asso-
ciated toK and whereλ = m/C. In the following, we will

denote byλ0 the inverse ofC, thus,λ = λ0m.

The idea of learning kernels is based on the principle of
structural risk minimization (SRM) (Vapnik, 1998). It con-
sists of selecting out of increasingly powerful kernels and
thus hypothesis setsH , the one minimizing the minimum
of a bound on the test error defined overH . Here, we
limit the search to kernelsK that are non-negative combi-
nations ofp fixed PDS kernelsKk, k ∈ [1, p], and that are
thereby guaranteed to be PDS, with anL2 regularization:
K = {∑p

k=1 µkKk : µ ∈ M}, whereM = {µ : µ ≥
0 ∧ ‖µ − µ0‖2 ≤ Λ2}, with µ = [µ1, . . . , µp]

⊤, µ0 > 0
a fixed combination vector, andΛ ≥ 0 a regularization pa-
rameter. In view of the multiplierΛ, we can assume, with-
out loss of generality, that the minimum component ofµ0

is one.

Based on the dual form of the optimization problem for
KRR, the kernel learning optimization problem can be for-
mulated as follows:

min
µ∈M

max
α
−λα⊤α−

p∑

k=1

µkα⊤Kkα

︸ ︷︷ ︸
µ⊤v

+2α⊤y, (3)

whereKk is the Gram matrix associated to the base ker-
nel Kk. It is convenient to introduce the vectorv =
[v1, . . . , vp]

⊤ wherevk = α⊤Kkα. Note that this de-
fines a convex optimization problem inµ, since the ob-
jective function is linear inµ and the pointwise maximum
overα preserves convexity, and sinceM is a convex set.
We refer in short by LKRR to this learning kernel KRR
procedure and denote byh the hypothesis it returns de-
fined byh(x) =

∑m
i=1 αiK(xi, x) for all x ∈ X , when

trained on the sampleS, whereK denotes the PDS kernel
K =

∑p
k=1 µkKk.

3 Form of the Solution

Theorem 1. The solution µ of the optimization problem
(3) is given by µ = µ0 + Λ v

‖v‖ with α the unique vector

verifying α = (K + λI)−1y.

Proof. By von Neumann’s (1937) generalized minimax
theorem, (3) is equivalent to its max-min analogue:

max
α
−λα⊤α + 2α⊤y + min

µ∈M
−µ⊤v, (4)

wherev = (α⊤K1α, . . . , α⊤Kpα)⊤. The Lagrangian of
the minimization problem isL = −µ⊤(v + β) + γ(‖µ−
µ0‖2−Λ2) with β ≥ 0 andγ ≥ 0 and the KKT conditions
are

∇µL = −(v + β) + 2γ(µ− µ0) = 0

∇βL = µ⊤β = 0⇒ (
v + β

2γ
+ µ0)

⊤β = 0

γ(‖µ− µ0‖2 − Λ2) = 0.



Note that ifγ = 0 then theL2 constraint is not met as an
equality, which cannot hold at the optimum. By inspecting
(3), it is clear that theµks would be chosen as large as
possible. Thus, the first equality impliesµ−µ0 = v+β

2γ , in

view of which the second gives−‖β‖2 = ( v

2γ + µ0)
⊤β.

Sincev ≥ 0, µ0 ≥ 0, γ ≥ 0 andβ ≥ 0, ( v

2γ + µ0)
⊤β is

non-negative, which implies−‖β‖2 ≥ 0 andβ = 0. The
third equality givesµ − µ0 = Λ v

‖v‖ . Problem 4 can thus
be rewritten as

max
α
−λα⊤α + 2α⊤y − µ⊤

0 v︸ ︷︷ ︸
standard KRR withµ

0
-kernelK0.

−Λ‖v‖. (5)

For v 6= 0, ∇α‖v‖ = 2
∑p

k=1
vk

‖v‖Kkα. Thus, dif-
ferentiating and setting to zero the objective function of
this optimization problem givesα = (K + λI)−1y, with

K =
∑p

k=1

(
µ0k + Λ vk

‖v‖µk

)
Kk =

∑p
k=1 µkKk.

4 Stability analysis

We will derive generalization bounds for LKRR using
the notion of algorithmic stability (Bousquet & Elisseeff,
2002). A learning algorithm is said to be (uniformly)β-
stable if the hypothesesh′ and h it returns for any two
training samples,S andS′, that differing by a single point
satisfy

∣∣[h′(x)−y]2−[h(x)−y]2
∣∣ ≤ β for any pointx ∈ X

labeled withy ∈ R. The stability coefficientβ is a function
of the sample sizem. Stability in conjunction with McDi-
armid’s inequality can lead to tight generalization bounds
specific to the algorithm analyzed (Bousquet & Elisseeff,
2002).

