
Discontinuous Seam-Carving for Video Retargeting

Matthias Grundmann1,2 Vivek Kwatra2 Mei Han2 Irfan Essa1

grundman@cc.gatech.edu kwatra@google.com meihan@google.com irfan@cc.gatech.edu
1Georgia Institute of Technology, Atlanta, GA, USA 2Google Research, Mountain View, CA, USA

http://www.cc.gatech.edu/cpl/projects/videoretargeting

Abstract

We introduce a new algorithm for video retargeting that
uses discontinuous seam-carving in both space and time
for resizing videos. Our algorithm relies on a novel
appearance-based temporal coherence formulation that al-
lows for frame-by-frame processing and results in tem-
porally discontinuous seams, as opposed to geometrically
smooth and continuous seams. This formulation optimizes
the difference in appearance of the resultant retargeted
frame to the optimal temporally coherent one, and allows
for carving around fast moving salient regions. Addition-
ally, we generalize the idea of appearance-based coher-
ence to the spatial domain by introducing piece-wise spa-
tial seams. Our spatial coherence measure minimizes the
change in gradients during retargeting, which preserves
spatial detail better than minimization of color difference
alone. We also show that per-frame saliency (gradient-
based or feature-based) does not always produce desirable
retargeting results and propose a novel automatically com-
puted measure of spatio-temporal saliency. As needed, a
user may also augment the saliency by interactive region-
brushing. Our retargeting algorithm processes the video se-
quentially, making it conducive for streaming applications.

1. Introduction
Video retargeting has gained significant importance with
the growth of diverse devices (ranging from mobile phones,
mobile gaming and video devices, TV receivers, internet
video players, etc.) that support video playback with vary-
ing formats, resolutions, sizes, and aspect ratios. Video re-
targeting resizes the video to a new target resolution or as-
pect ratio, while preserving its salient content.

Recent approaches to video retargeting aim to preserve
salient content and avoid direct scaling or cropping by re-
moving “unwanted” or redundant pixels and regions [1, 13].
Such a removal (or carving) of redundant regions results in
complex non-euclidean transformations or deformations of
image content, which can lead to artifacts in both space and
time. These artifacts are alleviated by enforcing spatial and
temporal consistency of salient content in the target video.
In this paper, we propose an algorithm for video retargeting
that is motivated by seam carving techniques [1, 13] and
augments those approaches with several novel ideas.

Our treatment of video is significantly different than the
surface carving approach of [13]. We observe that geomet-
ric smoothness of seams across the video volume - while
sufficient - may not be necessary to obtain temporally co-
herent videos. Instead we optimize for an appearance-
based temporal coherence measure for seams. We also ex-
tend a similar idea to spatial seams, which allows them to
vary by several pixels between adjacent rows (for vertical
seams). Such a formulation affords greater flexibility than
continuous seam removal. In particular, the seams can cir-
cumvent large salient regions by making long lateral moves
and also jump location over frames if the region is moving
across the frame (see Fig. 6a).

To improve the quality of spatial detail over seams as
pixels are carved, we propose to use a spatial coherence
measure for the visual error that gives greater importance to
the variation in gradients as opposed to the gradients them-
selves. This improves upon the forward energy measure of
[13]. We demonstrate the effectiveness of this formulation
on image resizing applications as well.

Saliency contributes significantly to the outcome of any
video retargeting algorithm. Avidan et al. [1] noted that no
“single energy function performs well across all images”.
While we mostly rely on a simple gradient-based saliency
in our examples, we also show results that use an alterna-
tive fully automatic definition of saliency. This novel defi-
nition of saliency is based on the image based approach of
[11]. To achieve temporal coherence between frames, we
segment the video into spatio-temporal regions and aver-
age the frame-based saliency over each spatio-temporal re-
gion. We also provide examples generated by user-supplied
weighting of spatio-temporal regions. We employ the seg-
mentation algorithm of [5], extended to video volumes [7],
for computing spatio-temporal regions, but could have also
used segmentations from [8, 12, 16]. In principle, our
method is not limited to a single definition of saliency or
a specific video segmentation algorithm. While the use
of spatio-temporal saliency improves our results consider-
ably we will show that even on per-frame, gradient-based
saliency our algorithm outperforms existing approaches.

