
Sparse Spatiotemporal Coding for Activity
Recognition

Thomas Dean, Rich Washington and Greg Corrado

Department of Computer Science

Brown University

Providence, Rhode Island 02912

CS-10-02

March 2010





Sparse Spatiotemporal Coding for Activity Recognition

Thomas Dean1, Rich Washington1, and Greg Corrado2

1 Google Inc.
2 Stanford University

Abstract. We present a new approach to learning sparse, spatiotemporal features
and demonstrate the utility of the approach by applying the resulting sparse codes
to the problem of activity recognition. Learning features that discriminate among
human activities in video is difficult in part because the stable space-time events
that reliably characterize the relevant motions are rare. To overcome this problem,
we adopt a multi-stage approach to activity recognition. In the initial preprocess-
ing stage, we first whiten and apply local contrast normalization to each frame of
the video. We then apply an additional set of filters to identify and extract salient
space-time volumes that exhibit smooth periodic motion. We collect a large cor-
pus of these space-time volumes as training data for the unsupervised learning of
a sparse, over-complete basis using a variant of the two-phase analysis-synthesis
algorithm of Olshausen and Field [1997]. We treat the synthesis phase, which
consists of reconstructing the input as a sparse — mostly zero coefficient – lin-
ear combination of basis vectors, as an L1-regularized least-squares problem. We
found most existing algorithms for solving the L1-regularized least-squares prob-
lem to be slow and perform poorly at the task of learning codes that are spatially
oriented and temporally diverse in terms of transformations and velocities. To re-
duce the time required in learning — and most importantly the time required for
reconstruction in subsequent production use — we adapted existing algorithms
to exploit potential parallelism through the use of readily-available SIMD hard-
ware. To obtain better codes, we developed a new approach to learning sparse,
spatiotemporal codes in which the number of basis vectors, their orientations, ve-
locities and the size of their receptive fields change over the duration of unsuper-
vised training. The algorithm starts with a relatively small, initial basis with min-
imal temporal extent. This initial basis is obtained through conventional sparse
coding techniques and is expanded over time by recursively constructing a new
basis consisting of basis vectors with larger temporal extent that proportionally
conserve regions of previously trained weights. These proportionally conserved
weights are combined with the result of adjusting newly added weights to rep-
resent a greater range of primitive motion features. The size of the current basis
is determined probabilistically by sampling from existing basis vectors accord-
ing to their activation on the training set. The resulting algorithm produces bases
consisting of filters that are bandpass, spatially oriented and temporally diverse
in terms of their transformations and velocities. We demonstrate the utility of our
approach by using it to recognize human activity in video.

1 Introduction

This work focuses on learning sparse, over-complete spatiotemporal codes in the spirit
of Olshausen and Field [1], Hyvärinen et al [2], and others. Our initial investigation into



this area was inspired by the work of Cadieu and Olshausen [3] on learning transfor-
mational invariants from the statistics of natural movies. We adopt a generative model
similar to that of Olshausen and Field [1] and an alternating-optimization algorithm
analogous to the analysis-synthesis model proposed by Mumford [4] and used by Ol-
shausen and field in their SPARSENET implementation.

Following the trend in sparse coding, we substitute L1-regularized least-squares
algorithms for the conjugate gradient solver used in SPARSENET. In particular, we de-
velop several variants of the one-at-a-time coordinate-wise descent algorithm of Fried-
man et al [5] and experiment with the feature-sign algorithm of Lee et al [6]. We also
employ various methods for shaping the variance of the activations — the coefficients
of the basis vectors in solutions to the least-squares problem — to ensure that all of the
basis vectors are contributing.

Spatiotemporal bases that span more than a few frames of video have large numbers
of weights and are slow to train. We present an algorithm that accelerates sparse coding
by recursively constructing basis vectors, adjusting only a fraction of the weights at
any given time. The resulting bases exhibit a wide range of orientations, scales and
velocities, and outperform bases trained in a conventional manner.

We found it to be the case that interesting motion is quite rare even in videos selected
for illustrating motion, and so we experimented with several interest-point operators to
extract 3-D patches more likely to contain motion of the sort characteristic of human
behavior. We use the space-time interest-point operator of Dollár et al [7] as a filter for
extracting space-time volumes that exhibit periodic motion, and then use large collec-
tions of these volumes for learning sparse codes.

In this domain, processing speed is an issue for two reasons: First, each algorithm
variant requires a different set of parameter values to learn codes that optimize its own
performance on activity recognition. Exploring the space of algorithms and their pa-
rameters requires us to learn many thousands of models, a prohibitive process unless
learning individual models can be accelerated. Of course, some of the parameter search
can be carried in parallel — for example, running the same algorithm on a mesh over
the parameter space — using a cluster of servers, but much of work is exploratory and
involves sequential hypothesis testing. Second, our primary goal is not to learn models
that merely visualize well, but to learn models that perform well on a task that necessar-
ily involves very large data sets. To improve performance both in learning sparse codes
and in applying them in practice, we adapt the L1-regularized least-squares solver de-
scribed by Raina et al [8] to exploit not only the parallelism inherent in the coordinate-
descent algorithm as done in the orignal version, but also data parallelism, by rewriting
the algorithm in vectorized style that allows us to leverage the power of existing linear
algebra packages.

To evaluate our approach, we applied the resulting sparse codes to recognizing hu-
man activity. We adapted software developed by Piotr Dollár and performed the initial
testing on his facial-expression dataset [7] and the Weizmann human-action dataset [9].
We then took codes trained on data from these two datasets and applied them to the
KTH human-action dataset [10] achieving recognition error comparable to state-of-the-
art methods. In leave-one-out experiments where we both trained and tested on the KTH



dataset, our approach exceeds the performance of state-of-the-art methods, including
our own published results [11].

