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Abstract 

 
We propose a low cost method for the correction of 

the output of OCR engines through the use of human 
labor. The method employs an error estimator neural 
network that learns to assess the error probability of 
every word from ground-truth data. The error 
estimator uses features computed from the outputs of 
multiple OCR engines. The output probability error 
estimate is used to decide which words are inspected 
by humans. The error estimator is trained to optimize 
the area under the word error ROC leading to an 
improved efficiency of the human correction process. A 
significant reduction in cost is achieved by clustering 
similar words together during the correction process. 
We also show how active learning techniques are used 
to further improve the efficiency of the error estimator. 
 
Keywords: {OCR Correction, Multiple Engines, 
Machine Learning, Clustering, Active Learning} 
 
1. Introduction 
 

It is estimated that there are between 50 and 200 
million books ever published [9]. A significant fraction 
of these books are only available in non-digital forms. 
Furthermore, most of the estimated 100,000 new books 
published yearly are published exclusively on paper for 
many reasons including copyright [10]. This prohibits 
the automatic indexing and searching of these 
documents and consequently limits their availability 
and accessibility on digital medium like the Internet, 
PDA and mobile phones. 

Optical Character Recognition (OCR) technology 
has been used for decades to convert scanned images 
of documents to editable text. The accuracy of 
commercially available OCR engines has been 
constantly improving to the extent that the OCR 
problem has been regarded by many as a solved one. 
However, in practice, it has been found that the mean 
word level error rates for OCR ranges roughly between 

1 to 10%. The determining factors for OCR accuracy 
are the quality, age and structure complexity of the 
documents as well as the artifacts introduced during 
the scanning process. This accuracy range is generally 
adequate for many applications of OCR. Nevertheless, 
it is not adequate for a slew of other applications like 
information retrieval (IR). A number of large IR 
projects rely on OCR as the main method for data 
acquisition. Examples of these projects are Google’s 
Book Search [9], the Gutenberg project [1] and the 
Million Book Digital Library Project [2]. Other 
applications that require low OCR error rates are text-
to-speech and repurposing.  

One possible way to improve accuracy is to use 
human labor to correct OCR errors. This process can 
be confusing, time consuming and costly to the extent 
that it might seem cheaper to retype a document from 
scratch rather than relying on OCR and correcting its 
errors. In this work, we seek a low cost method that 
uses human labor efficiently for correcting OCR errors. 
Our goal is to reach a word error rate of around 0.5% at 
the minimal possible cost of time and money. 

It has long been observed that different classifiers 
make different errors. The theoretical framework, 
results and methods of combing multiple classifiers to 
improve accuracy have been well studied in the pattern 
recognition and machine learning literature [6]. Similar 
ideas have been proposed to automatically post process 
OCR results [10]. Different OCR engines also tend to 
make different mistakes. This observation can be 
explained by the fact that different engines use 
different approaches for classifying characters, are 
possibly trained on different data sets with different 
character and word distributions and are possibly using 
different language models. 

Our approach is based on a related concept. We 
observe that the errors made by a primary OCR engine 
are highly correlated with its disagreements with 
subsequent secondary OCR engines. We use this 
correlation to predict the existence of errors and to 
prioritize them according to an error estimate.  

2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDAR.2009.242

576



In the following sections, the main approach will be 
described in detail. Further extensions that significantly 
improve the efficiency of the error estimation will be 
described, as well as experiments and results. 
 
