
Low Cost Correction of OCR Errors Using Learning in a Multi-Engine
Environment

Ahmad Abdulkader Matthew R. Casey
Google Inc.

ahmad@abdulkader.org mrcasey@google.com

Abstract

We propose a low cost method for the correction of

the output of OCR engines through the use of human
labor. The method employs an error estimator neural
network that learns to assess the error probability of
every word from ground-truth data. The error
estimator uses features computed from the outputs of
multiple OCR engines. The output probability error
estimate is used to decide which words are inspected
by humans. The error estimator is trained to optimize
the area under the word error ROC leading to an
improved efficiency of the human correction process. A
significant reduction in cost is achieved by clustering
similar words together during the correction process.
We also show how active learning techniques are used
to further improve the efficiency of the error estimator.

Keywords: {OCR Correction, Multiple Engines,
Machine Learning, Clustering, Active Learning}

1. Introduction

It is estimated that there are between 50 and 200
million books ever published [9]. A significant fraction
of these books are only available in non-digital forms.
Furthermore, most of the estimated 100,000 new books
published yearly are published exclusively on paper for
many reasons including copyright [10]. This prohibits
the automatic indexing and searching of these
documents and consequently limits their availability
and accessibility on digital medium like the Internet,
PDA and mobile phones.

Optical Character Recognition (OCR) technology
has been used for decades to convert scanned images
of documents to editable text. The accuracy of
commercially available OCR engines has been
constantly improving to the extent that the OCR
problem has been regarded by many as a solved one.
However, in practice, it has been found that the mean
word level error rates for OCR ranges roughly between

1 to 10%. The determining factors for OCR accuracy
are the quality, age and structure complexity of the
documents as well as the artifacts introduced during
the scanning process. This accuracy range is generally
adequate for many applications of OCR. Nevertheless,
it is not adequate for a slew of other applications like
information retrieval (IR). A number of large IR
projects rely on OCR as the main method for data
acquisition. Examples of these projects are Google’s
Book Search [9], the Gutenberg project [1] and the
Million Book Digital Library Project [2]. Other
applications that require low OCR error rates are text-
to-speech and repurposing.

One possible way to improve accuracy is to use
human labor to correct OCR errors. This process can
be confusing, time consuming and costly to the extent
that it might seem cheaper to retype a document from
scratch rather than relying on OCR and correcting its
errors. In this work, we seek a low cost method that
uses human labor efficiently for correcting OCR errors.
Our goal is to reach a word error rate of around 0.5% at
the minimal possible cost of time and money.

It has long been observed that different classifiers
make different errors. The theoretical framework,
results and methods of combing multiple classifiers to
improve accuracy have been well studied in the pattern
recognition and machine learning literature [6]. Similar
ideas have been proposed to automatically post process
OCR results [10]. Different OCR engines also tend to
make different mistakes. This observation can be
explained by the fact that different engines use
different approaches for classifying characters, are
possibly trained on different data sets with different
character and word distributions and are possibly using
different language models.

Our approach is based on a related concept. We
observe that the errors made by a primary OCR engine
are highly correlated with its disagreements with
subsequent secondary OCR engines. We use this
correlation to predict the existence of errors and to
prioritize them according to an error estimate.

2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDAR.2009.242

576

In the following sections, the main approach will be
described in detail. Further extensions that significantly
improve the efficiency of the error estimation will be
described, as well as experiments and results.

2. The Proposed Algorithm

In this approach, a state-of-the-art commercial OCR
engine is used as a primary engine. We also employ a
number (n) of secondary weaker OCR engines. As
mentioned in the introduction, we base our algorithm
on the simple observation that the recognition errors
made by the primary engine are highly correlated with
its disagreements with the secondary OCR engines. On
the contrary, the agreement of all (or most) engines
indicates a very strong confidence. To estimate the
existence of an error, we use an error estimator that
operates on the outputs of all the OCR engines’ outputs
as features. A block diagram of the proposed algorithm
is shown in Figure 1. It goes as follows:
1. The input set of documents is fed to the primary

and the secondary OCR engines.
2. In an error estimation phase, the outputs of the

OCR engines are examined. Words for which all
(or almost all) OCR results are equal are accepted
as correct. Words whose OCR results differ are
subjected to the error estimator. The features of
the error estimator are computed from the results
of all engines. Words whose error estimate
exceeds a pre-defined threshold α are considered
“suspects”. Suspects for all documents are
generated. The detailed structure of the error
estimator, its input features and how it is trained
are detailed in sections 3 & 7.