An additional advantage of our resizing technique is that
it processes the video sequentially, i.e. on a frame-by-frame
basis, and therefore is scalable to arbitrarily long or stream-
ing videos. This allows us to improve the computation
time by a factor of at least four compared to the fastest re-
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Figure 1: Six frames from the result of our retargeting algorithm applied to a sub-clip of “Apologize”, c©2006 One Republic. Original
frames on left, retargeted results on right. We use shot boundary detection to separate the individual shots before processing.

ported numbers to-date and achieve performance of about
two frames per second.

2. Related Work

The use of seam carving for image resizing was introduced
by Avidan and Shamir [1] and later extended for video retar-
geting by Rubinstein et al. [13]. Seams are vertical or hor-
izontal chains of pixels that are successively removed from
or added to an image to change its width or height, respec-
tively. To preserve content, seams are chosen as least energy
paths through the image. In video, seams are generalized
to surfaces that carve through the spatio-temporal volume.
Space-time surface carving is also used by Chen and Sen [2]
for video summarization. An issue with space-time carv-
ing is the memory required for processing video volumes,
which is usually addressed by approximation techniques:
[2] carve the video in small chunks, while [13] take a
banded multi-resolution approach; both use a graph cut al-
gorithm to solve for the surface.

Seam carving is very effective but needs external
saliency maps in cases where salient objects lack texture.
Wolf et al. [19] present a video retargeting technique that
combines automatic saliency detection with non-uniform
scaling using global optimization. They compute a saliency
map for each frame using image gradients as well as face
and motion detection. In contrast, we treat the detection
of saliency itself as an orthogonal problem. Primarily, we
use per-frame gradient-based saliency similar to [1] but
we also generate a temporally coherent saliency based on
space-time regions derived from the image-based approach
of [11]. We examine the difference of both saliency defini-
tions in Fig. 10 and our video.

Other methods that use optimization for generating vi-
sual summaries include [15, 17, 18]. Optimization methods
use constraints based on the desired target size. Therefore,
they need to be re-run for each desired size. In contrast,
seam or surface carving approaches as our proposed algo-
rithm and [1, 13] allow retargeting to the chosen size in

real-time. Preventing aliasing artifacts in retargeting was
recently addressed by [9] by using a warping technique
known as EWA splatting. While producing good results,
the approach is mainly constraint to static cameras (e.g. line
constraints are not tracked).

Gal et al. [6] present a feature-aware texture mapping
technique that avoids distorting important features, sup-
plied as user-specified regions, by applying non-uniform
warping to the texture image. This is similar to our ap-
proach of using regions for saliency. However, our auto-
matic segmentation-aided region selection method scales to
video. For video segmentation, we build upon Felzenszwalb
and Huttenlocher’s graph-based image segmentation [5, 7].
However other video segmentations techniques such as [12]
could also be used.

Automatic pan-and-scan and smart cropping have been
proposed by [3, 10, 4]. Recently, [14] introduced a method
to find an optimal combination of cropping, non-isotropic
scaling and seam carving for image retargeting w.r.t. a cost
measure similar to [15]. The approach is extended to video
by applying the method to key-frames and interpolating the
operations between them. We demonstrate equivalent re-
sults using our approach and compare to [14].

