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Abstract—This paper discusses a new method for automatic
discovery and organization of descriptive concepts (labels)
within large real-world corpora of user-uploaded multimedia,
such as YouTube.com. Conversely, it also provides validation
of existing labels, if any. While training, our method does not
assume any explicit manual annotation other than the weak
labels already available in the form of video title, descrip-
tion, and tags. Prior work related to such auto-annotation
assumed that a vocabulary of labels of interest (e.g., indoor,
outdoor, city, landscape) is specified a priori. In contrast,
the proposed method begins with an empty vocabulary. It
analyzes audiovisual features of 25 million YouTube.com videos
– nearly 150 years of video data – effectively searching for
consistent correlation between these features and text metadata.
It autonomously extends the label vocabulary as and when it
discovers concepts it can reliably identify, eventually leading
to a vocabulary with thousands of labels and growing. We
believe that this work significantly extends the state of the art
in multimedia data mining, discovery, and organization based
on the technical merit of the proposed ideas as well as the
enormous scale of the mining exercise in a very challenging,
unconstrained, noisy domain.

I. INTRODUCTION

The traditional machine learning approach begins with a

vocabulary of labels to be learned and searches for features

and classifiers that can best distinguish these labels. This

approach is inherently limited by the label set – which is

often niche and hand-selected – because the classifiers by

definition can only learn concepts within this vocabulary

of labels. It does not scale well given the enormity and

diversity of modern multimedia corpora. Popular online

video archives such as YouTube contain hundreds of millions

of videos with several hundreds of thousands of new uploads

every day. The richness and diversity of content of these

videos is reflected in the millions of words spanning several

different languages in the title, tags, and description sections

of these videos. In comparison, any hand-designed niche set

of labels (e.g., porn, news, sports, music) falls woefully short

in describing the content of these videos.

The approach described in this paper uses a subset of

25 million YouTube videos for training and validation. We

extracted a generic set of large dimensional audiovisual

features on each video in this corpus. We then formed a

pool of concepts by taking a union of all unique words and

N-grams from user-supplied metadata text over this corpus.

The proposed approach then jointly selects (a) a subset of

the available features and decision stumps that can best

classify a given label and (b) a maximal set of labels that

can possibly be learned to the desired level of accuracy

using a given set of generic features. We developed a

novel scheme to iteratively expand the vocabulary of learned

concepts by using classifiers learned in prior iterations to

learn composite, complex concepts. The semantic descriptive

capacity of our approach is thus bounded not by the intuition

of a single designer but by the collective, multilingual

vocabulary of hundreds of millions of web users. All aspects

of the proposed algorithms are parallelizable over a number

of CPUs in order to make a machine learning problem of

this scale solvable in a reasonable timeframe.

The utility of the proposed approach from a data mining

perspective is multifold, although experimental demonstra-

tion of some of these applications is beyond the scope

of this paper. First, our method provides a parallelizable

mechanism to generate multiple content-aware semantic

descriptors for a given video. User-uploaded metadata is

often incomplete. Our algorithm augments and reinforces

it, underscoring tags that are audio-visually meaningful and

consistent. Secondly, this mechanism can be perceived as

a feature transformation where the native feature space is

transformed into the space of classifier scores, which in turn

could be used as features for subsequent learning purposes

such as video search ranking, determining related videos,

and niche genre classification tasks. We demonstrate that

for an example supervised learning task of softcore porn

detection, the proposed method can achieve slightly better

performance than the baseline while requiring only 10% of

annotated training data. We also demonstrate that, given a

fixed minimum performance criteria, our iterative training

scheme can learn up to 92% more concepts that meet or

exceed these criteria than the baseline.

II. PRIOR WORK

Label Discovery: In the context of multimedia data

mining, label discovery corresponds to unsupervised asso-

ciation of videos/images/audio files and text labels. A set

of approaches have studied unsupervised auto-annotation of



images [1], [2], [3], [4] with generic objects of interest.