We analyze the stability of LKRR. Thus, we consider two
samples of sizem, S andS′, differing only by (xm, ym)
((x′

m, y′
m) in S′) and bound the|h′(x)−h(x)|. The analysis

is quite complex in this context and the standard convexity-
based proofs of Bousquet and Elisseeff (2002) do not read-
ily apply. This is because here, a change in a sample point
also changes the PDS kernelK, which in the standard case
is fixed.

Our proofs are novel and make use of the expression ofα

andµ supplied by Theorem 1, which can lead to tighter
bounds. In particular, the same analysis gives us a novel
and somewhat tighter bound on the stability of standard
KRR than the one obtained via convexity arguments (Bous-
quet & Elisseeff, 2002).

Fix x ∈ X . We shall denote by∆h(x) the difference
h′(x) − h(x) and more generally use the symbol∆ to ab-
breviate the difference between an expression depending
on S′ and one depending onS. We derive a bound on
∆h(x) = h′(x) − h(x) for LKRR. We denote byy′ the
vector of labels, byK ′ the kernel learned by LKRR, and
by µ′

k andµ′ the basis kernel coefficients and vector asso-
ciated to the sampleS′.

We will assume that the hypothesis set considered is
bounded, that is|h(x)−y(x)| ≤M for all x ∈ X , for some
M ≥ 0. This bound and the Lipschitz property of the loss
function implies a bound on∆(h(x) − y)2 ≤ 2M∆h(x).
We will also assume that the base kernels are bounded:
there existsκ0 ≥ 0 such that(

∑p
k=1 Kk(x, x)2)1/2 ≤ κ0

for all x ∈ X . This implies that for allx ∈ X , K(x, x) =∑p
k=1 µkKk(x, x) ≤ κ0‖µ‖ ≤ κ0(‖µ0‖ + Λ). Thus, we

can assume that there existsκ ≥ 0 such thatK(x, x) ≤ κ
for all x ∈ X .

Now, ∆h(x) can be written as∆h(x) = ∆Sh(x) +
∆Kh(x) to distinguish changes due to different samples
(x′

is vsxis) for a fixed kernel and those due to a different
kernelsK for a fixed sample:

∆Sh(x) =

mX

i=1

h

(

pX

k=1

µ
′
kKk(S′) + λI)−1

y
′
i

i

pX

k=1

µ
′
kKk(x′

i, x)

−
mX

i=1

h

(

pX

k=1

µ
′
kKk(S) + λI)−1

y

i

i

pX

k=1

µ
′
kKk(xi, x),

∆Kh(x) =
mX

i=1

h

(

pX

k=1

µ
′
kKk(S) + λI)−1

y
i

i

pX

k=1

µ
′
kKk(xi, x)

−
mX

i=1

h

(

pX

k=1

µkKk(S) + λI)−1
y

i

i

pX

k=1

µkKk(xi, x),

whereKk(S) (resp.Kk(S′)) is the kernel matrix generated
from S (resp. S′). We bound these two terms separately.
The main reason for this is that the term∆Sh(x) leads to
sparse expressions since the pointsxis in S andS′ differ
only by xm andx′

m. To bound∆Kh(x) other techniques
are needed.

In what follows, we denote byΦ a feature mapping asso-
ciated to kernelK and byΦ the matrix whose columns
areΦ(xi), i = 1, . . . , m. Similarly, we denote byΦ′ the
matrix whose columns areΦ(x′

i), i = 1, . . . , m, and for
k = 1, . . . , p, we denote byΦk a feature mapping associ-
ated with the base kernelKk and byΦk the matrix whose
columns areΦk(xi), i = 1, . . . , m.

4.1 Bound on∆Sh(x)

For the analysis of∆Sh(x), the kernel coefficientsµ′
k

are fixed. Here, we denote byK the kernel matrix of∑p
k=1 µ′

kKk over the sampleS, and byK′ the one over
S′. Now,h(x) can be expressed in terms ofΦ as follows:

h(x) = [Φα]⊤Φ(x) = y⊤(K + λI)−1Φ⊤Φ(x) (6)

= y⊤(Φ⊤Φ + λI)−1Φ⊤Φ(x). (7)

Theorem 2. Let λmin denote the smallest eigenvalue of
Φ′Φ′⊤. Then, the following bound holds for all x ∈ X:

|∆Sh(x)| ≤ 2κM

λmin + λ0m
. (8)



Proof. Using the general identity(Φ⊤Φ + λI)−1Φ⊤ =
Φ⊤(ΦΦ⊤ + λI)−1, we can write equation (7) as

h(x) = (Φy)⊤(ΦΦ⊤ + λI)−1Φ(x). (9)

Let U = (ΦΦ⊤ + λI) and denote byw⊤ the row
vector (Φy)⊤U−1. Now, we can write∆Sh(x) =
(∆Sw)⊤Φ′(x). Using the identity ∆S(U−1) =
−U−1(∆SU)U′−1, valid for all invertible matricesU and
U′, ∆Sw⊤ can be expressed as follows:

∆Sw⊤ = (∆SΦy)⊤U′−1 + (Φy)⊤∆S(U−1)

= (∆SΦy)⊤U′−1 − (Φy)⊤U−1(∆SU)U′−1.