3. Video Retargeting by Seam Removal

Our video retargeting algorithm resizes a video by sequen-
tially removing seams from it. Seams are 8-connected paths
of pixels with the property that each row (vertical seams) or
each column (horizontal seams) is incident to exactly one
pixel of the seam. Hence removing or duplicating a verti-
cal seam changes the width of a frame by exactly one col-
umn. Alternating N times between seam computation and
removal for a w × h frame yields N disjoint seams, effec-
tively computing a content-aware resize for 2N target sizes
{(w + N) × h}, . . . , {(w + 1) × h}, {w × h}, . . . , {(w −
N) × h}. This is in contrast to optimization methods that
solve for each target size independently. The pre-computed
seams enable real-time content-aware resizing as removal
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(a) x-t slice (b) Frame 7 (c) Frame 36 (d) Frame 37

Figure 2: Traced x-t slice (at knee height) of a person running
from left to right (from Weizmann Action Recognition dataset),
obtained using background subtraction. Every vertical surface is
a seam in the x-t plane (red) and would intersect with the space-
time shape of the person. In contrast our temporally discontinuous
solution (green) stays in front of the person (b) and jumps between
adjacent frames (c)→ (d) to overcome spatial distortion.

or duplication of seams only involves fast memory moves.
Rubinstein et al. [13] presented an approach generaliz-

ing the seam in an image to a surface in the video volume
by extending the image seam carving approach of [1]. The
proposed solution for altering the width of the video is a
vertical surface. The cross-sections of this surface form a
vertical seam in every frame and a temporal seam in the
x − t plane for any fixed y-location1. Therefore, a funda-
mental property of the surface is that it can only move by at
most one pixel-location between adjacent frames.

Consider the case of an object of interest moving from
left to right over the video sequence as shown in Fig. 2.
Any vertical surface has to start to the right of the object
and end to the left of it. In other words, the seam surface
is bound to intersect with the object of interest and thereby
distort it. This behavior is not limited to this particular case
but occurs in general when there is considerable motion in
the video perpendicular to the surface – the surface simply
cannot keep up with the motion in the video.

In the context of seam carving, temporal coherence is
established if adjacent resized frames are aligned like in
the original video. If we optimize for temporal coherence
alone, an obvious solution is to pick the same seam for ev-
ery frame: all pixels that are neighbors along the temporal
dimension in the original video will stay neighbors in the re-
sized video. This is akin to non-uniform scaling, where se-
lective columns may be removed (with blending) to shrink
the video. However, this by itself will introduce spatial ar-
tifacts because in contrast to non-uniform scaling, seams
group in non-salient regions instead of being distributed
evenly over the columns of a video.

We experimented propagating seams based on tracking
non-salient objects in the video. However this does not nec-
essarily lead to good results. In case of vertical seams, if the
tracked object does not cover the whole height of the video
the propagated seam will intersect with the background at
a multitude of different positions resulting in seam that

1Conversely, a horizontal surface forms a horizontal seam in every
frame and a temporal seam in the y − t plane for any fixed x-location.

get pulled apart in different directions over time (too frag-
mented).

Surface carving relaxes the optimal temporal coherence
criterion, i.e. replicating the same seam in all frames, by
allowing the seam to vary smoothly over time. In other
words, it imposes a geometric smoothness constraint upon
the seam solution. While this may be a sufficient condition
for achieving temporal coherence, it is not necessary. In-
stead, we show that, it is sufficient (and less restrictive) to
compute a seam in the current frame such that the appear-
ance of the resulting resized frame is similar to the appear-
ance obtained by applying the optimal temporally coherent
seam. Optimizing against this criterion ensures temporally
coherent appearance, but relieves the seams from being ge-
ometrically connected to each other across frames, leading
to temporally discontinuous seams.

Our algorithm processes frames sequentially as follows.
For each pixel in the current frame, we first determine the
spatial and temporal coherence costs (SC and TC) as well as
the saliency (S) cost of removing that pixel. The three cost
measures are linearly combined to one measure M , with a
weight ratio SC :TC :S of 5:1:2 for most sequences. In case
of highly dynamic video content we use a ratio of 5:0.2:2.
Video clip classification based on optical flow magnitude
could automate this choice. We then compute the minimum
cost seams w.r.t. M for that frame using dynamic program-
ming, similar to [1]. By removing or duplicating and blend-
ing N seams from each frame we can change the width of
the video by N columns. Changing the height is achieved
by transposing each frame, computing and removing seams,
and transposing the resulting frames.

