
Combined Script and Page Orientation Estimation using
the Tesseract OCR engine

Ranjith Unnikrishnan and Ray Smith
Google Inc.,

1600 Amphitheatre Pkwy, Mountain View, CA 94043
ranjith@alumni.cmu.edu, theraysmith@gmail.com

ABSTRACT
This paper proposes a simple but effective algorithm to es-
timate the script and dominant page orientation of the text
contained in an image. A candidate set of shape classes for
each script is generated using synthetically rendered text
and used to train a fast shape classifier. At run time, the
classifier is applied independently to connected components
in the image for each possible orientation of the compo-
nent, and the accumulated confidence scores are used to
determine the best estimate of page orientation and script.
Results demonstrate the effectiveness of the approach on a
dataset of 1846 documents containing a diverse set of images
in 14 scripts and any of four possible page orientations.

A C++ implementation of this work will be made avail-
able in a future release of the open-source Tesseract OCR
engine [1].

Categories and Subject Descriptors
I.7.5 [Document and Text Processing]: Document Cap-
ture—Optical Character Recognition (OCR)

General Terms
Algorithms, Languages

Keywords
Script detection, Page orientation detection, Tesseract

1. INTRODUCTION
This paper focuses on the problem of estimating the script

and dominant page orientation of printed text in an image.
To accurately recognize the text in an image, optical charac-
ter recognition (OCR) algorithms often utilize a great deal
of prior knowledge, such as of the shapes of characters, list
of words and the frequencies and patterns with which they
occur. Much if not all of this knowledge is language-specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MOCR ’09, July 25, 2009 Barcelona, Spain
Copyright 2009 ACM 978-1-60558-698-4/09/07 ...$10.00.

Han Cyrillic Arabic Greek Tamil

Korean Japanese Hebrew Devanagari Kannada

Bengali Telugu Thai Fraktur

Figure 1: Image samples of the 15 scripts detected
using the proposed algorithm. (Latin is not shown.
Fraktur is treated as an independent script. See text
for details.)

and does not generalize across scripts. This makes the lan-
guage of the text contained in an image a crucial input pa-
rameter to specify when using an OCR algorithm.

Scripts form a natural appearance-based grouping of lan-
guages, and many languages share the same script. For
example, the Russian, Bulgarian and Ukranian languages
share the “Cyrillic” script. Most Indic scripts, such as Tel-
ugu, Kannada and Tamil, have only one language associated
with them, whereas the Latin script is shared by at least 26
common languages. Thus a solution to the script detection
problem either solves the language identification problem or
reduces it to a smaller problem.

Independent of knowledge of the script, OCR algorithms
often make the natural assumption that the text in the image
being processed is upright. This need not always be the case.
For instance, large tables and figures in books are frequently
printed in landscape mode while the content of the book may
be oriented in portrait mode. Or the book itself could be
fed as input in an incorrect orientation. Such examples of
mismatch between the input and the expectations of typical
OCR algorithms are common, and lead inevitably to the
OCR algorithm producing garbage output.

One brute-force solution would be to use a traditional
OCR algorithm to process each input page once for each pos-
sible combination of orientation and language mode. How-
ever, this would be impractically slow, and also require a

separate procedure to determine validity of the text pro-
duced as output in each orientation-language configuration.

This paper proposes a simple but effective approach to es-
timate script and dominant orientation not only with high
accuracy, but also in far less time than it would take to
process the image even once using a traditional OCR al-
gorithm. The solution scales well enough to distinguish
between 14 scripts - Latin, Cyrillic, Greek, Hebrew, Ara-
bic, Chinese (or Han), Japanese, Korean, Thai, Devanagari,
Kannada, Tamil, Telugu and Bengali - spanning more than
40 languages, and also distinguish between Fraktur and non-
Fraktur fonts.

1.1 Related work
Past approaches to solve the script detection problem may

be grouped to three broad categories. The first may be
referred to as “global” or texture-based approaches. Algo-
rithms in this category compute discriminative features on
blocks of text using image filters to determine patterns that
are unique to the language or the script. Chaudhury et. al [2]
proposed using a frequency domain representation of projec-
tion profiles of horizontal text lines. Busch et. al [3] present
an extensive evaluation of a broad number of texture fea-
tures, including projection profiles, Gabor and wavelet fea-
tures and gray-level co-occurrence matrices for detecting the
script. This category of approaches has the drawbacks of
requiring large and aligned homogeneous regions of text in
one script, and of the features in question often being neither
very discriminative nor reliable to compute in the presence
of noisy or skewed text.