2. The Proposed Algorithm 
 

In this approach, a state-of-the-art commercial OCR 
engine is used as a primary engine. We also employ a 
number (n) of secondary weaker OCR engines. As 
mentioned in the introduction, we base our algorithm 
on the simple observation that the recognition errors 
made by the primary engine are highly correlated with 
its disagreements with the secondary OCR engines. On 
the contrary, the agreement of all (or most) engines 
indicates a very strong confidence. To estimate the 
existence of an error, we use an error estimator that 
operates on the outputs of all the OCR engines’ outputs 
as features. A block diagram of the proposed algorithm 
is shown in Figure 1. It goes as follows: 
1. The input set of documents is fed to the primary 

and the secondary OCR engines. 
2. In an error estimation phase, the outputs of the 

OCR engines are examined. Words for which all 
(or almost all) OCR results are equal are accepted 
as correct. Words whose OCR results differ are 
subjected to the error estimator. The features of 
the error estimator are computed from the results 
of all engines. Words whose error estimate 
exceeds a pre-defined threshold α are considered 
“suspects”. Suspects for all documents are 
generated. The detailed structure of the error 
estimator, its input features and how it is trained 
are detailed in sections 3 & 7.  

3. In a clustering phase, suspects with equal primary 
OCR results and whose word images closely 
match are grouped together in clusters. The 
median suspect from each cluster is picked as a 
representative of the whole cluster. As a result of 
clustering, the number of suspects is dramatically 
reduced. The details of the clustering phase and its 
impact on the efficiency of the system are 
described in sections 4 & 7. 

4. The resulting suspects after clustering are then 
sent to a manual Quality Assurance (QA) system. 
Human operators are shown images of individual 
words in context. The operators are asked to pick 
an answer from the list of possible answers from 
the different OCR engines or type a new answer. 
More details about the QA user interface are 
provided in section 5. 

5. Based on the answers of the human operators, 
corrected OCR documents are then generated. 
 

 
Figure 1. A block diagram of the proposed 

algorithm 
It should be noted that the fraction of the words to 

which the error estimator is subjected varies greatly 
with the quality of the document. Table 1 shows the 
agreement and disagreement rates for two different 
data sets in a two-OCR-engine correction system. 

Dataset 
Quality 

Primary 
Error Rate 

Disagreement 
Rate 

Agree & 
Wrong 

Disagree & 
Wrong 

High 0.80% 4.00% 0.15% 
0.32% (8% of 

disagreements) 

Low 4.00% 16.00% 0.50% 
4% (25% of 

disagreements) 

Table 1. Agreement & Disagreement rates 
for documents of different quality 

 
3. The Error Estimator 
 

The error estimator is a classifier that predicts 
whether the OCR result of a specific word from the 
primary engine is an error based on the input features 
of this word. The classifier used in our approach is an 
artificial neural network. The input features the fed into 
the network are described below: 
1. The confidences values of all OCR engines 
2. String lengths of all OCR results. 
3. Mutual confidences of primary and secondary 

OCR results. This assumes that the OCR engines 
are capable of computing a confidence for 
arbitrary words. This is possible for most engines, 
but if this capability is missing, the corresponding 
features can be omitted. 

4. Mutual ranks of primary and secondary OCR 
results. Most engines produce a list of alternate 
answers. This subset of features represents the 
position of each OCR result in the lists proposed 
by the other engines. 

5. A binary feature for each OCR result denoting 
whether it is a valid dictionary word. 
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6. An n-gram character model score computed for 
each of the OCR results. 

As shown in Table 1, it was observed that the 
different engines disagree between 4 and 16% 
depending on the quality of the document. Moreover, 
the error rate on the fraction of the words for which the 
OCR engines agree ranges between 0.15 and 0.5%. We 
will refer to this set of errors as residual errors. Based 
on these statistics, it was concluded that it would be 
more efficient to run the error estimator only when the 
OCR engines disagree. Further investigation of the 
residual errors indicated that they are mostly errors in 
the ground truth or highly ambiguous cases. 

The neural network built in our experiments has a 
single hidden layer with 8 nodes. The architecture has 
been evolved empirically during experimentation. The 
net is trained on a ground truth data set that contains 
around 200,000 samples. The prior probability of 
errors in this data set is 12.25%. A smaller set of a 
similar distribution is used as a validation set. The net 
has been trained to optimize the area under the 
Receiver Operating Characteristic (ROC) graph [3]. 

Figure 2 shows the relative error reduction rate 
against the relative rejection rate. It is also shown how 
the error estimator significantly improves the error 
reduction rate compared to the confidence level of the 
primary OCR engine. 