We observe that

(∆SΦy) = ∆S(

mX

i=1

yiΦ(xi)) =

mX

i=1

(∆SyiΦ(xi))

= ∆S(ymΦ(xm)) and

(∆SU) = ∆S(
mX

i=1

Φ(xi)Φ(xi)
⊤) = ∆S(Φ(xm)Φ(xm)⊤).

Thus, we can write∆Sw⊤

=
h

∆S(ymΦ(xm))⊤ − (Φy)⊤U
−1∆S(Φ(xm)Φ(xm)⊤)

i

U
′−1

=
h

y
′
mΦ(x′

m)⊤ − ymΦ(xm)⊤ + (Φy)⊤U
−1Φ(x′

m)Φ(x′
m)⊤

− (Φy)⊤U
−1Φ(xm)Φ(xm)⊤

i

U
′−1

=
h

(y′
m − h(x′

m))Φ(x′
m) − (ym − h(xm))Φ(xm)

i⊤

U
′−1

.

Since for allx ∈ X , K(x, x) ≤ κ and|h(x)− y(x)| ≤M ,
we have‖Φ(x)‖ ≤ κ1/2 and‖(y′

m−h(x′
m))Φ(x′

m)−(ym−
h(xm))Φ(xm)‖ ≤ 2κ1/2M , thus

‖∆Sw⊤‖ ≤ 2κ1/2M‖U′−1‖. (10)

The smallest eigenvalue of(Φ′Φ′⊤+λI) is λmin+λ. Thus,

‖∆Sw⊤‖≤ 2κ1/2M
λmin+λ0m . Since‖Φ′(x)‖= K ′(x, x)≤ κ1/2,

|∆Sh(x)|≤ 2κM
λmin+λ0m .

Recall, ∆Sh(x) represents the variation due to sample
changes for a fixed kernel, thus, the bound given by the
theorem is precisely a bound on the stability coefficient of
standard KRR. This bound is tighter than the one obtained
using the techniques of Bousquet and Elisseeff (2002):
|∆Sh(x)| ≤ 2κM

λ0m . Also, sinceΦ′Φ′⊤ andK′ = Φ′⊤Φ′

have the same non-zero eigenvalues, whenλmin 6= 0, λmin

is the smallest non-zero eigenvalue ofK′, λ∗
min(K

′).

4.2 Bound on∆Kh(x)

Sinceh(x) =
∑m

i=1 αiK(xi, x), the variation inK can be
decomposed into the following sum:

∆Kh(x) =

m∑

i=1

(∆Kαi)K
′(x′

i, x)

︸ ︷︷ ︸
R

+

m∑

i=1

αi∆KK(x′
i, x)

︸ ︷︷ ︸
T

.

By the Cauchy-Schwarz inequality, for anyx′
i, x ∈ X ,

|K(x′
i, x)| ≤

√
K(x′

i, x
′
i)K(x, x) ≤ κ, thus the norm

of the vectorkx′ = [K(x′
1, x), . . . , K(x′

m, x)] is bounded
by κ
√

m and the first termR can be bounded straightfor-
wardly in terms of∆Kα: |R| ≤ κ

√
m‖∆Kα‖.

The second term can be written as follows

T =
mX

i=1

αi

pX

k=1

(∆µk)Kk(x′
i, x) =

pX

k=1

(∆µk)(Φkα)⊤Φk(x).

(11)
By Lemma 1 (see Appendix),∆µk can be expressed in
terms of the∆vks and thusT can be rewritten as

T = Λ

pX

k=1

»
∆vk

‖v′‖ − vk

Pp
i=1(vi + v′

i)∆vi

‖v‖‖v′‖(‖v‖ + ‖v′‖)

–

(Φkα)⊤

| {z }

V

Φk(x).