3. In a clustering phase, suspects with equal primary
OCR results and whose word images closely
match are grouped together in clusters. The
median suspect from each cluster is picked as a
representative of the whole cluster. As a result of
clustering, the number of suspects is dramatically
reduced. The details of the clustering phase and its
impact on the efficiency of the system are
described in sections 4 & 7.

4. The resulting suspects after clustering are then
sent to a manual Quality Assurance (QA) system.
Human operators are shown images of individual
words in context. The operators are asked to pick
an answer from the list of possible answers from
the different OCR engines or type a new answer.
More details about the QA user interface are
provided in section 5.

5. Based on the answers of the human operators,
corrected OCR documents are then generated.

Figure 1. A block diagram of the proposed

algorithm
It should be noted that the fraction of the words to

which the error estimator is subjected varies greatly
with the quality of the document. Table 1 shows the
agreement and disagreement rates for two different
data sets in a two-OCR-engine correction system.

Dataset
Quality

Primary
Error Rate

Disagreement
Rate

Agree &
Wrong

Disagree &
Wrong

High 0.80% 4.00% 0.15%
0.32% (8% of

disagreements)

Low 4.00% 16.00% 0.50%
4% (25% of

disagreements)

Table 1. Agreement & Disagreement rates
for documents of different quality

3. The Error Estimator

The error estimator is a classifier that predicts
whether the OCR result of a specific word from the
primary engine is an error based on the input features
of this word. The classifier used in our approach is an
artificial neural network. The input features the fed into
the network are described below:
1. The confidences values of all OCR engines
2. String lengths of all OCR results.
3. Mutual confidences of primary and secondary

OCR results. This assumes that the OCR engines
are capable of computing a confidence for
arbitrary words. This is possible for most engines,
but if this capability is missing, the corresponding
features can be omitted.

4. Mutual ranks of primary and secondary OCR
results. Most engines produce a list of alternate
answers. This subset of features represents the
position of each OCR result in the lists proposed
by the other engines.

5. A binary feature for each OCR result denoting
whether it is a valid dictionary word.

577

6. An n-gram character model score computed for
each of the OCR results.

As shown in Table 1, it was observed that the
different engines disagree between 4 and 16%
depending on the quality of the document. Moreover,
the error rate on the fraction of the words for which the
OCR engines agree ranges between 0.15 and 0.5%. We
will refer to this set of errors as residual errors. Based
on these statistics, it was concluded that it would be
more efficient to run the error estimator only when the
OCR engines disagree. Further investigation of the
residual errors indicated that they are mostly errors in
the ground truth or highly ambiguous cases.

The neural network built in our experiments has a
single hidden layer with 8 nodes. The architecture has
been evolved empirically during experimentation. The
net is trained on a ground truth data set that contains
around 200,000 samples. The prior probability of
errors in this data set is 12.25%. A smaller set of a
similar distribution is used as a validation set. The net
has been trained to optimize the area under the
Receiver Operating Characteristic (ROC) graph [3].

Figure 2 shows the relative error reduction rate
against the relative rejection rate. It is also shown how
the error estimator significantly improves the error
reduction rate compared to the confidence level of the
primary OCR engine.

Figure 2. The ROC of the estimator

compared to that of the primary OCR engine

4. Clustering Suspects

When performing OCR correction for a set of
related documents or books, it was observed that many
of the suspects generated by the error estimator are
almost identical. This is not entirely surprising given
that OCR engines perform consistently when subjected
to similar inputs. It was then concluded that the
number of suspects can be dramatically reduced if

similar suspects that will have the same answer were
clustered together and treated as a single suspect.

For this purpose, a simple, crude, and effective
method for dramatically reducing the number of
suspects was devised. For a given prospective suspect,
we want to determine if an equivalent matching
suspect (one probably with the same answer) had
already been generated. The matching suspect may or
may not have been processed by a QA operator
already.

