
Large-Scale Graph-based Transductive Inference

Amarnag Subramanya∗
University of Washington, Seattle.

Department of Electrical Engineering
asubram@u.washington.edu

Jeff Bilmes
University of Washington, Seattle.

Department of Electrical Engineering
bilmes@ee.washington.edu

Abstract

We consider the issue of scalability of graph-based semi-supervised learning
(SSL) algorithms. In this context, we propose a fast graph node ordering algo-
rithm that improves (parallel) spatial locality by being cache cognizant. This ap-
proach allows for a near linear speedup on a shared-memory parallel machine to
be achievable, and thus means that graph-based SSL can scale to very large data
sets. We use the above algorithm in a multi-threaded multi-core implementation
to solve a SSL problem on a 120 million node graph in a reasonable amount of
time.

1 Introduction

In semi-supervised Learning (SSL) small amounts of labeled data are used with large amounts of
unlabeled data for training classifiers. For a survey of SSL algorithms, see [1, 2]. In many appli-
cations, such as speech recognition, while annotating training data is time-consuming, tedious and
error-prone, large amounts of unlabeled data is obtained very easily. As a result in SSL we have
access to large amounts of unlabeled data and thus the issue of scalability is a critical issue for wide
deployment of SSL. In this paper we focus on graph-based SSL algorithms [1] where the assump-
tions is that the labeled and unlabeled samples are embedded within a low-dimensional manifold
expressed by a graph. In [3, 4] we proposed a new algorithm for graph-based SSL called measure
propagation (MP) which addresses some of the drawbacks of the current state-of-the-art.

The problem of scalability has not received much attention in SSL (in particular graph-based SSL).
[5] suggests an algorithm for improving the induction speed in the case of graph-based algorithms.
[6] solves a graph transduction problem with 650,000 samples. To the best of our knowledge, the
largest graph-based problem solved to date had about 900,000 samples (which includes both labeled
and unlabeled data) [7]. Clearly, this is a fraction of the amount of unlabeled data at our disposal. For
example, on the Internet alone, we create 1.6 billion blog posts, 60 billion emails, 2 million photos
and 200,000 videos every day [8]. In this paper, we use the standard phone classification problem to
show how graph-based algorithms (in particular MP) may be scaled to very large problems. We note
that our approach would work for any iterative graph-based algorithm (such as label propagation).
We believe that speech recognition is an ideal application for SSL and in particular graph-based SSL
on account of two reasons – (a) human speech is produced by a small number of articulators and
thus amenable to representation by a low-dimensional manifold [9], and (b) annotating speech data
is time-consuming, tedious, costly, and often error prone.

∗Now at Google Research, Google Inc. asubram@google.com

1

2 Graph-based SSL
Given a graph G = (V,E) over m samples of which the first l samples are labeled and remaining
samples are unlabeled, MP is based on minimizing the following objective

C(p, q) =
l∑
i=1

DKL

(
ri||qi

)
+ µ

m∑
i=1

∑
j∈N ′ (i)

w′ijDKL

(
pi||qj

)
− ν

m∑
i=1

H(pi).

where H(p) ad DKL(p||q) are the Shannon entropy and Kullback-Leibler divergence respectively.
ri, pi and qi are all multinomial distributions (in general they can be any unsigned measure, see [4]).
Here ri, i ∈ {1, · · · , l} is an encoding of the labels, pi(y) and qi(y) represent the probability that
vertex i belong to class y. The qi’s are introduced to make the objective amenable for optimization
using alternating minimization (AM). µ, ν > 0 are hyperparameters whose choice we discuss in
section 4. Finally, w′ij =

[
W

′
]
ij

and W
′

= W + αIn, N ′
(i) = {{i} ∪ N (i)} and α ≥ 0.

α, which is a hyper-parameter, plays an important role in ensuring that pi and qi are close ∀ i at
convergence. Our results from [3, 4] suggest that setting α = 2 ensures that p∗i (y) = q∗i (y), ∀ i, y
(assuming p∗ and q∗ are the optimal solutions). The first term in C encourages qi for the labeled
vertices to be close to the labels, ri, the last term encourages higher entropy pi’s. The second term,
in addition to acting as a graph regularizer, also acts as glue between the p’s and q’s. It is also
possible to show (see [4]) that the update equations for solving C are given by

p
(n)
i (y) =

exp{ µγi

∑
j w
′
ij log q(n−1)

j (y)}∑
y exp{ µγi

∑
j w
′
ij log q(n−1)

j (y)}
and q(n)

i (y) =
ri(y)δ(i ≤ l) + µ

∑
j w

′

jip
(n)
j (y)

δ(i ≤ l) + µ
∑
j w

′
ji

where γi = ν + µ
∑
j w

′

ij . For more information on this objective see [3, 4].