2 Preprocessing

We apply several preprocessing steps to the data prior to its use in learning sparse codes
or inferring coefficients to reconstruct a 3-D patch as a sparse, linear combination of
basis vectors. First, we apply a linear transform to each frame so that the pixels are
uncorrelated (spatially) and their variances equal. This whitening step is used to re-
move correlations in the data that a learning algorithm would otherwise have to account
for and typically are not of interest. Some neuroscientists believe the primate early vi-
sual system employs a gain-control mechanism whereby the response of each cell is
normalized by the integrated activity of its neighbouring cells. Brady and Field [12]
provide evidence suggesting that such a mechanism reduces cell-response variability
both within and between scenes, as well as reducing the entropy of the response distri-
bution resulting in a more efficient transfer of information. We therefore apply a method
of local-contrast normalization which simulates this neural mechanism and thereby re-
duces undesirable variability in postprocessing. These two preprocessing steps, image
whitening and local contrast normalization, provide a very rough approximation to the
information being transferred by the optic tract leading from the retina and ultimately
entering the striate cortex.

In working on video categorization involving large datasets where we were em-
ploying a previously-trained basis, we found the overhead of running the whitening and
contrast normalization filters on video data to be prohibitively time consuming. We ex-
perimented with a number of simpler normalization techniques and ultimately settled
on the strategy of extracting cuboids from the raw pixels and then normalizing the pixels
in a sample of cuboids from each video to have zero mean and unit variance and trun-
cating values greater than two-standard deviations from the mean. This operation added
only a few milliseconds to the total time spent in sparse coding a sample of cuboids,
and the new results presented in this paper all use this expeditious alternative; however,
we continue to use whitening and local contrast normalization for learning bases.

We found it difficult to efficiently learn useful spatiotemporal codes from random
3-D patches extracted from video, and so we experimented with several interest-point
operators to extract space time volumes likely to contain motion of the sort characteris-
tic of human behavior. We use the space-time interest-point operator of Dollár et al [7]
as a filter for extracting space-time volumes that exhibit periodic motion, and collect a
large set of these volumes for learning sparse codes. Each video is first convolved with a
2-D Gaussian smoothing kernel applied along the spatial dimensions. The result is then
convolved with a quadrature pair of 1-D Gabor filters applied temporally. A detector
is tuned to respond whenever the variation in local image intensities contain periodic
frequency components. The response function for the detector is defined as follows:

R = (I ∗ g ∗ h1)2 + (I ∗ g ∗ h2)2

where g(x, y;σ) is the 2-D smoothing kernel, {h1, h2} is the quadrature pair deter-
mined by h1(t; τ, ω) = − cos(2πtω)e−t2/τ2

and h2(t; τ, ω) = − sin(2πtω)e−t2/τ2
.



Following [7], we set ω = 4/τ , and thus σ and τ correspond, respectively, to the spatial
and temporal scale of the detector. A 3-D patch or cuboid is extracted at each local max-
ima of the filter response function using non-max-suppression to control for overlap.

We also experimented with an interest point detector developed by Laptev and Lin-
deberg [13]. Laptev and Lindeberg extend the idea of Harris-corner [14] detectors in
the spatial domain to space-time interest points characterized by strong variation in
both the spatial and temporal dimensions, e.g., the abrupt change in velocity when a
ball is kicked. They do so by expanding a linear scale-space representation of the image
with a matrix of first-order spatial and temporal derivatives, and searching for regions
with significant eigenvalues. The method is extended to be scale invariant by apply-
ing a normalized spatiotemporal Laplace operator. We found the Laptev and Lindeberg
detector to be too restrictive for activity recognition and the Dollar et al detector to in-
clude most if not all of the points detected by Laptev and Lindeberg while excluding
most irrelevant motion.

3 Sparse Coding

Olshausen and Field [15] present their method of learning a sparse basis to represent
natural images as solving the following optimization problem:

B∗ = arg min
B

〈min
A

‖X − AB‖2
2 + λS(A)〉 (1)

where X is an M × L data matrix consisting of M cuboids of L pixels each, B is an
N ×L matrix of N basis vectors, A is an M ×N matrix of coefficients intended to re-
construct X as a linear combination of the basis vectors, S(A) is a sparsity penalty, and
λ is a constant that trades reconstruction error for sparsity. For many standard penalty
functions, the objective function is convex in A if we hold B fixed and convex in B
if we hold A fixed, and so solutions to Equation 1 are often solved using an iterative
process in which each iteration consists of two steps: In the first step, we fix the coef-
ficients and solve for the basis vectors subject to a set of linear constraints that control
for the size of the basis weights. In the second step, we fix the basis vectors and solve
for the coefficients in an attempt to reconstruct the input modulo some variant of weight
penalty designed to encourage sparsity. Learning consists of alternating between these
two steps until convergence or some performance threshold is achieved.

Mumford [4] describes this iterative process as an analysis-synthesis loop, which he
conjectures plays an important role in early visual processing. In the case of learning
a sparse code for natural images, the first step — solving for the basis vectors — con-
stitutes a form of analysis which produces an explanation in the form of a generative
model of the data; we call this the analysis step. The second step —- solving for the
coefficients — corresponds to synthesizing the data from a given fixed basis; we call
this the synthesis step.

Olshausen and Field [1] implemented a version of this analysis-synthesis loop which
learns a sparse, over-complete code whose basis vectors correspond to filters that are
bandpass and oriented and that resemble Gabor functions. The original Olshausen and
Field work assumed a Cauchy prior on the coefficients, introduced a differentiable reg-
ularization term to implement this prior, and used a conjugate-gradient solver in the



synthesis step:

minimizeA J(A|B) = ‖X − AB‖2
2 + λ

∑
i,j

log(1 + A2
i,j) (2)

In the analysis step, they fix the coefficients and take one step of gradient descent toward
solving the following minimization:

minimizeB J(B|A) = ‖X − AB‖2
2

Without imposing some constraint, this procedure will cause the basis weights to grow
without bound. Olshausen and Field deal with this by adapting the L2 norm of each
basis vector independently so the coefficients are maintained at an appropriate level
and the separate variances over the training data in the activation of basis vectors are
approximately equal.3 Their implementation of this algorithm is called SPARSENET.