The second category of approaches may be referred to as
“local” or connected-component based. These utilize shape
and stroke characteristics of individual connected compo-
nents. Hochberg et. al [4] proposed using script-specific
templates by clustering frequently occurring character or
word shapes. Spitz et. al [5] construct shape codes that
capture the concavities of characters, and use them to first
classify them as Latin-based or Han-based, and then within
those categories using other shape-features. Ma et al [6]
use Gabor-filters with a nearest-neighbor classifier to deter-
mine script and font-type at the word-level. Several hybrid
variants of local and global approaches have also been sug-
gested [7].

The third category of approaches may be referred to as
“text-based”. Algorithms in this category work by process-
ing the entire page with a traditional OCR engine using
one or more “pilot” language modes and then use a separate
procedure to analyze the statistics of the (potentially inaccu-
rate) output to guess what language the original image text
may have been in. This category of approaches cleverly uti-
lizes the fact that although shape classifiers are predictably
wrong when evaluated on classes they are not trained on, the
errors they make tend to be repeatable. Hence processing
an image of Arabic text in a Han language mode will give
garbage text, but with a characteristic frequency of output
characters. The statistics of the output text can then be an-
alyzed to estimate the script of the input image. However,
such techniques tend not scale very well to a large number
of scripts/languages, and our experiments in Section 5 show
them to have lower accuracy than the approach proposed in
this document.

2. APPROACH
Our proposed approach falls into the category of “local”

approaches and operates by classifying individual connected
components independently. This strategy gives it the com-
pelling advantages of not requiring word segmentation or
text-line finding as a pre-processing step and of being able
to work on small input images.

The basic idea behind the proposed approach is simple.
A shape classifier is trained on characters (classes) from all
the scripts of interest. At run-time, the classifier is run in-
dependently on each connected component (CC) in the im-
age and the process is repeated after rotating each CC into
three other candidate orientations (90◦, 180◦ and 270◦ from
the input orientation). The algorithm keeps track of the
estimated number of characters in each script for a given
orientation, and the accumulated classifier confidence score
across all candidate orientations. The estimate of page ori-
entation is chosen as the one with the highest cumulative
confidence score, and the estimate of script is chosen as the
one with the highest number of characters in that script for
the best orientation estimate.

The main difficulty with this strategy is the large total
number of classes associated with all 14 scripts. The Han
script alone has several thousands of characters in frequent
use. In scripts such as Devanagari and Arabic, the shapes of
letters can assume different forms depending on context, and
unlike Latin, the letters can join to form single or multiple
connected components. These properties of scripts combi-
natorially increase the total number of possible shapes, and
since our approach requires associating a class (and script) to
each connected component, the effective number of classes
to train a shape classifier with can be impractically large.
Once the set of possible shape classes has been identified
for all the scripts, the problem then becomes that of how
to choose a subset of these classes with which to train the
shape classifier.

One possible approach to the problem of selecting rep-
resentative classes for the scripts is through discriminative
selection. This involves selecting shape classes in a script
that have a high “distance” to classes from other scripts.
This distance between any two shapes may be computed as
a function of the classifier confidence when trained on one
shape and evaluated on the other, or by directly embedding
the shapes in an appropriate feature space.

We see two main problems with a discriminative approach
to class selection. The first is that discriminative classes are
not necessarily frequent. For example, suppose we choose
the lower-case ‘q’ as a class for the Latin script as it does not
share a shape similarity with any character from a different
script. Given an image of text, the frequency with which the
letter ‘q’ occurs will likely be small. Thus, given a strategy
of classifying a randomly sampled set of connected compo-
nents, the expected time to identify the script as Latin will
be high. This limits the accuracy of the algorithm when the
input image has little text.

The second problem arises from the observation that the
performance of the overall algorithm depends not only on
the accuracy of the classifier on the classes that are in the
training set, but also on its behavior on shapes that the
classifier has not been trained on. For example, assume the
shape classifier is not trained on the shape of the character
‘t’. When given the shape of ‘t’ as input, the ideal outcome
is for the classifier to declare that the shape may be one of

any candidate script with equal probability. However this
ideal outcome never occurs in practice, and the normal be-
havior for the would be to give the scripts unequal posterior
probability. This bias naturally affects the estimate of script
made by the algorithm overall.