3.1. Measuring Temporal Coherence

Assume we successively compute a seam Si in every m×n
frame F i, i ∈ 1, . . . , T . Our objective is to remove a seam
from the current frame so that the resulting (m − 1) × n
frame Ri would be visually close to the most temporally
coherent one, Rc, where Rc is obtained by reusing the pre-
vious seam Si−1 and applying it to the current frame F i.

We use Rc to inform the process of selecting Si through
a look-ahead strategy. For every pixel (x, y), we determine
how much the resulting resized frame Ri would differ from
Rc if that pixel were removed. We use the sum-of-squared-
differences (SSD) of the two involved rows as the measure
of temporal coherence, Tc(x, y):

Tc =
x−1∑
k=0

||F i
k,y−Rc

k,y||2 +
m−1∑

k=x+1

||F i
k,y−Rc

k−1,y||2. (1)

The temporal coherence cost at a pixel reduces to a per-
row difference accumulation that can be determined for ev-
ery pixel before any seams are computed (see Fig. 3). This
allows us to apply the original seam carving algorithm to
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Figure 3: The previous seam Si−1 (red) is applied to current
Frame F i. Removing pixel B results in the row ACDEF . The
optimal temporally coherent seam removes pixel F , so that Rc

would contain ABCDE. The temporal coherence cost for pixel
B is |C −B|+ |D−C|+ |E−D|+ |F −E|, which is the SSD
between the two rows as well as the sum of gradients from B to F .
Original frame from The Duchess, c©2008 Paramount Pictures.

a linear combination of saliency and temporal coherence.
It turns out that temporal coherence integrates the gradi-
ent along the pixels across which the seam jumps between
frames. This is desirable because it means that seams can
move more freely in homogeneous regions. Eq.1 can be ef-
ficiently computed using two m × n integral images. The
left sum in Eq. 1 will be represented recursively by I l

0,y = 0,
I l
x+1,y = I l

x,y + ||F i
x,y − Rc

x,y||2, and the right sum by
Ir
m−1,y = 0, Ir

x−1,y = Ir
x,y + ||F i

x,y − Rc
x−1,y||2, resulting

in Tc = (I l + Ir).

3.2. Measuring Spatial Coherence

Our look-ahead strategy for measuring temporal coherence
may also be applied to the spatial domain. Here, the ques-
tion is how much spatial error will be introduced after re-
moving a seam. The basis of this idea is similar to Rubin-
stein et al.’s [13] proposed forward energy. However, our
formulation leads to a more general model, i.e. piecewise
seams, and is not based on the introduced intensity varia-
tion but the variation in the gradient of the intensity.

We motivate our spatial coherence measure by examin-
ing several different cases in Fig. 4. In (a), there is a step
between A and B as represented by the color difference.
Removing B yields AC, which exhibits the same step as be-
fore, hence no detail is lost2. On the other hand, in (b), high
frequency detail will be lost on removing B. Removing B
in (c) compacts the linear ramp, which is the desired be-
havior as it compresses the local neighborhood without sig-

2Rubinstein et al.’s forward energy is expressed as a difference in in-
tensity and would be large in this case.

A B C

(a) No detail lost

A B C
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A B C

(c) Linearity preserved

Figure 4: (See in color.) Spatial error if pixel B is removed.
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Figure 5: Spatial coherence costs: (a) Removing an interior pixel,
E w.r.t. A. Bottom row DEF becomes DF , therefore the inten-
sity difference before removing E was |D − E| + |E − F | and
is |D − F | afterwards. Between the two rows, the intensity dif-
ference was |A − D| and |B − E| and is |B − D| afterwards.
(b) Removing a border pixel, here D w.r.t. B. In the bottom row
|D−E| becomes |E −F |. (c) Summed spatial transition cost for
piecewise seams. Consider transition A → H . We accumulate
the change in (LHS) gradient magnitudes before (dotted blue) and
after (dashed red) removal (Order: Left to right). We also consider
the symmetric case by accumulating the change in RHS gradient
magnitudes before (solid orange) and after (dashed red) removal.

nificantly changing its appearance. In each of these cases,
the cost of removing B is well represented by the change
in gradient, which is what we use as our measure of spatial
coherence, instead of change in intensity.