These approaches train over images with weak labels. The

images may contain multiple objects and the exact locations

of the objects are not known. Each training image is first

segmented into a collection of regions. An unsupervised

learning algorithm is then applied to estimate the joint

probability distribution of labels and visual features (usually

local features). Given the same visual features over an

un-annotated image, posterior probabilities of labels are

estimated. Similar to these approaches, the proposed work

also requires weak labels for training purposes, which in our

case are the words and N-grams in the video title, tags, and

description.

One primary difference is that the space of possible labels

(interchangeably referred to as the label vocabulary) in our

case is practically infinite and certainly not known a priori.

The proposed approach begins with an empty vocabulary and

automatically builds it by discovering a set of “learnable”

labels given a native feature space. It continues to iteratively

discover more composite concepts by using some the simpler

concepts in the vocabulary. In contrast, the existing label dis-

covery approaches require a previously known and tractable

vocabulary of labels. Secondly, the choice, descriptiveness,

and completeness of metadata text in our domain of interest

are left to the uploader’s discretion. A video labeled “Britney

Spears” may be, for example, a performance by the pop star,

a video of somebody else talking about her, a slideshow of

unrelated photos set to one of her songs, or it may have

nothing to do with Britney Spears at all. Conversely, there

may be videos related to Britney Spears that are not so la-

beled. There are videos with spelling errors as well as videos

with the tags in a multitude of languages. To the best of our

knowledge, the existing auto-annotation approaches assume

carefully and exhaustively labeled data. It is unclear how

they will fare in a domain with unconstrained content and

incomplete/inaccurate/ill-defined/misleading ground truth.

Learning in the Wild: A related problem of learning

faces in the wild has received some attention in the recent

past. Cour et. al. [5] match person name tags to faces present

in the image achieving disambiguation in case of multiple

faces/names. Yagnik et. al. [6], [7] proposed a consistency

learning framework for learning celebrity facial signatures

from images in the wild given a named entity extractor

and a list of celebrity names of interest. Sargin et. al. [8]

proposed a similar framework using voice as the biomet-

ric signature for celebrity speaker identification. Although

these approaches accept unconstrained multimedia input, the

label vocabulary is still bounded. Moreover, all of these

approaches depend on carefully selected biometric features

that are known to correlate well with the label vocabulary

of interest (person names). In contrast, our approach works

with any native feature space and automatically learns a set

of labels that relate to the native feature space. In that sense,

our method is a generalization of these learning in the wild

approaches.

Unsupervised Data Augmentation: These approaches

aim to augment small manually labeled datasets by unsu-

pervised or semi-supervised mechanisms. The work by [9],

[10], [11] issues queries to popular image search engines to

build models for a category. These models are subsequently

used to augment the dataset by finding more images of

that category or for improving search results. The method

proposed by [12] starts with a small manually labeled dataset

on a known set of concepts and trains separate classifiers on

text and image content. It then employs a heuristic mix of

the two to determine when to label unseen images. This

scheme is used iteratively to build a set of newly discovered

images for each concept.

Supervised Concept Learning: A large number of su-

pervised video concept learning approaches have been pub-

lished using TREC video data (e.g., [13]). While related

to some aspects of the proposed work, these approaches

differ from the current objective of unsupervised learning

without a bounded, pre-set vocabulary of concepts. Some of

the lessons learned, however, are applicable. Qi et. al. [14]

developed a system for labeling videos, which makes use of

the fact that many of the labels are correlated. It constructs a

correlation graph of the various concept classifiers, which is

then used to make a final decision. Montagnuolo et. al. [15]

proposes a method for categorizing television footage into a

eight possible video genres using a parallel neural network.