 
Figure 2. The ROC of the estimator 

compared to that of the primary OCR engine 
 

4. Clustering Suspects 
 

When performing OCR correction for a set of 
related documents or books, it was observed that many 
of the suspects generated by the error estimator are 
almost identical. This is not entirely surprising given 
that OCR engines perform consistently when subjected 
to similar inputs. It was then concluded that the 
number of suspects can be dramatically reduced if 

similar suspects that will have the same answer were 
clustered together and treated as a single suspect. 

For this purpose, a simple, crude, and effective 
method for dramatically reducing the number of 
suspects was devised.  For a given prospective suspect, 
we want to determine if an equivalent matching 
suspect (one probably with the same answer) had 
already been generated.  The matching suspect may or 
may not have been processed by a QA operator 
already.   

To do this, the image bitmap of the prospective 
suspect is matched against all the previously generated 
suspects. A number of cross correlation based template 
matching algorithms [8] can be used for this purpose. 
This scheme would find good matches for a 
prospective suspect but has the serious drawback of 
being of O(n2) with the number of suspects. It would 
quickly slow down as the number of suspects increase.  
In order to limit the search space, the suspects search 
was limited to the suspects that have the same primary 
OCR string as the prospective suspect.  Although the 
matching process is still of order O(m2), the number of 
suspects with matching OCR primary strings m is 
much smaller than the total number of suspects n. As a 
result, the matching process is much faster. The 
suspects clustering algorithm goes as follows: 
1. Create an empty list of suspect clusters C. 
2. Given a prospective suspect word P whose error 

estimate exceeds the pre-determined threshold α, 
find the set S, where S ⊂ C, whose member 
clusters all have the same primary OCR string as 
P. 

3. Find the cluster M, where M ∈ S, that has the 
minimum possible template-matching distance d 
to P.  

4. If d ≥ a pre-defined threshold β, a new cluster N is 
created and added to C. In addition, a new 
question corresponding to N is generated and 
queued to be answered by a QA operator. 

5. If d < β, P is added to the cluster M. Because M is 
an already existing cluster, a question must have 
been generated before for it. If an answer had 
already been provided to cluster M, P is 
automatically answered. 

6. When a QA operator answers a question for a 
specific suspect’s cluster, the answer is propagated 
to all the suspects in the cluster. 

As mentioned earlier, suspect clustering results in 
significant improvements to the efficiency of the 
overall correction system. More details are provided in 
section 7. The performance of the clustering algorithm 
can be measured in isolation by looking at the mean hit 
rate of the clusters as a time series. The performance 
varies significantly depending on the quality of the 
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documents being processed.  We have observed, as a 
rule of thumb for most documents, that clustering cuts 
the cost of QA in half. We have also observed a peak 
cost reduction of 80% in some sets of documents. 

Figure 3 shows the mean cluster hit rate as a time 
series. Each point represents the mean hit rate over 200 
consecutively-processed sets of documents. It is worth 
noting that the sudden drop in the mean hit rate shown 
in the graph is associated with the transition from good 
to bad quality scans. The hit rate drops because of 
noise in the image causing the image matching 
distance threshold to be exceeded as well as a 
decreased stability of the primary OCR output. This is 
not surprising given that the proposed clustering 
scheme is based upon the assumption that the primary 
OCR results will be consistent across different pages. 
This assumption might hold less for lower quality 
documents. 

 
Figure 3. The mean hit rate of the suspects’ 

clusters as a time series 
 
5. The User Interface 
 

The user interface presented to the QA operators 
plays a key role in the cost reduction. Figure 4 shows a 
snapshot of the UI used in our system.  

 
Figure 4. A snap shot of the user interface 

presented to the QA operators 
As shown in the figure, the following aspects of the 

user interface should be noted: 
1. The operator is presented with suspected word in 

context. The image of the suspected word is 
highlighted using a bounding box.  