(12)
Note, in order to isolate the termV eachΦk must map to
the same feature space. This holds for the empirical kernel
map, or any orthogonal kernels as will be defined below. In
this expression, each∆vk can be written as a sum∆vk =
∆Kvk + ∆Svk, where

∆Kvk =y′⊤(K′ + λI)−1Kk(S′)(K′ + λI)−1y′ (13)

−y′⊤(K + λI)−1Kk(S′)(K + λI)−1y′ (14)

∆Svk =y′⊤(K + λI)−1Kk(S′)(K + λI)−1y′ (15)

−y⊤(K + λI)−1Kk(S)(K + λI)−1y. (16)

Let V = V1 + V2 whereV1 (resp. V2) is the expression
corresponding to∆K (resp. ∆S). We will denote byVk,
V1k andV2k each of the terms depending onk appearing in
their sum. The proof of the propositions giving bounds on
‖V1‖ and‖V2‖ are left to the appendix.

Proposition 1. For any samples S and S′ differing by one
point, the following inequality holds:

‖V1‖ ≤ 4Λ
√

κpm ‖∆Kα‖. (17)

Our bound onV2 holds fororthogonal base kernels.

Definition 1. Kernels K1, . . . , Kk are said to be orthogo-
nal if they admit feature mappings Φk : X 7→ F mapping
to the same Hilbert space F such that for all x ∈ X , and
i 6=j,

Φi(x)⊤Φj(x) = 0. (18)

This assumption is satisfied in particular by the n-gram
based kernels used in our experiments and more generally
by kernelsKk whose feature mapping can be obtained by
projecting the feature vectorΦ(x) of some kernelK on or-
thogonal spaces. Theconcatenation type kernels suggested
by Bach (2008) are also a special case of orthogonal ker-
nels.

Proposition 2. Assume that the base kernels Kk, k ∈ [1, p]
are orthogonal. Then, for any samples S and S′ differing



by one point, the following inequality holds:

‖V2‖ ≤
4ΛM

λ0m
. (19)

Combining the bounds onV1 andV2 gives

‖V ‖ ≤ 4Λ
√

κpm ‖∆Kα‖+
4ΛM

λ0m
.

∆Kα = −(K′ + λI)−1(∆K)α can be expressed in terms
of theVks as follows:

∆Kα = −(K′ + λI)−1

p∑

k=1

(VkΦk)⊤.

DecomposingVk as inVk = V1k + V2k, using the expres-
sion ofV1k from (24), and collecting all∆Kα terms to the
left hand side, leads to the following expression relating
∆Kα to theV2ks:

∆Kα = −Y−1
( p∑

k=1

(V2kΦk)⊤
)
, (20)

with Y = K′ + λI + Λ
∑p

k=1
Kk

‖v′‖αα⊤Qk, andQk =
[
Kk − vk

‖v‖

Pp
i=1

(vi+v′

i)Ki

‖v‖+‖v′‖

]
. αα⊤Qk has rank one since

αα⊤ is a projection on the line spanned byα and its trace
Tr[αα⊤Qk] = α⊤Qkα is non-negative:

α⊤Qkα = vk−
vk

‖v‖

∑p
i=1(v

2
i + v′ivi)

‖v‖+ ‖v′‖

≥ vk−
vk

‖v‖
‖v‖2 + ‖v′‖‖v‖
‖v‖ + ‖v′‖ = vk−vk =0,

using the Cauchy-Schwarz inequality. Thus, the eigen-
values ofαα⊤Qk are non-negative and since it has rank
one andKk is positive-semidefinite, the eigenvalues of
Kkαα⊤Qk are also non-negative. This implies that the
smallest eigenvalue ofY is at leastλ and that‖Y−1‖ ≤
1/(λ0m). Since‖∑p

k=1 V2kΦk‖ ≤ ‖V2‖
√

κm, this leads
to

‖V ‖ ≤ 4ΛM(4Λκp1/2/λ0 + 1)

λ0m
, (21)

and the following result.

Proposition 3. The uniform stability of LKRR can be
bounded as follows:

|∆(h(x)− y)2| ≤ 2M |∆h(x)| ≤ 2M
C0 + C1

√
p

λ0m
, (22)

with C0 = 2κM + 4ΛMκ1/2(κ/λ0 + 1) and C1 =
16Λ2Mκ3/2/λ0.

A direct application of the general stability bound (Bous-
quet & Elisseeff, 2002) or the application of McDiarmid’s
inequality yields the following generalization bound for
LKRR.

Theorem 3. Let h denote the hypothesis returned by LKRR
and assume that for for all x ∈ X , |h(x)−y(x)| ≤ M .
Then, for any δ>0, with probability at least 1−δ,

R(h) ≤ R̂(h) + 2β +
(
4mβ + M

)
√

log 1
δ

2m
,

where β = O(1/m) + O(
√

p/m) is the stability bound
given by Proposition 3.

Thus, in view of this theorem our generalization bound has
the formR(h) ≤ R̂(h) + O(1/

√
m +

√
p/m).

5 Experimental Results

In this section we examine the performance ofL2-
regularized kernel-learning on a number of datasets.