Yang et. al. [16] developed a video genre classification

system for YouTube videos using user-supplied video cat-

egory (e.g., sports, music, etc.) as the ground truth. They

used a corpus of 11K YouTube videos and demonstrated that

by mixing the classifier outputs from different modalities a

more accurate outcome is achieved. Although the their do-

main of application is the same as this paper (i.e., YouTube

videos), their problem space is significantly different for the

following reasons. (a) The video category – the ground truth

used in [16] – is selected by the user from a fixed set of

allowed labels, spanning only 17 categories. Our assumed

ground truth, on the other hand, is derived from words in

the title, tags, and description which are bounded only by the

vocabulary of the user. On one hand, our training problem is

thus significantly more difficult with a much larger decision

space coupled with much noisier ground truth. One the

other hand, the descriptive power of the annotations by our

system is far higher as well with output vocabulary size

in the thousands of labels. (b) The classification problem

for [16] is unilabel, meaning only one label from the 17

categories is associated with one sample, whereas ours is

multilabel where any number of tags could be associated

with one sample. (c) Given the small target decision space,

[16] could afford to manually choose a specific multimodal

feature space that works well for the desired classification

tasks. In contrast, the proposed method can work with any

feature space and will accordingly synthesize a vocabulary



of concepts best suited for that feature space. As an extreme

case, we demonstrate that our method can indeed work a

single dimensional feature space.

To the best of our knowledge, no other published effort

has attempted to solve the problem of interest to this work –

large scale unsupervised auto-annotation of multimedia data

in the presence of noisy and incomplete ground truth and

unspecified, practically unbounded vocabulary.

III. APPROACH

A. Audiovisual Feature Extraction

Our approach is not dependent on any specific underlying

feature space, referred to as the native feature space in

the discussion below. Given a specific feature extraction

algorithm, concepts that can be described with this feature

space are automatically discovered. A variety of algorithms

for extracting video-level features have been described in

the literature. For the purposes of this paper, we have

focused on one example feature characterizing the motion

in the video, one visual feature category characterizing

color/texture, and an audio feature category. Our framework

can process audiovisual modalities separately or jointly, and

multiple feature categories within the same modality are

allowed. However, demonstrating results with exhaustive

feature engineering is not the purpose of this paper. We now

provide a brief description of each of these three feature

extraction algorithms. Note that these or similar algorithms

have been or will be published elsewhere and are not a part

of the contribution of this work.

Motion Rigidity Feature: This feature was specifically

designed for detection of slideshow videos which are typi-

cally made of a series of static photo frames with transition

effects of translation, pan, zoom or any combination of these.

In other words, there is little non-rigid motion in the video.

We use homography transformation error between feature

points on two consecutive frames to estimate rigidity of

motion. This feature generates one real number per video

corresponding to the fraction of frames in the video deemed

to have only rigid motion. Slideshow videos tend to have

values closer to one and non-slideshow videos closer to zero.

CONGAS-HS Features: We use a custom local de-

scriptor [17], [18] that collects Gabor wavelet responses at

different orientations, spatial scales, and spatial offsets from

the interest point. Four orientations and twenty-seven (scale,

offset) combinations are used. We extract these descriptors at

sparse interest points determined by a Laplacian of Gaussian

feature extractor. We then compute bag-of-words histograms.

We build codebooks using hierarchical k-means proposed

by Nister [19]. The sparse CONGAS feature histogram

is extracted every half second. Once the entire video is

processed, the cumulative histogram is thresholded such that

each bin will have at least ten activations, corresponding to

a feature appearing in the video for at least five seconds. In

addition, we compute an 8x8 Hue-Saturation histogram for

each frame. Each bin is then interpreted as a time series. We

use a 8-level 1D Haar wavelet decomposition, and compute

the first two moments and the extrema at each level. This

descriptor is then appended to the CONGAS feature to form

our final feature vector, which is a sparse vector of real-

valued data that implicitly characterizes object shape, color

variation over time, and texture within a video.