2. The user is presented with several possible choices 
for the correct answer of the suspected word. 
These possible answers are extracted from the 
outputs of all the OCR engines used in the system. 
The operator can then choose any of these answers 
using a single keystroke (1, 2, etc…). In the event 

that the correct answer is not in the list, the QA 
operator needs to type it. Based on data gathered 
from the instrumentation of the user interface it 
has been observed that the operators take under 3 
seconds to respond to a question if the answer is 
one of the listed choices, while it takes around 6.5 
seconds to type in an answer. Based on the 
statistics gathered from the data sets that were 
used in evaluation, it is estimated that the typing 
option is only used between 8-33% of the time. On 
average it takes under 4 seconds for an operator to 
respond to a question. 

3. Using a simple string edit distance algorithm, the 
differences between the different possible answers 
are highlighted as well as the corresponding 
characters in the word image. 

It is believed that the aspects highlighted above 
significantly reduce the cognitive load to which a QA 
operator is subjected, resulting in a significant 
reduction of the overall correction cost. 
  
6. Active Learning 
 

Active learning methods [4] are typically used in 
situations in which unlabeled data is abundant but 
labeling data is expensive. In such a scenario the 
learning algorithm can actively query the user/teacher 
for labels. We have attempted to use the same principle 
in tuning the error estimator for a specific task. 

While processing a large collection of documents, a 
relatively large set of suspects is generated. The set of 
suspects is sorted in descending order based on the 
error estimate. The set is then divided to smaller 
batches that are provided to the QA operators in order, 
one batch at a time. Once the first batch of questions is 
fully processed by QA operators, it is regarded as 
labeled data. This labeled data is used to tune, or 
further train, the error estimator. The newly tuned error 
estimator is used to estimate the error on the 
subsequent batches. This technique further reduces the 
cost of the error correction process. More details are 
provided in section 7. 

 
7. Experiments and Results 
 

In our experiments, we were seeking to evaluate the 
cost of acquiring textual content from a large set of 
books using the proposed method and compare its cost 
to the cost of typing the same set of books using 
professional typists who can attain a peak typing speed 
of 75 words per minute (WPM) at a word error rate of 
roughly 0.5% [5].  

As mentioned in section 3, we trained an error 
estimator on a set of roughly 200,000 suspects that 
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were extracted from a set of labeled documents. We 
then proceeded to test the system on two different sets 
of books. The first set, Set1, has around 1,300,000 
words and a primary OCR word error rate of 2.43%. 
The second set, Set2, has around 800,000 words and a 
primary OCR word error rate of around 5.23%. Set2 
consists of older books with more significant 
degradation. None of these sets were used to train the 
error estimator. The output of the OCR was processed 
through three different configurations of our system. 
The first configuration used only the error estimator. 
The second configuration used the error estimator and 
the cluster algorithm described in section 4. The third 
configuration added active learning as described in 
section 6. The output of the system was then assessed 
by human operators to compute the word error rates. 
Figure 5 shows how the word error rates on both sets 
changed with number of questions per word (QPW). 
QPW is used here as a proxy for cost. 
 

 Figure 5. The characteristics of three different 
configurations of correction system on two 

sets of books 
 

From the figure, we observe that the target error rate 
can be reached at roughly a QPW of 8.5% for Set1 and 
a QPW of 2.7% for Set2. From section 5 we recall that 
the average time to respond to a question is 5 seconds. 
Accordingly, the effective throughput of the system is 
around 151 WPM for Set1 and 444 WPM for Set2 

corresponding to a cost reduction of 50% to 83% 
depending on the quality of the documents. 

 
8. Conclusions 
 

The system described in this paper provides an 
efficient low cost method for digitizing textual context. 
Our system provides significant reductions in cost over 
a typist based system. This is achieved by using 
learning methods to estimate OCR errors, using 
clustering to group similar errors, designing a user 
interface that minimized the cognitive load on QA 
operators and using active learning techniques to tune 
the error estimation on the targeted document 
collection. 
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