3.1 L1 Regularization

In the last few years, there has been a good deal of work in machine learning and statis-
tics using L1 regularization to induce sparsity. Since the L1 term is not differentiable,
much of the effort has gone into developing new algorithms for solving the correspond-
ing optimization problem. We have experimented extensively with the method of one-
at-a-time coordinate-wise descent [5] to solve for the coefficients in the synthesis step.
Instantiations of this method are called coordinate-descent algorithms and solve the
following alternative to the optimization in Equation 2:

minimizeA J(A|B) = ‖X − AB‖2
2 + λ‖A‖1 (3)

where ‖A‖1 =
∑

i,j |Ai,j |. In these experiments, we started with the basic SPARSENET
algorithm and substituted a L1-regularized coordinate-descent algorithm for the conjugate-
gradient solver used by Olshausen and Field. We call the algorithm LASSONET in
homage to SPARSENET and the acronym LASSO (for Least Absolute Selection and
Shrinkage Operator), which has become a catchall term describing a class of methods
for estimating least-squares parameters subject to an L1 penalty. Convergence using
coordinate descent is much faster than the original Olshausen and Field algorithm, but
still relatively slow in working with large datasets and thousands of basis vectors.

Lee et al [6] describe a method for learning sparse codes that works by alternating
between solving an L1-regularized least-squares problem and an L2-constrained least-
squares problem. To solve the first they introduced the feature-sign algorithm based
on the insight that once the signs of the coefficients are known, the problem reduces
to a standard, unconstrained quadratic optimization problem, which can be solved ef-
ficiently. They guess the signs by performing line searches using a conjugate gradi-
ent solver. To solve the L2-constrained least-squares problem, they reduce the number
of optimization variables considerably by solving the Lagrange dual using Newton’s
method.

3 A basis vector is said to be activated with respect to a given cuboid if the associated coefficient
in the linear combination of basis vectors reconstructing the cuboid is non-zero.



We ran experiments substituting the feature-sign and Lagrange-dual algorithms for
the analysis and synthesis steps in LASSONET. Solving for the optimal basis vectors
B given fixed coefficients A reduces to minimizing ‖X − AB‖2

F — where ‖.‖F is the
Frobenius norm — subject to the constraint that

∑L
i=1 B2

i,j < c for all 1 ≤ i, j ≤ N
assuming N basis vectors. This constraint on the basis vectors was introduced for nu-
merical stability and to avoid degenerate solutions. In our experience, incorporating
the constraint directly into the objective function, as in the Lagrange-dual algorithm,
is more robust than the adaptive methods used in SPARSENET, and no additional nor-
malization step is required to keep the activation variance approximately equal over all
of the basis vectors.

3.2 Parallel Algorithms

Despite being very fast, we were disappointed with the reconstruction error that we
were able to achieve using the feature-sign algorithm. In an attempt to address the speed
versus accuracy tradeoff, we wrote a multi-threaded C++ version of coordinate descent
that enabled us to gain some data parallelism — one thread per data vector up to some
fixed number of threads — on machines with multiple cores. The C++ implementation
averaged 1/3 the reconstruction error for the same degree of sparsity — approximately
5% non-zero coefficients was our target. Unfortunately, it took eight cores to match the
speed of feature-sign.

Next, inspired by recent work of Raina et al [8] in developing parallel solvers to
run on graphics processors. Their basic algorithm is a relatively straightforward imple-
mentation of coordinate descent with the addition of a simple-but-effective line search
to select the gradient step. Raina et al implemented one version in straight C and a sec-
ond version in C with Nvidia CUDATMlanguage extensions that compile to run on the
Nvidia line of graphics processor (GPU) hardware.

We took the straight C version and rewrote it as vectorized Matlab code (see the
listing in Appendix A), and thus were able to take advantage two sources of parallel
hardware. First, we were able to leverage Intel’s Math Kernel Library (MKL) which
is an architecture-tuned library which includes the Basic Linear Algebra Subroutines
(BLAS) and is available in Matlab running on Intel hardware. In addition to exploiting
MKL’s optimized use of the processor cache, MKL can take advantage of multiple-
cores and the vector processing hardware available through the use of streaming SIMD
extension (SSE) instructions. Second, we were able to experiment with a version of
BLAS developed by Nvidia to exploit GPUs (CuBLAS) by using a trial copy of the
Jacket Engine for Matlab developed by AccelerEyesTM. Jacket allows us write stan-
dard Matlab code that uses the native BLAS (MKL in the case of machines running
Intel chips) if no acceleration hardware is available or CuBLAS if there is a GPU
available available on the target machine. Ease of use coupled with quite remarkable
improvements in performance make the Jacket system extremely attractive.

We also ported our vectorized Matlab code to C++ using the Eigen C++ template
library (see the listing in Appendix B for comparison). Eigen produces single-threaded
code which is ideal for our production environment, and is able achieve some perfor-
mance gains by leveraging the streaming SIMD extension instructions (SSE) that run on
AMD and Intel chips to exploit parallelism in elementary matrix and vector operations.