SAI Features: The auditory features that we use are based

on models of the mammalian auditory system. Specifically,

we use a cochlear-model of filter banks that form a stabilized

auditory image (SAI) [20]. Computing the SAI starts with

a set of band-pass filters, followed by an autocorrelation of

each channel, which is then transformed into a sparse code

using vector quantization. The end result is a sparse vector of

real-valued data that implicitly characterizes several aspects

of music and speech of the audio track. For a detailed

description of the features, please refer to the work by Rehn

et. al. [21] which uses these features for ranking and retrieval

of sound files.

B. Training Procedure

The following procedure describes our algorithm for train-

ing new models. This procedure is classification algorithm-

agnostic. We have chosen AdaBoost for our experiments

because of its simplicity, speed, and ability to select features

as needed.

1) Data Preparation: Our operating set is roughly 25

million videos from YouTube. This set contains a wide

variety of contents, formats, languages and is arguably large

enough to be considered representative. The demographic

that uploads, annotates, or views these videos is very diverse

in terms of age, nationality, gender, interests, and so on.

The list below outlines the steps for organizing this data for

concept learning:

1) Loop over text metadata to collect a pool of unique

words and N-grams, excluding stopwords, with N set

to 2 for the purpose of this paper. Members of this

pool now referred to as concepts.

2) Purge concepts that are too infrequent or too frequent.

3) Extract an audio/video/audiovisual feature vector for

each video in the corpus. Features could be dense or

sparse or mixed.

4) Split the video corpus into train and validation parti-

tions. Split the validation set further into a number

of sub-partitions equal to the maximum number of

concept learning iterations.

5) For each concept in the pool, form one train and

a number of validation datasets: (a) Define positive

examples as videos that include this concept in the

metadata. (b) Form negative examples by removing

the positive set from a generically large subset of

the corpus. This amounts to one-vs-all classification.

For a given concept, we selected three times as many



negative samples as the number of its positive samples.

(c) Randomly subsample train and validation sets to

keep the training tractable.

2) Training and Concept Vocabulary Synthesis: The

training procedure is iterative. In each iteration, we add

new one-vs-all classifier models to a set of retained models.

Each classifier essentially learns to separate videos that

should be tagged with a certain concept (positive examples)

from videos that shouldn’t be (negative examples). Note

that positive and negative training examples are defined on

the basis of words in user-supplied metadata, as manual

annotation or cleanup is not a feasible option given the scale

of the problem and the richness of the vocabulary. Words

coming from the text metadata are weak labels at best, as

uploaders are free to annotate their videos with any text

snippet they choose. However, the extent of ground truth

noise varies for each of these one-vs-all classifiers. One

factor is the specificity of the label in the context of online

videos. For example, the label “video” is generic to the

extreme: its presence or absence in the metadata conveys no

meaning, as they are all videos. The label “music video”, on

the other hand, is more specific and its presence or absence

is thus less noisy. Another factor is the “learnability” of a

label given the native feature category. For instance, given

visual-only features, a classifier cannot reliably learn certain

labels related to music. By (a) discarding labels that are too

frequent or too infrequent, (b) evaluating on an yet-unseen

validation set after every training iteration, and (c) requiring

that both precision and recall be high for a classifier to be

retained, we mitigate the effect of both of these factors. In

other words, we jointly select classifiers for those labels that

are both semantically specific to a certain degree as well as

learnable given the native feature space:

1) Initialize a set of retained classifier models to empty.

2) Train a model for each concept in the pool: (a)

Train a binary one-vs-all classifier using the train set.

(b) Evaluate using a partition of the validation set,

choosing a different partition for every iteration of

steps 2 through 4 to ensure data purity. (c) Add model

to the set of retained models only if both precision and

recall surpass desired thresholds.

3) Update feature data: (a) Apply all newly retained mod-

els to each feature vector in the corpus. (b) Append

resulting classifier scores to the feature vector.

4) Iterate over steps 2 and 3 until the set of retained

models stops growing, or until the maximum number

of iterations is reached.