So instead, we adopt an approach of generative class se-
lection. This is done by ranking the classes in order of fre-
quency and other statistics of interest, and then pruning this
list by coverage. This approach is motivated by the following
observations

1. The coverage graph of classes is often steep. This prop-
erty is particularly true for scripts like Latin and Cyril-
lic, that share similarly shaped characters. Thus in
practice, only a small number of shape classes need be
chosen to represent such scripts.

2. Both of the previously mentioned problems with dis-
criminative selection occur only in proportion to the
frequency of occurrence of the classes that, respec-
tively, are or are not in the training set. Choice of a
shape class associated with frequently occurring char-
acters in text reduces the expected time to identify its
script. Similarly, the inability to recognize the shape of
the letter ‘t’, following the previous example, and the
consequent assignment of poor posterior script proba-
bility estimates has an effect only in proportion to the
natural frequency of occurrence of the letter ‘t’ in text.

In Section 3, we detail the processes of identifying the shape
classes associated with a given script and then generatively
selecting a subset of these classes for training the Tesseract
shape classifier. Section 4 explains the algorithm at run-time
when processing an image of text. Section 5 then explains
the dataset we use for testing the algorithm as well as an
alternate approach that is also evaluated for comparison. We
then conclude in Section 6 with some general observations
and directions for future work.

3. TRAINING
The intent of the Training stage is to prepare a specially

trained classifier, which in our case is the static shape classi-
fier used by the Tesseract OCR engine [8]. It takes as input
a set of text corpora in the scripts that we are interested
in, and gives as output for each script a set of classes and
shapes to train the classifier on. This stage may be divided
into three steps - candidate class creation, generative selec-
tion and classifier training.

3.1 Candidate class creation
The goal of this first step in training is to exhaustively

identify a set of image shape primitives and associated text
that collectively represent any body of text in that script.
The resulting collection of shape-text pairs will form a can-
didate set of classes from which a subset will be later chosen
to train the shape classifier with in subsequent steps.

Our strategy for this step is to use natural text in each
script, as obtained from a text corpus crawled from the web,
by rendering the text and isolating the connected compo-
nents associated with the text in the rendered page. The
text for each component is known from the rendering pro-
cedure, and the shapes of the text are easily obtained using
a connected component extraction algorithm [9]. This gives

Bounding boxes
of rendered
characters

Bounding boxes
of each blob

Aligned word
fragments

Bounding boxes
of rendered
characters

Bounding boxes
of each blob

Aligned word
fragments

Figure 2: Examples of word fragment extraction for
(left-to-right) Kannada, Arabic, Latin and Bengali,
illustrating different cases of character overlap and
resulting fragment generation. See text for details.

a set of shape-text pairs and allows us to obtain relevant
statistics from them for use in the subsequent selection step.

In more detail, our preferred implementation generates
the candidate set by the following procedure that is per-
formed for each script of interest:

1. Render words from a text corpus in the script to an
image with variable degradation in one or more sup-
ported fonts using a standard rendering engine. Our
implementation uses the International Components for
Unicode (ICU) layout engine which provides support
for a variety of non-Latin scripts, including Devanagari
and Arabic, that have complex rendering rules. The
degradation consists of varying levels of morphologi-
cal erosion/dilation and noise addition, and is done to
train the classifiers to be robust.
This step yields a set of bounding boxes in reading-
order around each character in the image, along with
the character associated with each box. Figure 2 shows
bounding boxes in blue around each rendered charac-
ter for example words in Kannada, English, Arabic and
Bengali scripts.

2. Process the image to find its connected components
and order their bounding boxes (colored red in Fig-
ure 2) in reading order. We use the existing Tesser-
act implementation to process the page in this step.
The Tesseract pre-processor also groups together con-
nected components based on a horizontal overlap cri-
terion into nested lists of components termed blobs.
This ensures, for instance, that the dot in the shape
of lower-case ‘i’ is grouped together with the vertical
stem of the ‘i’ and not potentially treated as a sepa-
rate character. Figure 2 shows bounding boxes in red
around each obtained blob for the example words.
This use of Tesseract during training, as opposed to
only during classification, has the benefit of yielding
groups of connected components and shapes in a man-
ner that matches what would be obtained at run-time.