3 Parallelism and Scalability to Large Datasets
3.1 Multiple Threads with Shared Memory

From the above update equations it can be seen that one set of measures is held fixed while the
other set is updated without any required communication amongst set members, so there is no write
contention. This immediately yields a T ≥ 1-threaded implementation where the graph is evenly
T -partitioned and each thread operates over only a sizem/T = (l+u)/T subset of the graph nodes.
We first attempted a naive multi-threaded implementation of MP and measured its performance on
a graph with 1.4 million vertices. We ran a timing test on a 16 core symmetric multiprocessor with
128GB of RAM, each core operating at 1.6GHz, and no more than one thread per core. The number
of threads T was varied within the set {1, . . . , 16}. In each case running 3 iterations of AM (i.e., 3
each of p and q updates). Each experiment was repeated 10 times, and we measured the minimum
CPU time over these 10 runs (total CPU time only was taken into account). The speedup for T
threads is typically defined as the ratio of time taken for single thread to time taken for T threads.
The solid (black) line in figure 1(a) represents the ideal case (a linear speedup), i.e., when using T
threads results in a speedup of T . The pointed (green) line shows the actual speedup of the above
procedure, typically less than ideal due to inter-process communication and poor shared L1 and/or
L2 microprocessor cache interaction and/or poor translation lookaside buffer (TLB) use. When
T ≤ 4, the speedup (green) is close to ideal, but for increasing T the algorithm diminishes away
from the ideal case.

Our contention is that the sub-linear speedup is due to the poor machine cognizance of the algo-
rithm. At a given point in time, suppose thread t ∈ {1, . . . , T} is operating on node it. The
collective set of neighbors that are being used by these T threads are {∪Tt=1N (it)} and this, along
with nodes ∪Tt=1{it} (and all memory for the associated measures), constitute the current working
set. The working set should be made as small as possible to increase the chance it will fit in the
microprocessor caches, but this becomes decreasingly likely as T increases since the working set is
monotonically increasing with T . Our goal, therefore, is for the nodes that are being simultaneously
operated on to have a large amount of neighbor overlap thus minimizing the working set size. This
can be cast as an optimization problem in a number of ways: the goal could be to find a partition
(V1, V2, . . . , Vm/T) of V that minimizes maxj∈{1,...,m/T} | ∪v∈Vj N (v)|. With such a partition, we

2

Algorithm 1 Graph Ordering Algorithm
Select an arbitrary node v.
while there are any unselected nodes remaining do

Let N (v) be the set of neighbors, and N 2(v) be the set of neighbors’ neighbors, of v.
Select a currently unselected v′ ∈ N 2(v) such that |N (v) ∩ N (v′)| is maximized. If the
intersection is empty, select an arbitrary unselected v′.
v ← v′.

end while

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Number of Threads

sp
ee

d−
up

Linear Speed−Up
Re−Ordered Graph
Original Graph

2 4 6 8 10 12 14 16
3.5

4

4.5

5

5.5

6

6.5

Number of Threads

lo
g(

CP
U

Ti
m

e)

After Re−Ordering
Before Re−Ordering

Figure 1: (a) speedup vs. number of threads for the TIMIT graph (see section 4). The process was
run on a 128GB, 16 core machine with each core at 1.6GHz. (b) The actual CPU times in seconds
on a log scale vs. number of threads for with and without ordering cases.

may also order the subsets so that the neighbors of Vi would have maximal overlap with the neigh-
bors of Vi+1. We then schedule the T nodes in Vj to run simultaneously, and schedule the Vj sets
successively.