The only adjustable parameters in this algorithm are the

model retainment performance threshold and the number

of stumps for AdaBoost classifiers. We nominally set the

minimum required precision and recall both to 0.7. Models

performing below this threshold are not retained. We used

one constant number of stumps for all AdaBoost classifiers

Index Concept

1 slideshow
2 pics
3 sakura
4 sasuke
5 runescape
6 video camcorder
7 flip video

Table I
CONCEPT VOCABULARY: MOTIONRIGIDITY

in the system. The effect of the choice of number of stumps

will be described in the results section.

IV. RESULTS

A. Vocabulary Synthesis

Motion Rigidity Feature Space: As an experiment to

validate our vocabulary synthesis process, we applied our

algorithm on the motion rigidity feature on a subset of our

corpus with 3M videos. Since the feature vector here is

unidimensional (i.e., one real number per video), we chose

number of stumps to be as small as 2 to avoid over-fitting

with only one vocabulary synthesis iteration. Given that this

feature was previously used for slideshow detection, we

anticipated that our algorithm would discover a vocabulary

of labels related to slideshows.

The vocabulary of concepts generated in this exercise is

provided in Table I. The concepts slideshow and pics

are clearly consistent with what the native feature space was

designed to do. sakura and sasuke are popular animé

characters. Animé is a Japanese animation style that relies

heavily on pan and zoom effects on a static painting to

give the illusion of movement. The end effect is much like

slideshows. runescape is a video game with somewhat

limited movement over static or rigidly moving frames. The

remaining two concepts, video camcorder and flip

video are a bit harder to explain. A quick YouTube search

with these keywords comes up with close up views of a

camcorder with a voice-over discussing its features. There

is indeed non-rigid motion but not too much of it. It is likely

that, with two stumps, the classifier was able to carve out a

niche range of the motion rigidity feature where a majority

of these videos belong. This example thus illustrates that the

vocabulary of concepts synthesized by our approach adapts

to the strengths of the native feature space and at the same

time is not bounded by the imagination of the designer of

the feature.

CONGAS-HS and SAI Feature Spaces: Tables II and

III list a subset of the vocabulary automatically synthesized

for CONGAS-HS and SAI features, respectively. For the

sake of better readability, the chosen concepts were manually

organized into 10 groups each. While these subsets don’t

provide the complete picture, it gives the reader an idea of

the diversity of concepts discovered. Applying our algorithm



1 amv, gohan, goku, naruto shippuden, manga
2 bike, bmw, bmx, exhaust, honda, motorcycle, racing
3 bollywood, hindi, awards
4 arena, futbol, goals, soccer, match, wwe, skateboarding,

skating, skiing, snowboard, snowboarding, highlights
5 english subtitles, subtitles, subtitulado
6 bikini, blonde, nude, lesbian, fetish
7 halo, ps3, xbox, nintendo, kingdom hearts, final fantasy
8 telenovela, television, general hospital, drama
9 commercial, documentary, tribute, teaser, interview, mu-

sic video, cartoon, horror, indie, nature
10 pics, pictures, pivot, slideshow, montage

Table II
EXAMPLE CONCEPTS: CONGAS-HS

1 acceleration, exhaust sound, hockey, skateboarding, game
review, amazing highlights

2 accordion, acoustic guitar, bass, drum, drum solo, drum-
line, instrumental, jazz guitar, jazz piano, piano solo

3 acappella, acoustic, classical, chipmunks, club remix,
dance techno, death metal, gangsta rap, r&b, radio edit,
reggae, soundtrack, uplifting, electronic trance

4 artists bands, singing, lyrics screen, recitation
5 adult japanese, amateur college, foot worship, girl erotic
6 aljazeera, bbc news, standup comedy, commercial, doc-

umentary part, drama entertainment, home shopping
7 islam, quran
8 films indian, hindi song, entertainment bollywood
9 audio latino
10 manga, amv, runescape, latino anime

Table III
EXAMPLE CONCEPTS: SAI

on CONGAS-HS features on a train partition of 10M videos

with 800 stumps, 348 concepts were discovered in the first

iteration. Analogously, using SAI features on a training

partition of 20M videos with 640 stumps, 1473 concepts

were discovered in the first iteration.