3. Align the two sequences of bounding boxes around the
characters and bounding boxes around the blobs to
form a set of word fragments. This alignment can be
done greedily by testing overlap between the bounding
boxes of each blob and character and forming clusters.
By rendering one word at a time, the fragment bound-
aries can be ensured to not cross word boundaries, thus
further simplifying the problem of alignment.

Figure 3: Portion of synthetically rendered train-
ing image for the Kannada script. Bounding boxes
around word fragments selected for this script are
shown colored in green.

Figure 2 illustrates some possible scenarios for word
fragment (shown as green boxes) generation in differ-
ent scripts. The Kannada word has its second char-
acter consisting of two connected components that do
not significantly overlap, whereas the Arabic charac-
ters combine to form connected components. While
Latin characters do not normally combine, the exam-
ple above happens to have two characters that overlap
due to the chosen font and degradation level in the
rendering. The second character in the Bengali word
consists of two disjoint connected components, but its
left component overlaps with the previous character
resulting in a single word fragment consisting of two
characters. Thus a fragment may consist of one or
more characters and one or more blobs (or connected
components).

4. Reject a fragment if it has an aspect ratio that exceeds
a certain threshold, or has other indicators that it may
be easily confused with other characters or non-text
shapes. If a fragment is not rejected, keep track of the
number of times it is seen in the input text corpus,
the number of characters and connected components
it represents, the text associated with it and the script
of the text, the properties of the font used to render
the fragment, and any other relevant statistics.

The resulting set of word fragments forms the candidate set
of shape classes for the particular script. This step is then
repeated for all scripts and for each font that supports the
script to yield a set of fragments covering all scripts of inter-
est. This marks the end of the candidate class identification
stage and makes way for the next step of generative class
selection.

3.2 Generative selection
In this step, a representative subset of classes is selected

from the previously formed candidate set. In our implemen-
tation, this is done by first ranking the fragments of each
script in decreasing order of frequency of occurrence. If two
fragments are within a margin of frequency, they are re-
ranked in increasing order of the number of characters they
represent, then by the connected components they contain
and so on for any other statistics of interest. This re-ranking
step gives a mild preference to fragments that have simple
non-intricate shapes, as they tend to be more amenable to
encoding and representation by the shape classifier.

The ordered set for each script s of interest is then pruned
to the top xs% by total number of occurrences (coverage).
The value of xs controls the number of classes to learn for

script s and may be varied independently per script to trade
off processing time with classification error. Our implemen-
tation starts by setting the value of xs to an equal low value,
say 10%, for all scripts and then increasing the value for each
script independently in steps until the classification error
across all scripts for the trained fonts no longer decreases.
Section 4 details the steps performed at classification time.
The end result of this step is a set of chosen word fragments
for each script.

3.3 Shape classifier training
The final step is to use the selected word fragments for

training the shape classifier. Our implementation uses Tesser-
act’s static character classifier which we outline in Section 4
and is also detailed in [8].

The input required to the train the classifier consists of
an image of text, along with a set of image bounding box
coordinates and associated character text for each character
to train on. We generate this data using the list of word
fragments pruned in the generative selection step. In the
candidate class creation step (Section 3.1) we keep track of
the fragments contained in each word that is encountered in
the text corpus. Words are then concatenated in decreas-
ing order of frequency for each script-font pair until they
collectively include all the fragments selected for the script.
The selected words are then rendered in the font and the
fragment bounding boxes are extracted using knowledge of
the statistics (number of blobs and characters) for each frag-
ment contained in the word. The bounding box coordinates
of fragments that are included in the selected set of classes
for the script are written to a file and later used along with
the rendered image for training the character classifier.

The use of frequent previously seen words from the cor-
pus in this manner has two benefits. First, it allows the
character classifier to pick up side-information like charac-
ter height in the context of frequently seen words. Second,
the resulting box-image file pairs form very compact train-
ing data. Figure 3 shows an example of the training image
and fragment boxes corresponding to the Kannada script for
the Kedage font.