Problem (5) is a convex optimization problem and can thus
be solved using standard gradient descent-type algorithms.
However, the form of the solution provided by Theorem 1,
α = (K + λI)−1, motivates an iterative algorithm that
proved to be significantly faster in our experiments. The
following gives the pseudocode of the algorithm, where
η ∈ (0, 1) is an interpolation parameter andǫ > 0 a con-
vergence error. In our experiments, the number of iterations

Algorithm 1 Interpolated Iterative Algorithm

Input: Kk, k ∈ [1, p]
α′ ← (K0 + λI)−1y

repeat
α← α′

v← (α⊤K1α, . . . , α⊤Kpα)⊤

µ← µ0 + Λ v

‖v‖

α′ ← ηα + (1 − η)(K(α) + λI)−1y

until ‖α′ −α‖ < ǫ

needed on average for convergence was about 10 to 15 with
η = 1/2. When using a small number of kernels with few
data points, each iteration took a fraction of a second, while
when using thousands of kernels and data-points each iter-
ation took about a second. In view of the space limitations,
we do not present a bound on the number of iterations. But,
it should be clear that bounding techniques similar to what
we used for the stability analysis can be used to estimate the
Lipschitz constant of the functionf : α 7→ (K + λI)−1y,
which yields directly a bound on the number of iterations.

We did two series of experiments. First, we validated
our experimental set-up and our implementation for Algo-
rithm 1 and previous algorithms for L1 regularization by
comparing our results against those previously presented
by Lanckriet et al. (2004), which use a small number of
base kernels and relatively small data sets. We then fo-
cused on a larger task consisting of learning sequence ker-
nels using thousands of base kernels as described by Cortes
et al. (2008).



1000 2000 3000 4000 5000 6000

0.52

0.54

0.56

0.58

0.6

0.62

Reuters (acq)

R
M

S
E

 

 

1000 2000 3000 4000 5000 6000
0.95

1

1.05

1.1

# of bigrams

R
M

S
E

 / 
ba

se
lin

e 
er

ro
r

baseline
L

2

L
1

0 1000 2000 3000 4000
1.35

1.4

1.45

1.5

R
M

S
E

Kitchen

 

 

baseline
L

1

L
2

0 1000 2000 3000 4000

0.98

1

1.02

1.04

# of bigrams
R

M
S

E
 / 

ba
se

lin
e 

er
ro

r

0 2000 4000 6000
1.44

1.46

1.48

1.5

1.52

1.54

1.56
DVD

 

 

baseline
L

1

L
2

0 2000 4000 6000

0.98

1

1.02

1.04

# of bigrams

0 2000 4000 6000

1.5

1.55

1.6
Books

 

 

baseline
L

1

L
2

0 2000 4000 6000

0.98

1

1.02

1.04

# of bigrams

Figure 1: RMSE error reported for the Reuters and various sentiment analysis datasets (kitchen, DVDs and electronics).
The upper plots show the absolute error, while the bottom plots show the error after normalizing by the baseline error (error
bars are±1 standard deviation).

5.1 UCI datasets

To verify our implementation, we first evaluated Algorithm
1 on thebreast, ionosphere, sonar andheart datasets from
the UCI ML Repository which were previously used for
experimentation by Lanckriet et al. (2004). In order to use
KRR for the classification datasets, we train with±1 labels
and examined both root mean squared error (RMSE) with
respect to these target values and the misclassification rate
when using the sign of the learned function to classify the
test set. We found that both measures of error give similar
comparative results. We use exactly the same experimen-
tal setup as (Lanckriet et al., 2004), with three kernels: a
Gaussian, a linear, and a second degree polynomial kernel.

For comparison, we consider the best performing single
kernel of these three kernels, the performance of an evenly-
weighted sum of the kernels, and the performance of an
L1-regularized algorithm (similar to that of Lanckriet et
al. (2004), however using the KRR objective).

Our results on these datasets validate our implementations
by reaffirming the results from Lanckriet et al. (2004). Us-
ing kernel-learning algorithms (whetherL1 or L2 regular-
ized) never does worse than selecting the best single kernel
via costly cross-validation. However, our experiments also
confirm the findings by Lanckriet et al. (2004) that kernel-
learning algorithms for this setting never do significantly
better. All differences are easily within one standard devi-
ation, with absolute misclassification rate of: 0.03 (breast),
0.08 (ionosphere), 0.16 (sonar) and 0.17 (heart). As our
next set of experiments will show, when the number of
base kernels is substantially increased, this picture changes
completely. The performance of theL2 regularized kernel
is significantly better than the baseline of evenly-weighted
sum of kernels, that in turn performs significantly better
than theL1 regularized kernel.