For our timing experiments, we used a Dell Precision T3400 workstation with two
Intel 2.40 GHz Core 2 Quad Q6600 processors running Linux Ubuntu 8.0.4 and Mat-
lab 7.8.0.347 (R2009a). The C++ implementations — the multi-threaded C++ version
and the single-threaded Eigen code — were compiled with gcc 4.2.4. The GPU ex-
periments used CUDA 2.2 running on an Nvidia GeForce GTX 280. Jacket 1.1.1 was
used to run the Vectorized Matlab code on the GPU thereby leveraging CuBLAS. Here
are the results averaged over multiple runs — there was little of no variation — for
six implementations of three algorithms: Lee et al’s feature-sign written in Matlab, our
multi-threaded C++ implementation of coordinate descent, and four implementations
of Raina et al’s coordinate descent with its optimized gradient step. All runs were per-
formed using 864 basis vectors, each vector with a spatial extent of 13× 13 and a tem-
poral extent of 7 frames, and 1024 cuboids. The size of the dataset was selected since
we use a sample of 1024 cuboids extracted from the first thirty seconds of a video as
the foundation for computing descriptors used to categorize videos in our experimental
video-categorization work.

Implementation Hardware 4 Cores 1 Core MSE
Lee et al, 2007, CPU 37.4s 40.7s 0.250
Multi-thread C++ CPU 60.0s 165.1s 0.086
Vectorized Matlab CPU 36.7s 54.1s 0.088
Vectorized Matlab GPU — 3.8s 0.088
Raina et al, 2009 GPU — 10.0s 0.088
Vectorized Eigen CPU — 58.7s 0.088

The multi-threaded C++ exploits data parallelism by spawning separate threads for
each cuboid; it can be compiled with the NTHREADS constant set to limit the maximum
number of threads, and hence cores, it can make use of. The Raina et al CUDA code ex-
ploits parallelism in the implementation of coordinate descent, but not data parallelism,
it codes each cuboid in sequence. The vectorized Matlab implicitly allows us to exploit
data parallelism and parallelism in the structure of coordinate descent. The degree to
which it exploits either is entirely dependent on how well BLAS or, more generally,
the underlying linear algebra package, is able to take advantage of parallelism in the
elementary operations on matrices and vectors. The Raina et al CUDA implementation
in coding for a particular cuboid terminates as soon as it cannot improve on the cur-
rent reconstruction, and is guaranteed to reach an optimum. In contrast, the vectorized
Matlab continues until it cannot improve on the reconstruction of any cuboid, and so
rarely terminates before exhausting its maximum number of iterations (see Line 48 in
the listing in Appendix A).

Monitoring core usage, all of the four cores were pinned to the max running the
multi-threaded C++ code with NTHREADS set to four. When you give Matlab all four
cores, Intel’s MKL version of BLAS is written to take advantage of multiple cores, but
it doesn’t pin them like the C++ code; all eight of the cores show some activity, but in
the 50-75% range, and the performance gain isn’t nearly what the C++ code managed.
The vectorized Matlab code didn’t take too much of a hit when we reduced the number
of cores from four to one, which is a credit to Intel’s MKL version of BLAS. The C++
code scales pretty much linearly with the number of cores.



Fig. 1. Graphic depicting a sample of four of the 2048 basis vectors learned by LASSONET in a
trial that performed well on our activity-recognition task.

The GTX provides a good deal more SIMD hardware to exploit, but Eigen can still
achieve considerable advantage from the Intel vector units using the SSE instructions.
The Eigen implementation is roughly equivalent to the vectorized Matlab code using
MKL and the multi-threaded C++ running on four cores. For the exploratory exper-
iments described in this paper, we used the vectorized Matlab running under Jacket
and using CuBLAS. We chose a basis consisting of 864 vectors for our timing exper-
iments; however, have been able to achieve high-accuracy on a human-activity recog-
nition benchmark using as few as 256 vectors. The Eigen C++ implementation runs in
about seven seconds on the same machine mentioned above using a basis consisting of
256 vectors with spatial extent 13× 13 and temporal extent of 3 frames, and applied to
dataset consisting of 1024 cuboids.

3.3 Recursive Sparse Coding

We have considerable experience with learning sparse spatiotemporal codes using dif-
ferent combinations of coding algorithm, interest-point operators for extracting space-
time volumes, and basis vectors of varying spatial and temporal extent. If the basis vec-
tors are too large, learning is slow and the resulting codes tend to generalize poorly; if
they are too small, the codes tend to be too general and they discriminate poorly. We are
not the first to generate sparse, spatiotemporal codes from video; van Hateren and Rud-
erman [16] apply independent components analysis to obtain codes resembling moving
sinusoids windowed by Gaussian envelopes (Gabors), and Olshausen [17] was able to
compute convolution codes that exhibit similar characteristics by applying matching-
pursuit [18] in space and time. Olshausen [17] used a form of temporal smoothing to
encourage the formation of spatiotemporal features that change gradually over time,



Fig. 2. The center frames of the receptive fields of 256 out of 2048 basis vectors learned by
RECURSIVE LASSONET. The basis vectors capture a wide range of oriented filters undergoing
diverse transformations.

in a manner similar to Földiák’s method for learning invariants from sequences [19]
and Wiskott and Sejnowski’s slow-feature analysis [20]. The best-performing codes ob-
tained using LASSONET tend to look very different (see Figure 1) from those reported
by Olshausen and van Hateren and Ruderman. Spectral analysis of the basis vectors re-
veals an entirely appropriate distribution of velocities but hardly any spatial orientation
— the individual frames resemble symmetric Gaussians rather than Gabors.

Using our algorithms and training on random 3-D patches for a considerable dura-
tion, we were able to obtain sparse, spatiotemporal codes that appeared roughly similar
to those reported by Olshausen and van Hateren and Ruderman; they did not, however,
perform particularly well on the activity recognition task. We noticed, however, that
when we applied any of the three algorithms to learning a (temporally) degenerate code
consisting of a single frame trained using 3-D cuboids extracted using the Dollár et al
filter, we observed the usual variety of oriented, bandpass filters, but with the difference
that due to the max-suppression step in extracting interest points a Gaussian envelope
fit to the filters tended to be centrally located in the frame (see Figure 2). This suggested
a simple iterative training method that learns a basis one frame at a time.