Table 1 lists the composition of the training classes used
by script. The shape classifier is trained on a total num-
ber of 1808 classes and on one font per script. To not be
confused by the occasional page containing large tables of
numbers, the commonly used Indo-Arabic numerals are sep-
arately added to the set of training classes, and they are
listed under the script name of “Common” in the table.

4. CLASSIFICATION
Before detailing the script and page orientation estima-

tion algorithm at run-time, we give a brief overview of the
internal feature representation and the form of the feature
classifier used in Tesseract.

Tesseract’s static character classifier uses two types of in-
ternal feature representation for each word fragment and
two stages of classification [8]. The features used in the
trained models are 4-dimensional ((x, y) position, direction
and length) segments of a polygonized outline, and the fea-
tures of the unknown are 3-dimensional, obtained by break-
ing each segment into multiple unit-length fragments.

The first stage of classification, the class pruner, produces
a short-list of classes using a technique similar to the idea of
forgiving hashing [11]. The second stage of character clas-

Script name #classes Coverage (xs)
Arabic 200 60%
Bengali 101 30%

Common 10 100%
Cyrillic 28 90%

Devanagari 223 10%
Greek 7 40%
Han 578 25%

Hangul 543 30%
Hebrew 10 70%
Hiragana 28 50%
Kannada 69 60%
Katakana 68 50%

Latin 30 60%
Tamil 15 20%
Telugu 84 60%
Thai 14 60%

Table 1: Composition of the 1808 classes in the train-
ing set across scripts: Coverage values xs reflect
the cumulative frequency of occurrence of the se-
lected classes over the set of fragments after filtering
(Step 2a in Section 4).

sification consists of matching the polygonal segments from
training to those obtained from the outline of the unknown
shape. Two segments are declared to match if they are prox-
imal with respect to (x, y) position and angle. The distance
between the two shapes is computed as a weighted average
of the distance segments in the prototype shape are from
the unknown shape, and vice versa. Although this second
step can be computationally expensive, it is only performed
on the classes in the short-list returned by the class pruner.
The class with minimum shape distance from the unknown
shape is noted, and the script of the text associated with
the class is taken as the best estimate of the script of that
shape. Fraktur is treated as a separate script, although it is
detected using knowledge of the font properties associated
with the trained class instead of the script of the associated
text.

Given an image of a page as input, the procedure at run-
time is as follows:

1. Binarize the image and segment it into connected com-
ponents. Group connected components having sig-
nificant horizontal overlap into blobs. Note that no
line-finding algorithm or connected-component order-
ing procedure is required at this stage. However, de-
pending on the type of input expected, an algorithm
to find non-text regions [9, 10] may be required as a
pre-processing step prior to this in order to remove
blobs incorrectly detected in those regions from con-
sideration. This however is a common requirement for
OCR in general and is not a limitation of the proposed
algorithm.

2. For each blob from a randomly selected N -sized subset
of all the blobs in the image:

(a) If the blob has an aspect ratio that exceeds a cer-
tain threshold, has height or width outside an ac-
ceptable range of values to consist of valid text

characters, or has other indicators that it may be
easily confused with other characters or non-text
shapes, reject it and continue.

(b) Classify the blob and find the most likely script
it belongs to. If the confidence score for the best
estimate of this script is low, or is within some
margin of the confidence of the next best estimate
of the script, reject this blob and continue.

(c) Accumulate the confidence score associated with
the best estimate of the script to a total.

(d) If the font properties of the estimated class indi-
cate that the unknown shape was rendered with
a Fraktur font, increment the count of the “Frak-
tur” script by one. Otherwise look up the script
of the estimated class, and increment the count
for the script by 1.

(e) Repeat 2a-2d after rotating the connected compo-
nent in the three other possible orientations (90◦,
180◦ and 270◦ from the input orientation).
The end result is four sets, one for each examined
orientation, of counts for each script of interest
along with an accumulated confidence score for
that orientation.

3. Choose the orientation with the high total confidence
score as the best estimate of the page orientation.

4. Choose the script that has the highest count for the
estimated orientation.

Some scripts, such as Korean and Japanese are strictly pseudo-
scripts whose text consists of a combination of characters
belonging to other “true” scripts. For example, Japanese
exists as a combination of text in Katakana, Hiragana and
Han scripts, and Korean exists as a combination of Hangul
and Han.