Our spatial coherence measure Sc = Sh + Sv consists
of two terms, which quantify the error introduced in the
horizontal and vertical (including diagonal) directions, re-
spectively, by the removal of a specific pixel. Specifically
Sh and Sv are designed to measure the change in gradients
caused by the removal of the pixel. Sh only depends on
the pixel in question and in some sense adds to its saliency,
while Sv depends upon the pixel and its potential best seam
neighbor in the row above. Therefore Sv defines a spatial
transition cost between two pixels in adjacent rows. Sh is
defined such that it is zero for the cases (a) and (c) in Fig. 4
and large for case (b). The equations for interior pixels (E
in Fig. 5a) and border pixels (D in Fig. 5b) are slightly
different, but both measure changes in horizontal gradient
magnitude:

5a: Sh(E) = |D − E|+ |E − F | − |D − F | , and
5b: Sh(D) =

∣∣|D − E| − |E − F |
∣∣.

We define Sv to measure the change in vertical gradi-



ent magnitudes when transitioning between a pair of pixels
in adjacent rows. We treat the involved pixels in a sym-
metric manner to avoid giving undue preference to diagonal
neighbors. Hence, Sv depends on whether the top neighbor
of the pixel in question (say E in Fig. 5a) is its left (A),
center (B), or right (C) neighbor. Fig. 5a corresponds to
Sv(E,A), where:

Sv(E,B) = 0
Sv(E,A) =

∣∣|A−D| − |B −D|
∣∣+∣∣|B − E| − |B −D|

∣∣
Sv(E,C) =

∣∣|C − F | − |B − F |
∣∣+∣∣|B − E| − |B − F |

∣∣.
Piecewise Spatial Seams: We have shown that in order to
achieve temporal coherence, a temporally smooth solution
is not necessary; the appearance based measure Tc is suffi-
cient. A natural generalization of this approach is to apply
a similar idea to the spatial domain, which would lead to
discontinuous spatial seams. For this purpose, we gener-
alize our spatial coherence cost, particularly the transition
cost Sv to an accumulated spatial transition cost that allows
a pixel to consider not just its three neighbors in the row
above but all pixels in that row. An example is shown in
Fig. 5c. For a pixel (xb, y) in the bottom row, the summed
spatial transition cost to pixel (xa, y−1) in the top row (for
the case xa < xb) is:

S′v(xb, xa, y) =
xb−1∑
k=xa

|Gv
k,y−Gd

k,y|+
xb∑

k=xa+1

|Gv
k,y−Gd

k−1,y|

where Gv
k,y = |Fk,y − Fk,y−1| is the vertical gradient

magnitude between pixel (k, y) and its top neighbor, while
Gd

k,y = |Fk,y − Fk+1,y−1| is its diagonal gradient magni-
tude with the top right neighbor. The diagonal terms appear
because previously diagonal gradients become vertical gra-
dients after seam removal. For the example in Fig. 5c, the
first term in the equation above will be |AE−BE|+|BF−
CF | + |CG − DG|, where AE is shorthand for |A − E|.
The cost for the case xa > xb may be defined similarly,
while S′v(x, x, y) = 0. In practice, the optimal neighbor xa

typically lies in a window of ∼ 15 pixels around xb, allow-
ing us to reduce the computational cost from O(m) to O(1).
Another effect of limiting the search window is that we im-
plicitly enforce seams with a limited number of piecewise
jumps in contrast to set of totally disconnected pixels.

Fig. 6 shows examples of both temporally discontinu-
ous and piecewise spatial seams. Fig. 7 demonstrates the
effectiveness of our spatial coherence cost in preserving de-
tail. Fig. 9 shows comparisons with image resizing results
of [13] (examples from their web page), which use their for-
ward energy measure. Fig. 8 shows a similar comparison for
a video example (also from their paper).

c© 2007 Paramount Pictures

(a) Temporally discontinuous seams

c© 2008 Warner Bros. Pictures

(b) Piecewise spatial seams

Figure 6: (a) Camera pans to the right. The new seam (green)
jumps to the new redundant content on right and avoids introduc-
ing artifacts resulting from having to move smoothly through the
whole frame. From Sweeney Todd, c©2007 Paramount Pictures
(b) Piecewise seams (here neighborhood of 11 pixels) have the
freedom to carve around details and therefore prevent artifacts.
From The Dark Knight, c©2008 Warner Bros. Pictures.