The function RECURSIVE LASSONET implements such a frame-by-frame scheme
as follows:



Fig. 3. RECURSIVE LASSONET consists of learning a sequence of models with each successive
model having a larger temporal extent and an increased number of basis vectors. In each recursive
step, the central frames are conserved while the outer frame coefficients are altered by stochastic
gradient descent.

– base case — we start with a basis B1 consisting of |B1| basis vectors with a tem-
poral extent of one that code for a single frame; we use just the center frames from
a sample of cuboids for training — see graphic in Figure 3 for an illustration;

– recursive step — given the basis Bn−1 which consists of |Bn−1| vectors, we create
a new basis with |Bn| > |Bn−1| basis vectors; the default method uses a simple ex-
ponential growth model |Bn| = |Bn−1|G, where G > 1 is the exponential growth
factor;

– temporal expansion — each basis vector v in Bn is constructed from a randomly
selected basis vector u in Bn−1; we increase the temporal extent of u to span 2n−1
frames by adding two new frames to those of u with randomly initialized weights
that sandwich the frames of u; the weights from u that reside within this sandwich
are called the conserved region of v;

– proportional weight conservation — apply the chosen sparse-coding algorithm to
adjust the new weights with the following twist; in the analysis step, hold the
weights in the conserved region constant, but then prior to the synthesis step, rescale
all of the basis vectors — including the weights in the conserved region — to have
unit magnitude.

In a slightly more sophisticated version used to generate the models for the experiments
described in Section 4.2, the proportionally conserved region of the expanded basis in
the recursive step is selected by sampling with replacement from the previous basis in
the sequence of models using an empirically derived proposal distribution. This pro-
posal distribution was obtained by estimating the frequency with which basis vectors
in the previous basis contribute to reconstructing the appropriate portions of cuboids
that these basis vectors span both spatially and temporally. The coefficients obtained
from fitting the current basis to a sample of training data are used as pseudo counts to
generate this proposal distribution.

Unlike our earlier top performing bases, RECURSIVE LASSONET produces bases
in which the individual frames of the multi-frame basis vectors are oriented and appear
Gabor like. Figure 4 summarizes the spectral analysis of the basis vectors of a typical
result produced by RECURSIVE LASSONET in terms of velocities and orientations.



Fig. 4. The left plot shows the distribution of velocities obtained from a spectral analysis of the
basis vectors. The plot on the right approximates the distribution of orientations.

4 Experiments

For exploratory experiments, we used the facial-expression dataset described by Dollár et
al [7]. Our initial experiments in learning to recognize human activity were performed
using the Weizmann human-action dataset described by Gorelick et al [9]. For compar-
ing the performance of our features against other published results, we used the KTH
human-activity dataset described by Schuldt et al [10]. Each dataset is divided into two
or more disjoint subsets of video clips for testing, and each clip is assigned a label that
characterizes its associated activity. The facial-expression dataset consists of 192 clips,
5 expressions and 4 subsets divided according to subject and lighting conditions. The
Weizmann dataset consists of 93 clips and 10 activities divided into two subsets featur-
ing different subjects. The KTH dataset consists of 599 clips of 25 subjects performing
six activities (walking, jogging, running, boxing, hand-waving and hand-clapping) in
four different scenarios (outdoors, outdoors with scale variation, outdoors with sub-
jects wearing different clothes and indoors); the KTH dataset is divided into 25 subsets
according to subject.

4.1 Methods

As prolog to testing, we learn a basis and then use it to generate a set of descriptors, one
set of descriptors for each video clip. The following steps are performed in preparation
for testing:

1. whiten and apply local contrast normalization to each frame of each video clip;
2. extract a sample of cuboids from each video clip using the method of Dollár et al;
3. learn a sparse-coding basis using RECURSIVE LASSONET and the sampled cuboids

as training data;
4. generate a descriptor for each cuboid corresponding to the coefficients inferred

using the L1-regularized least-squares solver used in the sparse-coding algorithms;



5. optionally, apply singular-value decomposition to a sample of descriptors to gener-
ate a set of principal components to reduce the dimensionality of the descriptors;

We use early stopping to avoid over fitting in learning the basis.
For testing, we adopt the leave-one-out (LOO) protocol that was used in the evalua-

tion of the other methods with which we compare ours. In each round of LOO evaluation
on the KTH dataset, we train on 24 of the 25 subsets and test on the remaining one. In
Dean et al [11] we used a bag-of-words approach similar to the one used by Dollár et
al [7]. In this approach, we run ten trials, where each trial is composed of 25 rounds
such that for each disjoint subset sj of video clips we perform the following steps:

1. use k-means to cluster the descriptors in the complement Cj = ∪i 6=jsi of sj re-
turning K centroids indexed 1, ...,K, where K is the number of so-called visual
words;

2. for each cuboid in each clip find the centroid closest to the cuboid’s descriptor and
return the centroid’s index;

3. for each clip, construct a vector of length K whose kth component is the number
of cuboids in the clip that map to the kth centroid; this vector (histogram) is used
to represent the clip as a bag of visual words;

4. to label a clip c in sj with associated histogram hc use the label of the clip c′ in Cj

whose histogram hc′ is nearest hc according to the χ2 distance metric;
5. the recognition error is just the number of incorrectly labeled clips divided by the

number of clips in sj ;