To do this, the image bitmap of the prospective
suspect is matched against all the previously generated
suspects. A number of cross correlation based template
matching algorithms [8] can be used for this purpose.
This scheme would find good matches for a
prospective suspect but has the serious drawback of
being of O(n2) with the number of suspects. It would
quickly slow down as the number of suspects increase.
In order to limit the search space, the suspects search
was limited to the suspects that have the same primary
OCR string as the prospective suspect. Although the
matching process is still of order O(m2), the number of
suspects with matching OCR primary strings m is
much smaller than the total number of suspects n. As a
result, the matching process is much faster. The
suspects clustering algorithm goes as follows:
1. Create an empty list of suspect clusters C.
2. Given a prospective suspect word P whose error

estimate exceeds the pre-determined threshold α,
find the set S, where S ⊂ C, whose member
clusters all have the same primary OCR string as
P.

3. Find the cluster M, where M ∈ S, that has the
minimum possible template-matching distance d
to P.

4. If d ≥ a pre-defined threshold β, a new cluster N is
created and added to C. In addition, a new
question corresponding to N is generated and
queued to be answered by a QA operator.

5. If d < β, P is added to the cluster M. Because M is
an already existing cluster, a question must have
been generated before for it. If an answer had
already been provided to cluster M, P is
automatically answered.

6. When a QA operator answers a question for a
specific suspect’s cluster, the answer is propagated
to all the suspects in the cluster.

As mentioned earlier, suspect clustering results in
significant improvements to the efficiency of the
overall correction system. More details are provided in
section 7. The performance of the clustering algorithm
can be measured in isolation by looking at the mean hit
rate of the clusters as a time series. The performance
varies significantly depending on the quality of the

578

documents being processed. We have observed, as a
rule of thumb for most documents, that clustering cuts
the cost of QA in half. We have also observed a peak
cost reduction of 80% in some sets of documents.

Figure 3 shows the mean cluster hit rate as a time
series. Each point represents the mean hit rate over 200
consecutively-processed sets of documents. It is worth
noting that the sudden drop in the mean hit rate shown
in the graph is associated with the transition from good
to bad quality scans. The hit rate drops because of
noise in the image causing the image matching
distance threshold to be exceeded as well as a
decreased stability of the primary OCR output. This is
not surprising given that the proposed clustering
scheme is based upon the assumption that the primary
OCR results will be consistent across different pages.
This assumption might hold less for lower quality
documents.

Figure 3. The mean hit rate of the suspects’

clusters as a time series

5. The User Interface

The user interface presented to the QA operators
plays a key role in the cost reduction. Figure 4 shows a
snapshot of the UI used in our system.

Figure 4. A snap shot of the user interface

presented to the QA operators
As shown in the figure, the following aspects of the

user interface should be noted:
1. The operator is presented with suspected word in

context. The image of the suspected word is
highlighted using a bounding box.

2. The user is presented with several possible choices
for the correct answer of the suspected word.
These possible answers are extracted from the
outputs of all the OCR engines used in the system.
The operator can then choose any of these answers
using a single keystroke (1, 2, etc…). In the event

that the correct answer is not in the list, the QA
operator needs to type it. Based on data gathered
from the instrumentation of the user interface it
has been observed that the operators take under 3
seconds to respond to a question if the answer is
one of the listed choices, while it takes around 6.5
seconds to type in an answer. Based on the
statistics gathered from the data sets that were
used in evaluation, it is estimated that the typing
option is only used between 8-33% of the time. On
average it takes under 4 seconds for an operator to
respond to a question.

3. Using a simple string edit distance algorithm, the
differences between the different possible answers
are highlighted as well as the corresponding
characters in the word image.

It is believed that the aspects highlighted above
significantly reduce the cognitive load to which a QA
operator is subjected, resulting in a significant
reduction of the overall correction cost.

6. Active Learning

Active learning methods [4] are typically used in
situations in which unlabeled data is abundant but
labeling data is expensive. In such a scenario the
learning algorithm can actively query the user/teacher
for labels. We have attempted to use the same principle
in tuning the error estimator for a specific task.