Of course, the time to produce such a partition cannot dominate the time to run the algorithm itself.
Therefore, we propose a simple fast node ordering procedure (Algorithm 1) that can be run once
before the parallelization begins. The algorithm orders the nodes such that successive nodes are
likely to have a high amount of neighbor overlap with each other and, by transitivity, with nearby
nodes in the ordering. It does this by, given a node v, choosing another node v′ (from amongst v’s
neighbors’ neighbors, meaning the neighbors of v’s neighbors) that has the highest neighbor overlap.
We need not search all V nodes for this, since anything other than v’s neighbors’ neighbors has no
overlap with the neighbors of v. Given such an ordering, the tth thread operates on nodes {t, t +
m/T, t+2m/T, . . . }. If the threads proceed perfectly synchronously (which we do not enforce) the
set of nodes being processed at any time instant are {1 + jm/T, 2 + jm/T, . . . , T + jm/T}. This
assignment is beneficial not only for maximizing the set of neighbors being simultaneously used,
but also for successive chunks of T nodes since once a chunk of T nodes have been processed, it is
likely that many of the neighbors of the next chunk of T nodes will already have been pre-fetched
into the caches. With the graph represented as an adjacency list, and sets of neighbor indices sorted,
our algorithm is O(mk3) in time and linear in memory since the intersection between two sorted
lists may be computed inO(k) time. This is typically even better thanO(m logm) since k3 < logm
for large m.

We ordered graph nodes obtained from the TIMIT corpus (a standard speech corpus, see [10, 4])
and ran timing tests as explained above. In this case, one 25ms window of speech corresponded
to one graph node, where successive windows have a 15ms overlap (a standard value in the speech
recognition literature). The time required for node ordering is also counted in each timing run —
specifically, all timing numbers reported when the graph ordering algorithm is run includes the
time to perform the graph ordering algorithm. Results are shown in figure 1(a) (pointed red line)
where the results are much closer to ideal, and there are no obvious diminishing returns like in the
unordered case. Running times are given in figure 1(b). Moreover, the ordered case showed better
performance even for a single thread T = 1 (CPU time of 539s vs. 565s for ordered vs. unordered
respectively, on 3 iterations of AM).

3

We conclude this section by noting that (a) re-ordering may be considered a pre-processing (offline)
step, (b) the SQ-Loss algorithm may also be implemented in a multi-threaded manner and this is
supported by our implementation, (c) our re-ordering algorithm is general and fast and can be used
for any graph-based algorithm where the iterative updates for a given node are a function of its
neighbors (i.e., the updates are harmonic w.r.t. the graph [11]), and (d) while the focus here was on
parallelization across different processors on a symmetric multiprocessor, this would also apply for
distributed processing across a network with a shared disk.

4 Results on Large Datasets
In [10, 4] we showed how the above reordering algorithm can be used with a multi-threaded imple-
mentation of MP to solve a SSL problem with 120 million samples on a single machine (16 core
symmetric multiprocessor with 128GB of RAM). In addition, and as a result, we also showed that
MP outperforms previously proposed approaches (specifically label propagation, LP) for which it
was feasible to run on such a large data set. While the objective of that paper was more to show
that MP outperforms LP, we note that the graph ordering algorithm was used both for MP and for
LP and achieved comparable improvements in performance. We therefore content that our proce-
dure provides a practical scheme for ordering the nodes in a variety of graph-based message-passing
algorithms, including algorithms that have a very different purpose such as belief propagation for
solving inference in graphical models. We note also that ours was the first attempt at solving a SSL
problem of this scale and magnitude.

References
[1] O. Chapelle, B. Scholkopf, and A. Zien, Semi-Supervised Learning. MIT Press, 2007.

[2] X. Zhu, “Semi-supervised learning literature survey,” tech. rep., Computer Sciences, University of
Wisconsin-Madison, 2005.

[3] A. Subramanya and J. Bilmes, “Soft-supervised text classification,” in EMNLP, 2008.

[4] A. Subramanya and J. Bilmes, “Entropic graph regularization in non-parametric semi-supervised classifi-
cation,” in NIPS, 2009.

[5] O. Delalleau, Y. Bengio, and N. L. Roux, “Efficient non-parametric function induction in semi-supervised
learning,” in Proc. of the Conference on Artificial Intelligence and Statistics (AISTATS), 2005.

[6] M. Karlen, J. Weston, A. Erkan, and R. Collobert, “Large scale manifold transduction,” in International
Conference on Machine Learning, ICML, 2008.

[7] I. W. Tsang and J. T. Kwok, “Large-scale sparsified manifold regularization,” in Advances in Neural
Information Processing Systems (NIPS) 19, 2006.

[8] A. Tomkins, “Keynote speech.” CIKM Workshop on Search and Social Media, 2008.

[9] A. Jansen and P. Niyogi, “Semi-supervised learning of speech sounds,” in Interspeech, 2007.

[10] A. Subramanya and J. Bilmes, “The semi-supervised switchboard transcription project,” in Interspeech,
2009.

[11] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using gaussian fields and harmonic
functions,” in Proc. of the International Conference on Machine Learning (ICML), 2003.

4