This bag-of-words approach worked reasonably well on the KTH dataset, but it was
not clear we were making the best use of the sparse codes we had worked so hard to
generate. We eliminated optional dimensionality reduction step in constructing indi-
vidual cuboid descriptors and the vector quantization steps in which we construct the
dictionary of visual words and quantize each cuboid descriptor by computing its closest
word. In the new approach, we don’t have to run multiple trials because the process is
completely deterministic. We run 25 rounds of LOO such that for each disjoint subset
sj of video clips we perform the following steps:

1. for each clip, suppose that we extract N cuboids and suppose that we have a basis
consisting of M basis vectors; our sparse coding algorithm returns an N × M
matrix of coefficients C such that Cij is the jth coefficient used to reconstruct the
ith cuboid — C is quite sparse, typically no more than 5% of the coefficients are
non-zero;

2. set all of the non-zero coefficients in C to 1 and then sum the columns of C to
obtain a 1 × M vector d where dk is the number of times the kth basis vector
contributed to reconstructing one of the N cuboids; d is the descriptor that we use
summarize the clip from which the cuboids were extracted;

3. as before Cj = ∪i 6=jsi is the complement of sj ; to label a clip c in sj with associ-
ated descriptor dc use the label of the clip c′ in Cj whose descriptor dc′ is nearest
dc according to the χ2 distance metric;

4. the recognition error is just the number of incorrectly labeled clips divided by the
number of clips in sj ;



Our goal is not to find a better classifier, but rather to find better features for clas-
sification. For this reason, we use a simple nearest-neighbor classifier for all of our
comparisons.

4.2 Results

The following table compares the reported performance of several approaches to ac-
tivity recognition on the KTH dataset — including our earlier work — using the LOO
protocol with our best model obtained by training with LASSONET and the feature-
sign algorithm to compute descriptors:

Percentage Correct Box Clap Wave Jog Run Walk Mean Notes
This paper, 2009 79 86 93 78 82 99 85.73 1NN
Dean et al, 2009 81 80 86 69 89 81 81.0 1NN
Wang and Li, 2009 88 81 83 70 73 91 81.0 —
Niebles et al, 2008 98 86 93 53 88 82 83.33 LDA
Ke et al, 2007, 84 79 88 66 81 88 80.9 —
Dollár et al, 2005 — — — — — — 80.17 SVM
Dollár et al, 2005 80 82 84 63 73 89 78.5 1NN
Ke et al, 2005, 81 36 44 69 56 92 62.97
Schuldt et al, 2004 98 60 74 60 55 84 71.72 SVM

Our results are most appropriately compared with Dollár et al [7] and Wang and Li [21]
since their work primarily concerns feature selection, and both our results and their
results shown here are based on a 1-NN classifier. Schuldt et al [10] use the space-time
interest points of Laptev and Lindeberg [13] and support-vector machines rather than
1-NN for classification. Dollár et al [7] use the same interest-point operator as we do
— they introduced the operator in the referenced paper — and a descriptor based on
histograms of gradients in x, y and t analogous to Lowe’s [22] 2-D Scale Invariant
Feature Transform (SIFT) descriptor. Wang and Li may gain some advantage from the
fact that they crop the region of the video containing the person performing the activity.
Niebles et al [23] also use Dollár’s features, and their results are included as an example
of how more sophisticated classifiers can leverage spatiotemporal features.

5 Discussion

It seems reasonable to conjecture that RECURSIVE LASSONET works as well as it
does in part for the same reasons that greedy layer-by-layer learning works in so-called
deep networks [24, 25]. Weights trained early in the process continue to do a good job
of reconstructing frames in the core of the basis vector, while gradient adjustments
concentrate on the outermost frames added in the temporal expansion step. Vectors that
don’t serve to represent new aspects of the data can be weeded out by analyzing the
degree to which they are activated during reconstruction.

Regarding the improvement in performance when we moved from the more compli-
cated method of [11] involving additional steps for dimensionality reduction and vector



quantization, it would seem that in the case of the larger bases which required dimen-
sionality reduction, the linear transformation erased the advantage of the original sparse
code. And, in the case of smaller codes which didn’t require dimensionality reduction,
it seems likely the vector quantization step was unnecessary and only served to intro-
duce an additional source of noise. In our experiments exploring possible alternatives
to whitening and local contrast normalization as a preprocessing step in production, we
found that we could obtain performance on a par with our earlier results by using the
raw pixels — unsigned eight-bit integers — with no preprocessing and then summing
the maximum coefficients from each reconstruction or sorting the the coefficients in
descending order and taking the top K where K = 4 worked quite well in practice.

Nonlinear operations like taking the maximum or thresholding are often useful
when working on noisy data [26]. The descriptor we finally adopted and responsible
for the new results reported in this paper — computed in Step 2 — did not perform par-
ticularly well with the raw, unpreprocessed input. We experimented with faster, simpler
forms of preprocessing and eventually settled on rescaling the raw pixels in each cuboid
to be zero-mean and unit variance, and truncating any values more than two standard
deviations from the mean to eliminate outliers. This simpler form of preprocessing can
be performed in a couple of milliseconds, and, using the descriptor responsible for the
results reported in this paper, we are able to achieve nearly 85% accuracy.

The generality of the features learned in our approach is evident from the fact we can
achieve good human activity classification even when we learn codes from data sets of a
very different character. Following Cadieu and Olshausen [3], we learned sparse codes
using video from the BBC Motion Gallery — primarily clips of stampeding wildebeests
and stalking leopards — and then applied these codes to achieve than approximately
84% accuracy on the KTH dataset of human behaviors. We also learned sparse codes
using the considerably smaller Weizmann dataset and then used these codes to achieve
a similar level of performance on the KTH dataset. See http://www.cs.brown.
edu/people/tld/publications/09/ijdem/ for a more detailed look at the
several hundred experiments are summarized in this paper.