We observed that increasing the corpus size linearly

resulted in faster-than-linear rate of increase in the number of

concepts learned in the first iteration. (Fig. 1(a)). Conversely,

increasing the number of stumps for each AdaBoost clas-

sifier brings diminishing returns in terms of new concepts

learned (Fig. 1(b)).

B. Applications

Label Verification: The objective of label verification is

to verify that a label from user supplied metadata matches

with the actual content of the video and disregard the label

if it doesn’t. This helps improve the precision of video

retrieval and helps eliminate spam. The results in Figures 4

and 5 show 6 sample concepts automatically learned using

CONGAS-HS features: cartoon, hindi, telenovela,

skateboarding, nature, and subtitulado. Each

column corresponds to a separate concept with the labels

provided at the bottom of the figure. The 5 rows of Figure

4 correspond to the top 5 videos in our corpus – ranked

solely on to the concept classifier score – where the user
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(b) Effect of Number of Stumps (20M training videos)

Figure 1. Factors Affecting Vocabulary Size

included the concept in the text metadata. These are thus

cases where the user-supplied text metadata was confirmed

by our concept classifier. Conversely, the 5 rows of Figure

5 correspond to the bottom 5 videos in our corpus – again

ranked solely on the concept classifier score – where the user

included the concept in the text metadata. The user-supplied

text metadata was thus rejected by the concept classifier in

these cases.

The examples in Figure 4 can be seen to be by-and-large

relevant to the corresponding concept. Given the nature of

the native feature space (CONGAS-HS), it is not surprising

that it could form reliable models for cartoon or nature.

The model for skateboarding possibly learned both the

skateboard as an object and the skateboarding as an action.

The models for hindi and telenovela seem to have

learned the typical color and motion palette of Bollywood

song-and-dance sequences and soap operas, respectively.

The model for subtitulado was the most interesting,

because it seems to have learned not only the texture of

overlaid subtitles, but the fact that they are in Spanish,

perhaps based on accents.

In contrast, the examples of rejected samples shown in

Figure 5 are indeed less representative of the concepts, even

though the concept was listed by the user in the metadata.

For instance, the rejected samples for hindi do include

hindi-speaking subjects, but are not representative of the tag
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hindi given that they don’t have Bollywood themes (See

corresponding column from Figure 4). Similarly, many of the

rejected skateboarding videos discuss skateboarding

without showing the act of skateboarding. The performance

of the subtitulado is a bit mixed as it does correctly

reject cases where subtitles are not present or not readable

but is also seen to incorrectly reject videos with readable,

Spanish subtitles but in an unusual font. The rejected ex-

amples for cartoon and nature are less contentious and

are by large-and-large correct decisions.

V. EVALUATION

A. Effect on Supervised Classification

The proposed concept learning scheme can be interpreted

as a feature transformation where a large dimensional native

feature space is transformed into or is appended by a number

of classifier scores. Figure 2 shows the effect of such feature

transformation on a supervised genre classification problem.

We trained AdaBoost models with a fixed number of stumps

(40) for separating racy (i.e., not appropriate for minors

due to suggestive sexual content) videos from safe videos.

The models were trained and evaluated using a manually

annotated dataset of nearly 20, 000 videos (of which half

were not racy). We compared models trained on the native

feature space (CONGAS-HS) against models trained on a

composite space (CONGAS-HS + our iteration-1 concept

classifier scores) using Equal Error Rate (EER). Note that

the concept classifiers were trained using the same number

of stumps (40) and the concepts racy or softcore did

not become a part of the discovered vocabulary. Several

related concepts were in fact discovered and consequently

the composite feature space outperforms the native space.