5.2 Sequence-based datasets

In our next experiments, we also make use of one of the
datasets from (Lanckriet et al., 2004), the ACQ task of the

Reuters-21578 dataset, though we learn with different base
kernels. Using the ModApte split we produce 3,299 test
examples and 9,603 training examples from which we ran-
domly subsample 2,000 points to train with over 20 trials.

For features we use theN most frequently occurring bi-
grams, whereN is indicated in Figure 1. As suggested in
Cortes et al. (2008), we useN rank-1 base kernels, with
each kernel corresponding to a particular n-gram. Thus, if
vi ∈ R

m is the vector of the occurrences of theith n-gram
across the training data, then theith base kernel matrix is
defined asKi = viv

⊤
i . As is common for KRR, we also in-

clude a constant feature, and thus kernel, which acts as an
offset. Note that these base kernels are orthogonal, since
eachΦi is the projection onto a single distinct component
of Φ. The parametersλ andΛ are chosen via 10-fold cross
validation on the training data.

We compare the presentedL2-regularized algorithm to
both a baseline of the evenly-weighted sum of all the base
kernels, as well as to theL1-regularized method of Cortes
et al. (2008) (Figure 1). The results illustrate that for large-
scale kernel-learning, kernel selection withL2 regulariza-
tion improves performance, and thatL1 regularization can
in fact be harmful. Note, that all base kernels here repre-
sent orthogonal features, thus, a sparse solution that elim-
inates a subset of the base kernels may negatively impact
performance. Since Lanckriet et al. (2004) do not per-
form learning for large number of base kernels, we cannot
directly compare results for this task. However, the best
error rate we obtain by classifying the test set by the sign
of theL1-regularized learner is comparable to that reported
by Lanckriet et al. (2004).

For our last experiments we consider the task of sentiment
analysis of reviews within several domains: books, dvds,
and kitchen appliances (Blitzer et al., 2007). Each domain
consists of 2,000 product reviews, each with a rating be-
tween 1 and 5. We create 10 random50/50 splits of the
data into a training and test set. For features we again use
theN most frequently occurring bigrams and for basis ker-



nels again useN rank-1 kernels, see Figure 1. The results
on these dataset amplify the result from the Reuters ACQ
dataset:L1 regularization can negatively impact the perfor-
mance for large number of kernels, whileL2-regularization
improve the performance significantly over the baseline
over the evenly-weighted sum of kernels.

6 Conclusion

We presented an analysis of learning kernels with ridge re-
gression withL2 regularization, including an efficient it-
erative algorithm. Our generalization bound suggests that
with even a relatively large number of orthogonal kernels
the estimation error is not significantly increased. This fa-
vorable theoretical situation is also corroborated by some
of our empirical results. Our analysis was based on the sta-
bility of LKRR. We do not expect similar results to hold
for L1 regularization sinceL1 typically does not ensure the
same uniform stability guarantees.

A Expression of∆µk

Lemma 1. For any samples S and S′, ∆µk can be ex-
pressed in terms of ∆vk as follows:

∆µk = Λ

[
∆vk

‖v′‖ −
vk

∑p
i=1(vi + v′i)∆vi

‖v‖‖v′‖(‖v‖+ ‖v′‖)

]
. (23)

Proof. By definition ofµk, we can write

∆µk = Λ

»
v′

k

‖v′‖ − vk

‖v‖

–

= Λ

»
v′

k − vk

‖v′‖ − vk‖v′‖ − vk‖v‖
‖v‖‖v′‖

–

= Λ

»
v′

k − vk

‖v′‖ − vk∆(‖v‖)
‖v‖‖v′‖

–

.

Observe that:∆(‖v‖) = ∆(‖v‖2)
‖v‖+‖v′‖ =

∆(
Pp

i=1
v2

i )

‖v‖+‖v′‖

=
Pp

i=1
∆(vi)(vi+v′

i)

‖v‖+‖v′‖ . Plugging in this identity in the previ-
ous one yields the statement of the lemma.

B Proof of Proposition 1

Proof. The terms∆Kvk appearing inV1 have the follow-
ing more explicit expression:

∆Kvk = ∆K(α⊤Kk(S′)α)

= ∆K(α⊤)Kk(S′)α′ + α⊤Kk(S′)∆K(α).