We address the problem of identifying such pseudo-scripts
by using fractional counts. In the event that the estimated
script for an unknown shape is Han, the fact that the true
script text may also be Korean or Japanese is taken into
account by not only incrementing the count of the Han script
by 1, but also incrementing the count of the Japanese and
Korean scripts but by a smaller fraction. The optimal value
of these fractions is estimated from analyzing the natural
frequency of occurrence of Han symbols in Japanese and
Korean from the text corpus of the two latter scripts. In
our implementation, the weight of Han characters for the
estimation of Japanese and Korean scripts are chosen as 0.2
and 0.6 respectively.

5. EVALUATION AND EXPERIMENTAL
RESULTS

We evaluate the proposed algorithm on a dataset of 1846
multi-page documents obtained from scanning books in any
of the 15 scripts (including Fraktur) in roughly equal pro-
portions. Ground-truth for each document is available as
a dominant orientation and a list of one or more scripts
that the document contains. The algorithm is run on 10
randomly sampled pages of the document, and for a maxi-
mum of 250 blobs in each page. The confidence scores for
orientation and script estimates are averaged across pages.
This ensures that the estimate of the script is not biased by

Estimated script

ara ben cyr dev frk gre han heb jpn kan kor lat tam tel tha
G

r
o
u
n
d
-
t
r
u
t
h

s
c
r
ip

t

ara 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ben 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cyr 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dev 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
frk 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gre 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
han 3.14 0.00 0.00 0.00 0.00 0.00 92.15 0.00 4.71 0.00 0.00 0.00 0.00 0.00 0.00
heb 2.01 0.00 0.00 0.00 0.00 0.00 0.00 97.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00
jpn 0.00 0.00 1.03 0.00 0.00 0.00 4.12 0.00 94.85 0.00 0.00 0.00 0.00 0.00 0.00
kan 2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 97.50 0.00 0.00 0.00 0.00 0.00
kor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.12 0.00 96.88 0.00 0.00 0.00 0.00
lat 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00
tam 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.05 0.00 0.00
tel 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
tha 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.01 0.00 0.00 0.00 0.00 0.00 98.99

Table 2: Confusion matrix of script detection results on the 1846 document dataset: Values are of accuracy
and are in units of percentage. Rows correspond to ground-truth script names and columns correspond to
the estimated script names given by the codes: ara=Arabic, ben=Bengali, cyr=Cyrillic, dev=Devanagari,
frk=Fraktur, gre=Greek, han=Han, heb=Hebrew, jpn=Japanese, kan=Kannada, kor=Korean, lat=Latin,
tam=Tamil, tel=Telugu, tha=Thai.

pages containing prefaces or author forewords with dense
text in, say, English (Latin) even though the document may
predominantly be in a different script.

Script and page orientation detection are problems of cat-
egorical classification, and so the error metric of choice is
the modified indicator function, which we define as 1 if the
best estimate of script is not in the list of the ground-truth
scripts, and 0 otherwise. Since our approach gives as output
a list of scripts ordered by confidence score, one may consider
additional metrics, both discrete and continuous in nature.
For instance, a “top two error” metric may be defined as 1 if
neither of the two scripts with the highest confidence scores
are in the list of ground-truth scripts. For brevity, this paper
only reports the errors from modified indicator function.

Over the 1846 document dataset, our experiments recorded
an error rate of 0.2% in orientation and an error rate of
1.84% in script identification. We make use of no class pri-
ors, and all candidate scripts and orientations are treated
identically and considered equally likely. Table 2 shows
the confusion matrix of ground-truth scripts and estimated
scripts.

The time to process a page varies on the content of the
page, and is often comparable to the time taken by the
thresholding algorithm used in Tesseract. We have observed
the time taken by the thresholder to be 0.3-1.2 seconds while
the classifier, being time bounded by the maximum number
of blobs it is allowed to process in a page, takes between
0.5-0.6 seconds.

Comparison to a text-based language ID algorithm:
We also compared the proposed algorithm to an alternate
text-based approach. As outlined earlier in Section 1.1, the
competing approach works by processing the whole page us-
ing an OCR engine trained in a pilot language and analyzing
the statistics of the garbled output text. Our implementa-
tion of this approach processed each image with an OCR
engine twice - first in a mode to recognize Latin characters

and the second time in a mode to recognize Han. The uni-
gram statistics of the output text were analyzed in each case
to determine the likelihood of the text being Latin-like, or
some other family of scripts.