We experimented with using only a fraction of the available

training data. The difference in EER is even more striking as

the amount of annotated training data reduces. Note that the

composite feature space achieves better EER with 10% of

the training data than the native feature space with 100% of

the training data. Manual annotation of thousands of videos

is time consuming and expensive. By using knowledge

gained by unsupervised learning, this work significantly

reduces the dependence on supervised training data.

B. Iterative Multilabel Classification

In this paper we proposed a new method for iterative

multilabel classification. For each iteration, classifier scores

of the models learned previous iteration are used as input

features (referred to as transformed features), in addition to

the native feature space (CONGAS-HS or SAI). On the other

hand, the baseline approach for multilabel classification

is implementing a number of one-vs-all classifiers, which

is equivalent of our Iteration 1. Figure 3 (a) shows that

this approach with CONGAS-HS features and 40 stumps

resulted in 106 labels that met our evaluation threshold of

0.7 minimum precision and recall. Our iterative scheme

improves this number to 175 in five iterations, which is

a 65% gain in labels that can be classified with the same

criteria of minimum precision and recall. Analogously, Fig-

ure 3(b) demonstrates a similar increase using SAI features:

from 77 labels in iteration 1 to 148 labels in iteration 5.

This is amounts to a 92% gain in the number of labels

relative to the baseline. Note that the training data, training

parameters, model retainment criteria, and the global pool

of candidate concepts remain unchanged from the baseline.

The fact that new words are learned with each subsequent

iteration implies that some of the transformed features were

in fact selected by AdaBoost, replacing features from the

native space, which resulted in these models exceeding the

model retainment criteria. This attests to the utility of the

feature transformation. The number of new words learned

diminishes with each iteration, as easier concepts are all

learned and the limits of the native feature space are reached.

In one experiment, we allowed the models learned in prior

iterations to be re-learned in subsequent iterations with the

transformed feature space. The F-measure of the re-learned

concepts generally increases from iteration to iteration (From

0.86 in the first iteration to 0.88 in the fifth for CONGAS-HS

and correspondingly from 0.85 to 0.87 for SAI), implying

that the classification for a given concept gets easier as

decisions for related concepts are made available as input.

VI. CONCLUSION AND ONGOING WORK

This paper presented a method for large scale auto-

annotation videos without requiring any explicit manual

annotation. The domain of application of the proposed

method – content analysis of online short form video –

is very challenging because of the sheer volume of data,

unconstrained nature and diversity of the content, and noisy,

multilingual text metadata. One of the novel contributions

of this method is its ability to organically grow a vocab-

ulary of concepts that best suits the native feature space
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Figure 3. Iteration vs Vocabulary Size

without requiring any manual involvement. The other is an

iterative training scheme that greedily learns a series of high

confidence one-vs-all classifiers while iteratively using the

posteriors as inputs to build better classifiers for all classes.

Our method can be viewed as an attempt to simultaneously

solve both the latent layer representation and multilabel

classification problem in the case of a large number of

classes. We present several illustrative results and use cases

of the proposed method. For example, we demonstrate that a

composite feature space using our classifier scores achieves

better EER with 10% of the training data than the native

feature space with 100% of the training data for a supervised

learning problem. Manual annotation of thousands of videos

is time consuming and expensive. By using knowledge

gained by unsupervised learning, this work significantly

reduces the dependence on supervised training data. We

also demonstrate that, given a fixed minimum performance

criteria, our iterative multilabel learning scheme can learn up

to 92% more concepts meeting or exceeding these criteria

than the baseline.

To the best of our knowledge, this effort is one of the

largest data mining exercises on video data. We believe that

novelty of the proposed approach and the sheer scale of

the analyses significantly enhances the state of the art in

multimedia data mining. Our ongoing effort has focused

on multimodal feature analysis and learning large scale

multimedia semantic networks.
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Figure 4. Examples of Label Confirmation
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Figure 5. Examples of Label Rejection