In conclusion, sparse coding of cuboids extracted using Dollár et al’s interest point
operator appears to be an effective and tractable solution to summarizing human activity
in short videos. We have also applied unsupervised learning methods similar to those
explored in Niebles et al [23] to categorize video taken from German television by van
Hateren and Ruderman [16], and — at least qualitatively, which without some form
of ground truth is about all you can say — the induced categorizations appear to be
quite reasonable. Our next step is to apply these methods to more challenging video
collections that feature a wider range of background, significant clutter and intermittent
occlusion.
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Appendix A: Matlab Implementation

1 f u n c t i o n X = c o o r d d e s c e n t (A, Y)
2
3 % Dete rmine b a s i s / d a t a s i z e s :
4 [ num uni t s , num bases ] = s i z e (A ) ;
5 [ num uni t s , num cases ] = s i z e (Y ) ;
6 % I n i t i a l i z e t h e c o e f f i c i e n t s :
7 X = z e r o s ( num cases , num bases ) ;
8 % S p e c i f y maximum i t e r a t i o n s :
9 m a x i t e r = 128 ;

10 % S p e c i f y s p a r s i t y p a r a m e t e r :
11 gamma = 0 . 9 5 0 0 0 ;
12 % S p e c i f y p r o g r e s s t o l e r a n c e :
13 t o l e r a n c e = 0 . 0 0 0 0 0 1 ;
14 % Precompute s t a t i c components :
15 AtA = A’∗ A;
16 YtA = Y’ ∗ A;
17 Pj = d i a g ( AtA ) ’ ;
18 % Number p o s s i b l e s t e p s i z e s :
19 num alphas = l e n g t h ( a l p h a s ) ;
20 % Add no−p r o g r e s s s t e p s i z e :
21 a l p h a s p l u s z e r o = [ a l p h a s 0 . 0 ] ;
22 n o p r o g r e s s = num alphas +1;
23
24 % Apply c o o r d i n a t e d e s c e n t :
25 f o r i t e r = 1 : m a x i t e r
26 % Compute t h e g r a d i e n t v e c t o r :
27 Y minus Ax t A = YtA − X ∗ AtA ;
28 Qj = Y minus Ax t A + repmat ( Pj , [ r , 1 ] ) .∗ X;
29 X s t a r = ( Qj + s i g n ( − Qj ) ∗ gamma ) . / r epmat ( Pj , [ r , 1 ] ) ;
30 % Zero o u t s m a l l c o e f f i c i e n t s :
31 X s t a r ( abs ( − Qj ) < gamma ) = 0 ;
32 D = X s t a r − X;
33 % P r e p a r e f o r t h e l i n e s e a r c h :
34 DtAtA = D ∗ AtA ’ ;
35 av = sum ( 0 . 5 ∗ DtAtA .∗ D, 2 ) ;
36 bv = sum(− Y minus Ax t A .∗ D, 2 ) ;
37 % Find t h e m i n i m i z i n g s t e p s i z e :
38 minHx = gamma ∗ norms (X , 2 ) ;
39 % Solve s t e p e q u a t i o n s i n p a r a l l e l :
40 Hx = ones ( num alphas , num cases ) ;
41 f o r k = 1 : num alphas
42 Hx ( k , : ) = av ∗ a l p h a s ( k ) ∗ a l p h a s ( k ) + . . .
43 bv ∗ a l p h a s ( k ) + gamma ∗ norms (X + a l p h a s ( k ) ∗ D, 2 ) ;
44 end
45 [ Hx , I ] = min ( Hx , [ ] , 1 ) ;
46 I ( ˜ ( Hx’ < minHx ∗ ( 1 − t o l e r a n c e ) ) ) = n o p r o g r e s s ;
47 % T e r m i n a t e loop i f no p r o g r e s s :
48 i f a l l ( I == n o p r o g r e s s ) ; b r e a k ; end
49 % Apply t h e g r a d i e n t s t e p u p d a t e :
50 X = X + repmat ( a l p h a s p l u s z e r o ( I ) ’ , [ 1 , num bases ] ) . ∗ D;
51 end



Appendix B: Eigen Implementation

1 vo id c o o r d i n a t e d e s c e n t ( Mat r ixXf A, Mat r ixXf Y, Mat r ixXi & X) {
2
3 / / De te rmine b a s i s / d a t a s i z e s :
4 i n t n u m u n i t s = A. rows ( ) ;
5 i n t num bases = A. c o l s ( ) ;
6 i n t num cases = Y. c o l s ( ) ;
7
8 / / I n i t i a l i z e t h e c o e f f i c i e n t m a t r i x :
9 X = Matr ixXf : : Zero ( num cases , num bases ) ;