While processing a large collection of documents, a
relatively large set of suspects is generated. The set of
suspects is sorted in descending order based on the
error estimate. The set is then divided to smaller
batches that are provided to the QA operators in order,
one batch at a time. Once the first batch of questions is
fully processed by QA operators, it is regarded as
labeled data. This labeled data is used to tune, or
further train, the error estimator. The newly tuned error
estimator is used to estimate the error on the
subsequent batches. This technique further reduces the
cost of the error correction process. More details are
provided in section 7.

7. Experiments and Results

In our experiments, we were seeking to evaluate the
cost of acquiring textual content from a large set of
books using the proposed method and compare its cost
to the cost of typing the same set of books using
professional typists who can attain a peak typing speed
of 75 words per minute (WPM) at a word error rate of
roughly 0.5% [5].

As mentioned in section 3, we trained an error
estimator on a set of roughly 200,000 suspects that

579

were extracted from a set of labeled documents. We
then proceeded to test the system on two different sets
of books. The first set, Set1, has around 1,300,000
words and a primary OCR word error rate of 2.43%.
The second set, Set2, has around 800,000 words and a
primary OCR word error rate of around 5.23%. Set2
consists of older books with more significant
degradation. None of these sets were used to train the
error estimator. The output of the OCR was processed
through three different configurations of our system.
The first configuration used only the error estimator.
The second configuration used the error estimator and
the cluster algorithm described in section 4. The third
configuration added active learning as described in
section 6. The output of the system was then assessed
by human operators to compute the word error rates.
Figure 5 shows how the word error rates on both sets
changed with number of questions per word (QPW).
QPW is used here as a proxy for cost.

 Figure 5. The characteristics of three different
configurations of correction system on two

sets of books

From the figure, we observe that the target error rate
can be reached at roughly a QPW of 8.5% for Set1 and
a QPW of 2.7% for Set2. From section 5 we recall that
the average time to respond to a question is 5 seconds.
Accordingly, the effective throughput of the system is
around 151 WPM for Set1 and 444 WPM for Set2

corresponding to a cost reduction of 50% to 83%
depending on the quality of the documents.

8. Conclusions

The system described in this paper provides an
efficient low cost method for digitizing textual context.
Our system provides significant reductions in cost over
a typist based system. This is achieved by using
learning methods to estimate OCR errors, using
clustering to group similar errors, designing a user
interface that minimized the cognitive load on QA
operators and using active learning techniques to tune
the error estimation on the targeted document
collection.

9. References

[1] “Project Gutenberg”, http://www.gutenberg.org
[2] “The Million Book Digital Library Project”,

http://www.rr.cs.cmu.edu/mbdl.htm
[3] Cortes, C. and Mohri, M, “AUC Optimization vs. Error

Rate Minimization”, Neural Information Processing
Systems (NIPS), MIT Press, 2004.

[4] F. Provost, M. Saar-Tsechansky, “Active learning for
class probability estimation and ranking”. Proceedings
of the Seventeenth International Joint Conference on
Artificial Intelligence. Morgan Kaufmann, 2001, pp.
911–920.

[5] F. Vorbeck, A.Ba-Salamah, J. Kettenbach and P.
Huebsch, “Report generation using digital speech
recognition in radiology”, Springer-Verlag, 2000.

[6] J. Kittler, M. Hatef, R. P. Duin and J. G. Matas, “On
combining classifiers”, IEEE Transactions on PAMI 20
(3) (1998), pp 226-239.

[7] J. L. Crowley and J. Martin, “Experimental comparison
of correlation techniques”, IAS-4, International
Conference on Intelligent Autonomous Systems, March
1995.

[8] Jurie, F. and Dhome, M., “A simple and efficient
template matching algorithm”, Proceedings of the
International Conference on Computer Vision, 2001.

[9] L. Vincent, “Google Book Search: Document
Understanding on a Massive Scale”, Proceedings. Ninth
International Conference on Document Analysis and
Recognition (ICDAR), 2007, pp. 819-823.

[10] S. T. Klein and M. Kopel. “A voting system for
automatic OCR correction”. Proceedings of the SIGIR
2002 Workshop on Information Retrieval and OCR,
August 2002.

580