Thus,V1 can be written as a sumV1 = V11 +V12 according
to this decomposition. We shall show howV12 is bounded,
V11 is bounded in a very similar way. In view of the ex-
pression forV1 (12), and usingKk = Φ⊤

k Φk, V12 can be
written as

V12 = Λ

pX

k=1

(∆Kα)⊤Z[Φkα]⊤, (24)

with Z =
Φ

⊤

k Φkα

‖v‖ − vk

Pp
i=1

P

i(vi+v′

i)Φ
⊤

i Φiα

‖v‖‖v′‖(‖v‖+‖v′‖) . Using the

fact that‖Φkα‖2 = α⊤Φ⊤
k Φkα = α⊤Kkα = vk and

similarly‖Φiα‖ = v
1/2
i and assuming without loss of gen-

erality that‖v′‖ ≥ ‖v‖, V12 can be bounded by

Λ
Pp

k=1 ‖∆Kα‖
„

vk
‖v‖

‖Φk‖ + vk
‖v‖

P

i(vi+v′

i)v
1/2

k
v
1/2

i ‖Φi‖

‖v′‖(‖v‖+‖v′‖)

«

.

By the Cauchy-Schwarz inequality, the first sum∑p
k=1

vk

‖v‖‖Φk‖ can be bounded as follows

pX

k=1

vk

‖v‖‖Φk‖ ≤ ‖v‖
‖v‖

( pX

k=1

‖Φk‖2
)1/2 ≤ √

κpm, (25)

since‖Φk‖ ≤
√

κm. The second sum is similarly simpli-
fied and bounded as follows

pX

k=1

vk

‖v‖

Pp
i=1(vi + v′

i)v
1/2
k v

1/2
i ‖Φi‖

‖v′‖(‖v‖ + ‖v′‖)

≤
„ pX

k=1

v
3/2
k

‖v‖

«„ pX

i=1

(v
3/2
i + v′

iv
1/2
i )

‖v′‖(‖v‖ + ‖v′‖)

«

max
i

‖Φi‖.

In view of ‖Φi‖ ≤ √
κm for all i, and using

multiple applications of the Cauchy-Schwarz inequality,
e.g.,

∑p
k=1 v

3/2
k =

∑p
k=1 vkv

1/2
k ≤ ‖v‖‖v‖1/2

1 and
∑p

i=1 v′iv
1/2
i ≤ ‖v′‖‖v‖1/2

1 , the second sum is also
bounded by

√
κpm and‖V12‖ ≤ 2Λ

√
κpm‖∆Kα‖. Pro-

ceeding in the same way forV11 leads to ‖V11‖ ≤
2Λ
√

κpm‖∆Kα‖ and‖V1‖≤4Λ
√

κpm‖∆Kα‖.

C Proof of Proposition 2

Proof. The main idea of the proof is to boundV2 in terms of
∆Sw, the difference of the weight vectorsh andh′ already
bounded in the proof of Theorem 2.

By definition,vk = α⊤Kkα. SinceKk = Φ⊤
k Φk, then

vk = ‖wk‖2, wherewk = Φk(S)α. Thus, in view of (12),
V2 can be written as follows

V2 = Λ

pX

k=1

„
∆S‖wk‖2

‖v′‖ − vk

P

i(vi + v′
i)∆S‖wi‖2

‖v‖‖v′‖(‖v‖ + ‖v′‖)

«

w
⊤
k .

We can bound|∆S‖wk‖2| in terms of‖∆Swk‖:

|∆S‖wk‖2| = |(∆Swk)⊤w
′
k + w

⊤
k (∆Swk)|

= |(∆Swk)⊤(w′
k + wk)| ≤ ‖w′

k + wk‖‖∆Swk‖.

Thus, since‖wk‖=(α⊤Φ⊤
k Φkα)1/2≤v

1/2
k and‖w′

k‖ ≤
v′

1/2
k , ‖V2‖ can be bounded by

‖V2‖ ≤ Λ

„ pX

k=1

v
1/2
k (v

1/2
k + v′1/2

k )

‖v′‖ ‖∆Swk‖

+

pX

i=1

(vi + v′
i)(v

1/2
i + v′1/2

i )

‖v‖ ‖v′‖(‖v‖ + ‖v′‖) ‖∆Swi‖
‚
‚
‚

pX

k=1

vkw
⊤
k

‚
‚
‚

«

.



The first sum can be bounded as follows
pX

k=1

v
1/2
k (v

1/2
k + v′1/2

k )‖∆Swk‖
‖v′‖

=

pX

k=1

vk + (vkv′
k)1/2

µk‖v′‖ ‖∆S(µkwk)‖

≤
„ “ pX

k=1

(vk + (vkv′
k)1/2)2

µ2
k‖v′‖2

”

| {z }

F1

“ pX

k=1

‖∆S(µkwk)‖2
”«1/2

.