(a) with Sc (b) w/o Sc (c) [19]
c© 2007 MGM

(d) [13]

Figure 7: Effect of spatial coherence measure Sc (a) Our algo-
rithm with Sc (without piecewise seams) (b) Our algorithm with-
out Sc (but with [13]’s forward energy); one plane is clearly dis-
torted (c) Our implementation of [19] (d) [13]’s result. Original
frame from Valkyrie, c©2007 MGM.

Figure 8: Video retargeting comparison for gradient based
saliency. Shown is a single frame from a highway video (top).
Our result (bottom-right) is able to preserve the shape of the cars
and poles better than [13]’s result (bottom-left). Even the plate
on the truck saying ”Yellow” is still readable. See accompanying
video for complete result.
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Figure 9: Image retargeting results. Top row shows the original images. In bottom row, images labeled A are [13]’s result, while images
labeled B are our results using the novel gradient-variation based spatial coherence cost. In the pliers (left) example, our result better
respects the curvature in the handle’s shape. For Ratatouille, c©2007 Walt Disney Pictures, (middle) and the snow scene (right), the straight
edges are better preserved in our result (shown zoomed in).

4. Automatic spatio-temporal saliency

There are cases where per-frame gradient based saliency3 is
not sufficient. We can employ higher-level techniques such
as face detection, motion cues or learned saliency [11], but
a major challenge remains in the required temporal coher-
ence for video retargeting. In face detection, for example,
the bounding boxes around faces might change consider-
ably between frames or even miss several ones.

We are interested in designing an automatic saliency
measure that is temporally coherent as well as aligned with
the outlines in the video. The latter requirement is moti-
vated by the fact that local saliency measures do not cap-
ture higher-level context and are inherently sensitive to
noise. Therefore, we propose to average external per-frame
saliency maps over spatio-temporal regions to address both
issues. We obtain spatio-temporal regions for video by ex-
tending [5]’s graph-based image segmentation to video [7],
but any other video segmentation method could be used
as well. We build a 3D graph using a 26-neighborhood
in space-time with edge weights based on color difference.
We then apply the graph-segmentation algorithm to obtain
spatio-temporal regions. The effect of applying our method
to frame-based saliency maps is shown in Fig.10.

If the underlying frame-based saliency method fails to
detect salient content in a majority of frames, the spatio-
temporal smoothing fails as well. In this case we offer a user
interface that allows highlighting salient and non-salient re-
gions by simple brush strokes, which are then automatically
tracked over multiple frames through the spatio-temporal
regions (see Fig. 11).

3We use the sum of absolute values of the pixel’s gradients in our work.

c© 2007 TriStar Pictures

Figure 10: Effect of our spatio-temporal saliency. Left col-
umn: Saliency maps computed based on [11] for adjacent frames
(top/bottom) independently (white = salient content). Notice the
abrupt changes in face, coat and right brick wall. Middle column:
Saliency averaged over spatio-temporal regions results in smooth
variations across frames. Right column: Effect on video retarget-
ing. Top uses spatio-temporal saliency, bottom uses gradient based
saliency. Original frame: 88 minutes, c©2007 TriStar Pictures.

(a) User-selected regions
c© 2007 TriStar Pictures

(b) Auto-selected regions

Figure 11: User selects regions in a single frame (a) by roughly
brushing over objects of interest (indicated by dashed line). These
regions are automatically extrapolated to other frames (b) of the
video. See accompanying video. Original frame from 88 minutes,
c©2007 TriStar Pictures.