Since this category of approaches was not originally in-
tended to handle non-upright orientation, we evaluated it
against the proposed algorithm on a smaller set of multi-
page documents that all had upright orientation. We found
the text-based approach to have an error rate of about 7.52%
while the proposed approach had a lower error rate of 2.11%.
The proposed approach was also about 6-10 times faster,
owing largely to it not requiring any input image to be pro-
cessed in entirety.

6. CONCLUSIONS
This paper proposed a simple yet effective algorithm to

combine script and page orientation detection using the Tesser-
act shape classifier. There were many observations and de-
sign choices made that enabled the proposed approach to
work well. One observation was that coverage distribution
of shape classes in many scripts is steep, which allows a gen-
erative class selection scheme to work reasonably well using
a small number of training classes. The design choices of
using a “local” approach operating at the level of individual
connected components and of interleaving the blob rotation
and shape classification operations makes the overall algo-
rithm efficient.

However, there are still several failure cases that need to
be addressed. As may also be observed from the confusion
matrix of Table 2, a significant number of classification er-
rors are due to the Japanese script being mistaken as the
Han script, or vice versa. This is a common source of errors
for script detection algorithms in general and is largely due
to the two scripts having many symbols in common.

Other failure cases are when documents contain degraded
or handwritten text, or have unusual images or line draw-
ings that are not removed from consideration in the pre-

processing step, or have scripts in fonts that have not been
trained on. Many of these sources of error are shared with
the more general OCR problem and are the subject of on-
going work.

7. ACKNOWLEDGMENTS
The authors thank Dar-Shyang Lee for devising and im-

plementing the text-based language identification algorithm
that this work is evaluated against, as well as for his useful
suggestions and feedback.

8. REFERENCES
[1] Tesseract open source OCR engine.

http://code.google.com/p/tesseract-ocr.

[2] S. Chaudhury, R. Sheth: Trainable Script
Identification Strategies for Indian Languages, Proc.
5th IEEE Intl. Conf. on Document Analysis and
Recognition (ICDAR), pp. 657-680, 1999.

[3] A. Busch, W. Boles, S. Sridharan: Texture for Script
Identification, IEEE Trans. Pattern Analysis and
Machine Intelligence (PAMI), 27 (11), pp. 1720-1732,
2005.

[4] J. Hochberg, P. Kelly, T. Thomas, L. Kerns:
Automatic Script Identification From Document
Images Using Cluster-Based Templates, IEEE

Transactions on Pattern Analysis and Machine
Intelligence (PAMI), pp. 176-181, 1997.

[5] A. L. Spitz: Determination of the Script and
Language Content of Document Images, IEEE Trans.
Pattern Analysis and Machine Intelligence (PAMI),
pp. 235-245, 1997.

[6] H. Ma, D. Doermann: Gabor filter based multi-class
classifier for scanned document images, Proc. 7th
IEEE Intl. Conf. on Document Analysis and
Recognition (ICDAR), pp. 968-972, 2003.

[7] L. J. Zhou, Y. Lu, C. L. Tan: Bangla/English Script
Identification Based on Analysis of Connected
Component Profiles, 7th IAPR Workshop on
Document Analysis Systems (DAS), pp. 243-254, 2006.

[8] R. Smith: An overview of the Tesseract OCR Engine,
Proc. 9th IEEE Intl. Conf. on Document Analysis and
Recognition (ICDAR), pp. 629-633, 2007.

[9] Leptonica image processing and analysis library.
http://www.leptonica.com.

[10] R. Smith: Hybrid Page Layout via Tab-stop
Detection, Proc. 10th IEEE Intl. Conf. on Document
Analysis and Recognition (ICDAR), 2009.

[11] S. Baluja and M. Covell: Learning Forgiving Hash
Functions: Algorithms and Large Scale Tests,
International Joint Conference on Artificial
Intelligence (IJCAI), 2007.

http://code.google.com/p/tesseract-ocr
http://www.leptonica.com

	Introduction
	Related work

	Approach
	Training
	Candidate class creation
	Generative selection
	Shape classifier training

	Classification
	Evaluation and Experimental results
	Conclusions
	Acknowledgments
	References