10
11 / / S p e c i f y maximum i t e r a t i o n s :
12 i n t m a x i t e r = 128 ;
13 / / S p e c i f y s p a r s i t y p a r a m e t e r :
14 f l o a t gamma = 0 . 9 5 0 0 0 ;
15 / / S p e c i f y p r o g r e s s t o l e r a n c e :
16 f l o a t t o l e r a n c e = 0 . 0 0 0 0 0 1 ;
17
18 / / I n i t i a l i z e t h e m a t r i x AtA :
19 Matr ixXf AtA = A. t r a n s p o s e ( ) ∗ A;
20
21 / / I n i t i a l i z e v e c t o r o f g r a d i e n t s t e p s :
22 i n t num alphas = 5 ;
23 Matr ixXf a l p h a s ( 1 , num alphas ) ;
24 a l p h a s << 1 . 0 0 0 0 , 0 . 3 0 0 0 , 0 . 1 0 0 0 , 0 . 0 3 0 0 , 0 . 0 1 0 0 ;
25 Matr ixXf a l p h a s p l u s z e r o ( 1 , num alphas + 1 ) ;
26 a l p h a s p l u s z e r o << a l p h a s , 0 . 0 0 0 ;
27
28 / / Used t o t r a c k t h e s t e p i n d i c e s :
29 Matr ixXi a l p h a I n d e x ( 1 , num cases ) ;
30 / / I ndex i n d i c a t i n g no p r o g r e s s :
31 i n t n o p r o g r e s s = num alphas ;
32 / / Used t o r e p l i c a t e a l p h a s t e p s :
33 Matr ixXf a l p h a r e p l i c a t o r = Mat r ixXf : : Ones ( num bases , 1 ) ;
34
35 / / V ec to r o f d i a g o n a l e l e m e n t s :
36 Matr ixXf P = ( AtA . d i a g o n a l ( ) ) . t r a n s p o s e ( ) ;
37 / / Used t o r e p l i c a t e d i a g o n a l e l e m e n t s :
38 Matr ixXf d i a g o n a l r e p l i c a t o r = Mat r ixXf : : Ones ( num cases , 1 ) ;
39 / / R e p l i c a t e t h e d i a g o n a l e l e m e n t s :
40 Matr ixXf P r e p l i c a t e d = d i a g o n a l r e p l i c a t o r ∗ P ;
41
42 / / I n i t i a l i z e t h e Ma t r i x YtA :
43 Matr ixXf YtA = Y. t r a n s p o s e ( ) ∗ A;
44
45 / / I n t e r m e d i a t e m a t r i x r e s u l t s :
46 Matr ixXf Y minus Ax t A ( num uni t s , num cases ) ;
47 Matr ixXf Q( num uni t s , num cases ) ;
48 Matr ixXf d e l t a ( num uni t s , num cases ) ;
49 Matr ixXf DtAtA ( num uni t s , num cases ) ;
50
51 / / Terms used i n t h e l i n e s e a r c h e s :
52 Matr ixXf av ( num cases , 1 ) ;
53 Matr ixXf bv ( num cases , 1 ) ;



54 Matr ixXf minHx ( num cases , 1 ) ;
55 Matr ixXf Hx ( num cases , 1 ) ;
56 Matr ixXf Xn ( num cases , num bases ) ;
57
58 / / C r e a t e v e c t o r o f s e l e c t e d s t e p s :
59 Matr ixXf b e s t a l p h a s ( 1 , num cases ) ;
60
61 / / Apply c o o r d i n a t e d e s c e n t :
62 f o r ( i n t i t e r = 0 ; i t e r < m a x i t e r ; ++ i t e r ) {
63 / / Compute t h e g r a d i e n t v e c t o r :
64 Y minus Ax t A = YtA − X ∗ AtA ;
65 Q = Y minus Ax t A + P r e p l i c a t e d . cwise ( ) ∗ X;
66 f o r ( i n t i = 0 ; i < Q. rows ( ) ; ++ i )
67 f o r ( i n t j = 0 ; j < Q. c o l s ( ) ; ++ j )
68 i f ( f a b s (Q( i , j ) ) < gamma )
69 Q( i , j ) = 0 . 0 ;
70 e l s e i f ( Q( i , j ) < 0 )
71 Q( i , j ) += gamma ;
72 e l s e
73 Q( i , j ) −= gamma ;
74 / / Now compute t h e d e r i v a t i v e :
75 d e l t a = (Q. cwise ( ) / P r e p l i c a t e d ) − X;
76 / / Compute t e r m s f o r l i n e s e a r c h :
77 DtAtA = d e l t a ∗ AtA . t r a n s p o s e ( ) ;
78 / / Compute a = 0 . 5 ∗ d ’ ∗ AtA ∗ d :
79 av = ( ( DtAtA . cwise ( ) ∗ d e l t a ) ∗ 0 . 5 ) . rowwise ( ) . sum ( ) ;
80 / / Compute b = − y minus Ax t A ∗d :
81 bv = ( Y minus Ax t A . cwise ( ) ∗ d e l t a ∗ −1 .0 ) . rowwise ( ) . sum ( ) ;
82 / / F ind t h e m i n i m i z i n g s t e p s i z e :
83 minHx = gamma ∗ X. cwise ( ) . abs ( ) . rowwise ( ) . sum ( ) ;
84 / / R e s t o r e t h e b e s t s t e p i n d i c e s :
85 a l p h a I n d e x . s e t C o n s t a n t ( n o p r o g r e s s ) ;
86 / / Ca r ry o u t t h e l i n e s e a r c h :
87 f o r ( i n t k = 0 ; k < num alphas ; ++k ) {
88 f l o a t a l p h a = a l p h a s ( k ) ;
89 Xn = X + d e l t a ∗ a l p h a ;
90 Hx = av ∗ a l p h a ∗ a l p h a +
91 bv ∗ a l p h a + Xn . cwise ( ) . abs ( ) . rowwise ( ) . sum ( ) ∗ gamma ;
92 f o r ( i n t i = 0 ; i < num cases ; ++ i ) {
93 i f ( Hx ( i , 0 ) < ( minHx ( i , 0 ) ∗ (1 − t o l e r a n c e ) ) ) {
94 a l p h a I n d e x ( 0 , i ) = k ;
95 }
96 }
97 minHx = minHx . cwise ( ) . min ( Hx ) ;
98 }
99 / / E x t r a c t s e l e c t e d g r a d i e n t s t e p s :

100 f o r ( i n t i = 0 ; i < num cases ; ++ i ) {
101 b e s t a l p h a s ( 0 , i ) = a l p h a s p l u s z e r o ( a l p h a I n d e x ( i ) ) ;
102 }
103 / / Apply t h e g r a d i e n t s t e p u p d a t e :
104 X += ( a l p h a r e p l i c a t o r ∗ b e s t a l p h a s ) . t r a n s p o s e ( ) . cwise ( ) ∗ d e l t a ;
105 }
106 }



References

1. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy
employed by V1? Vision Research 37(23) (1997) 3311–3325
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