5. Results

We demonstrate our results for video retargeting based on
gradient-based saliency and spatio-temporal saliency (auto-



(a) Our result (b) Result from [9] (c) Result from [14]

Figure 12: Comparison to [9] and [14]. Content is highly dy-
namic (athlete performing 720o turn and fast moving camera). In
[9], the background gets squished on the left, the waterfront at the
bottom gets distorted, and the result is less sharp overall compared
to our result. The approach of [14] distorts the head and essentially
crops the frame, while our algorithm compresses the background.

matic as well as user-selected) in the accompanying video.
Fig. 12 shows comparisons to other techniques for a highly
dynamic video. Fig. 1 and Fig. 13 (top three rows) show
frames from example videos that were retargeted using
gradient-based saliency. Fig. 13 (bottom row) and Fig. 14
were retargeted by user-selected regions as shown. In both
cases it took less than 10 seconds to select the regions.

Our approach provides the user control over determin-
ing what regions to carve in case automatic approaches fail.
Fig. 14 demonstrates the usefulness of user-selected regions
for non-salient content. Fig. 15 shows that we can achieve
results comparable to and with sharper detail than [14] – we
only used per-frame gradient-based saliency in this case.

6. Conclusion and Limitations
We have presented a novel video retargeting algorithm
based on carving discontinuous seams in space and time
that exhibits improved visual quality, affords greater flex-
ibility, and is scalable for large videos. We achieve 2 fps
on 400x300 video compared to 0.3-0.4 fps for [13] and 0.5
fps for our implementation of [19]. We have presented the
novel idea of using spatio-temporal regions for automatic or
user-guided saliency. We have also demonstrated the bene-
fits of our novel gradient-variation based spatial coherence
measure in preserving detail.

We can handle videos with long shots as well as stream-
ing videos using frame-by-frame processing. However, if
spatio-temporal saliency is also employed, then the video
length is limited by the underlying video segmentation al-
gorithm, which in our case is ∼ 30− 40 seconds.

Fast-paced actions or highly-structured scenes might
have little non-salient content. In these cases, just like other
approaches, our video retargeting might produce unsatisfac-
tory results as shown in our accompanying video.

The sequential nature of our video retargeting algorithm
can occasionally cause the seam in the initial frames to
be sub-optimal w.r.t. the later frames. This can sometimes
cause several seams to jump their location across time in the

same frame, which leads to a visible temporal discontinuity.
However, this problem can be alleviated by looking up the
saliency information forward in time (around 5 frames) and
averaging it with the current saliency.
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c© 2008 Paramount Pictures

c© 2007 Paramount Pictures

c© 2008 Warner Bros. Pictures

Figure 13: Video retargeting results. Original frame on left. Retargeted result(s) on right. The top three rows show results obtained by our
discontinuous seam carving computed on gradient-based saliency. Bottom row shows video retargeted using user-selected regions (marked
in green, complexity caused by segmentation errors due to blocking artifacts). Original frames from: The Duchess, c©2008 Paramount
Pictures (1st row), Sweeney Todd, c©2007 Paramount Pictures (3rd row), The Dark Knight, c©2008 Warner Bros. Pictures (4th row).

(a) Saliency map (b) Result A
c© 2007 Miramax Films

(c) User selected regions (d) Result B (e) [13]
Figure 14: Sometimes it is vital to preserve non-salient objects because their removal introduces unpleasant motion. Result A (b) removes
the white pillar because it is marked non-salient by the saliency map (a). If we constrain the solution by user-selected regions (c) the pillar
is preserved and the outcome is temporally coherent – Result B (d). Please see video for comparison. Compared to [13] (e) our result does
not squish the actor and or introduce a bump in the pillar. Original frame from No Country for Old Men, c©2007 Miramax Films.

A  B  C 

A  B  C 

B  C 

B  C 

Figure 15: Comparison to [14]. The original image A is resized by the method of [14] using a combination of seam carving, cropping and
non-isotropic scaling (B). We achieve similar results (C) using our seam carving alone applied to simple gradient-based saliency. Because
we avoid scaling and cropping our results have sharper details (see zoomed-in portion).