The first factor is bounded by a constant using multiple
applications of the Cauchy-Schwarz inequality and assum-
ing without loss of generality that‖v‖ ≤ ‖v′‖: F1 =
∑p

k=1
v2

k+(vkv′

k)+2v
3/2

k v′1/2

k

µ2

k‖v
′‖2 ≤ 4 (the calculation steps are

omitted due to space). The second sum can be bounded as
follows

P

i(vi + v′
i)(v

1/2
i + v′1/2

i )‖∆Swi‖
‖v‖‖v′‖(‖v‖ + ‖v′‖)

‚
‚
‚

pX

k=1

vkw
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k
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‚

≤
pX

i=1
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vkwk
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whereF2 =

[ ∑p
i=1

(vi+v′

i)
2(v

1/2

i +v′1/2

i )2

‖v‖2‖v′‖2(‖v‖+‖v′‖)2

] 1

2

. The nu-

merator ofF2, can be bounded using
∑p

i=1 v3
i ≤ ‖v‖3,

∑p
i=1 v

5/2
i v′

1/2
i ≤ ‖v‖5/2‖v′‖1/2 and applications of the

Cauchy-Schwarz inequality such as
Pp

i=1(vi + v′
i)

2(v
1/2
i +

v′1/2
i )2 ≤ (‖v‖ + ‖v′‖)2(‖v‖1/2 + ‖v′‖1/2)2. The inter-

mediate steps are omitted due to space. This leads to

F2 ≤ ‖v‖1/2+‖v′‖1/2

‖v‖‖v′‖ and

‖V2‖ ≤ 2Λ

„

1 +
‖v‖1/2 + ‖v′‖1/2
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with F3 =
( ∑p

k=1 ‖∆Sµkwk‖2
)1/2

. If the feature vec-
tors wk are orthogonal, that isw⊤

k wk′ = 0 for k 6= k′

(which holds in particular ifΦk(xi)
⊤Φk′ (xi) = 0 for

k 6= k′ and i = 1, . . . , m), then F3 = ‖∆Sw‖ and∥∥ ∑p
k=1 vkwk

∥∥2
=

∑p
k=1 v2

kw
⊤
k wk =

∑p
k=1 v3

k ≤ ‖v‖3.
Thus, using the bound on‖∆Sw‖ from the proof of Theo-
rem 2 yields

‖V2‖ ≤ 2Λ

„

1 +
‖v‖1/2 + ‖v′‖1/2

2‖v‖‖v′‖ ‖v‖3/2

«

‖∆Sw‖

≤ 4Λ‖∆Sw‖ ≤ 4ΛM

λmin + λ0m
≤ 4ΛM

λ0m
.

References

Argyriou, A., Hauser, R., Micchelli, C., & Pontil, M.
(2006). A DC-programming algorithm for kernel selec-
tion. ICML.

Argyriou, A., Micchelli, C., & Pontil, M. (2005). Learn-
ing convex combinations of continuously parameterized
basic kernels.COLT.

Bach, F. (2008). Exploring large feature spaces with hier-
archical multiple kernel learning.NIPS.

Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies,
Bollywood, Boom-boxes and Blenders: Domain Adap-
tation for Sentiment Classification.Association for Com-
putational Linguistics.

Boser, B., Guyon, I., & Vapnik, V. (1992). A training algo-
rithm for optimal margin classifiers.COLT.

Bousquet, O., & Elisseeff, A. (2002). Stability and gener-
alization.JMLR, 2.

Bousquet, O., & Herrmann, D. J. L. (2002). On the com-
plexity of learning the kernel matrix.NIPS.

Cortes, C., Mohri, M., & Rostamizadeh, A. (2008). Learn-
ing sequence kernels.MLSP.

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks.
Machine Learning, 20.

Jebara, T. (2004). Multi-task feature and kernel selection
for SVMs. ICML.

Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L. E.,
& Jordan, M. (2004). Learning the kernel matrix with
semidefinite programming.JMLR, 5.

Lewis, D. P., Jebara, T., & Noble, W. S. (2006). Nonsta-
tionary kernel combination.ICML.

Micchelli, C., & Pontil, M. (2005). Learning the kernel
function via regularization.JMLR, 6.

Ong, C. S., Smola, A., & Williamson, R. (2005). Learning
the kernel with hyperkernels.JMLR, 6.

Saunders, C., Gammerman, A., & Vovk, V. (1998).
Ridge Regression Learning Algorithm in Dual Variables.
ICML.

Schölkopf, B., & Smola, A. (2002).Learning with kernels.
MIT Press: Cambridge, MA.

Shawe-Taylor, J., & Cristianini, N. (2004).Kernel methods
for pattern analysis. Cambridge Univ. Press.

Srebro, N., & Ben-David, S. (2006). Learning bounds for
support vector machines with learned kernels.COLT.

Vapnik, V. N. (1998). Statistical learning theory. John
Wiley & Sons.

von Neumann, J. (1937). Uber ein ökonomisches Gle-
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