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Abstract

In this paper we describe our efforts to build a Mandarin Chi-
nese voice search system. We describe our strategies for data
collection, language, lexicon and acoustic modeling, as well as
issues related to text normalization that are an integral part of
building voice search systems. We show excellent performance
on typical spoken search queries under a variety of accents and
acoustic conditions. The system has been in operation since
October 2009 and has received very positive user reviews.
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1. Introduction

Over the last years there has been a tremendous amount of
work in developing voice search systems in English [1]. How-
ever, comparatively little effort has been expended on other lan-
guages. The languages of East and South East Asia pose special
challenges to both users and machines: The writing systems
of Chinese, Japanese, Korean, Vietnamese, and Thai (among
others) do not indicate word boundaries as clearly as modern
European languages and require special word segmenters for
processing by machine. The use of complex scripts with large
character inventories make these languages hard to type in gen-
eral, and even more so on small mobile devices. Given the spe-
cial difficulty of typing in these languages, the availability of
speech input can provide tremendous benefits to users.

As part of our ongoing internationalization efforts, to make
voice search available broadly, our first decision was to iden-
tify what language should be our first target beyond English.
As we looked at several metrics, such as number of speakers,
annual growth of search traffic, statistics on the use of smart
telephones etc., Mandarin quickly emerged as the most suitable
candidate. Furthermore, we believed that Mandarin would ex-
pose our speech recognition infrastructure to many internation-
alization problems such as:

e Support for non-Latin scripts

e Dealing with mixed lexicons (Mandarin, English) and
code switching

e Use of segmenters in text processing

e Data collection issues

e Language modeling problems

The system described in this paper represents our first ef-
forts in expanding Google Search by Voice beyond the English
language and provides us with a template for internationaliza-
tion that we have successfully applied to other languages and
locales.

Copyright © 2010 ISCA

354

hzhsch@gmail.com,

xiliu.tang@gmail.com

pedro@google.com

The outline of the paper is as follows. In section 2 we
describe our data collection strategy. In section 3 we present
details of how our language models were built. We continue
in section 4 describing our lexical modeling choices. In sec-
tion 5 we describe our acoustic modeling approach. Finally we
present our experimental results in section 6 and conclude with
section 7.

2. Acoustic data collection and selection

The choice of an acoustic training corpus is critical for the suc-
cess of a speech recognition application. Ideally the data col-
lected must be as close as possible to the data observed in a de-
ployed production system. For this reason commercially avail-
able corpora are often not useful, since they are not matched
to our task. To address these problems, we decided to collect
our own data. We use a client/server application consisting of a
client application running on an Android mobile telephone with
an intermittent connection to a server. The system is further
described in greater detail in [2].

The application presents queries for users to read and
caches the recorded audio data for batch upload to the server,
when a network connection is available. We selected more than
100,000 queries from anonymized google.cn logs after some fil-
tering to remove offensive terms. More than 1200 speakers with
different cultural and educational backgrounds where selected
for the data collection. We asked them to read the queries un-
der varied acoustical conditions such in the office, in the street,
in restaurants, etc. We also made an effort to select speakers
from a variety of language backgrounds, whose native dialects
include several varieties of Mandarin, Wu, Xiang, Gan, Kejia
and Cantonese. More than 250,000 utterances were ultimately
collected from these speakers.

About 20% of the queries we asked users to read contained
English terms. To our surprise we discovered that users often
had trouble speaking these terms. In other words, while users
are happy to type English queries on search engines, they don’t
feel as confident speaking them. This insight was later used in
refining the text used for language modeling; see section 3 for
further details.

3. Language model development

Our system uses an n-gram language model over Mandarin
words. As in all speech applications, language model perfor-
mance is heavily dependent on the domain of the training cor-
pus. Voice web-search applications have the added difficulty
that they represent a wide and general domain, as users can
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search for virtually anything. It is therefore quite different from
more traditional speech recognition applications such as auto-
matic dictation or broadcast news transcription. Issues like cor-
pus selection and filtering, choice of language model n-gram
order, vocabulary generation and selection, corpus segmenta-
tion, and language model pruning should be well investigated
to find out the best combination for voice search.

We use typed web queries as our choice of data source for
language modeling. Our selection is based on the assumption
that spoken queries will be somewhat similar to typed queries.
We take advantage of the large number of written queries that
are submitted to search engines every day. These queries come
from every corner of the world and relate to every aspect of
people’s daily life.

To build our language model for Mandarin we selected and
processed web queries in the following way:

e We selected simplified Chinese queries from domain
google.cn.

e User segmentations were rejected and the data reformat-
ted by running our own segmenter.

e Queries where further processed removing some un-
wanted terms, such as:

— Very long queries were removed, under the as-
sumption that they would not fit a voice search ap-
plication, i.e. nobody would speak them.

— Punctuation was removed, as this is not typically
spoken.

— Non-Chinese and non-English queries were fur-
ther removed. We did maintain however a small
list of English allowed words, mostly words that
are sufficiently common in daily Chinese usage.

— URLs were normalized, i.e. mapped from their
written form to their spoken form.

— Offensive terms such as sexually explicit queries
were further removed.

We did explore using different amounts of training data, but
in general we found that beyond using a few months worth of
queries there was not much space to improve performance by
adding more data. With this corpus and a testing corpus which
contained a few thousand popular queries, experiments were
conducted to compare the perplexities of 3-gram, 4-gram and
5-gram models. Refer to Table 1 for details.

Table 1: Perplexity comparison for 3, 4 and 5-gram models.

perplexity
52.90
44.79
43.59

WD W

In the experiments, Katz smoothing [3] and entropy-based
pruning [4] were used, and count-cutoff thresholds of 0, 0, 0, 1
and 2 were used for n-gram units (7 is from 1 to 5) respectively.
We can see that a 4-gram model is a good choice, as we did
not get a significant improvement by increasing the order to 5.
One reason for this is that most web queries are very short: The
distribution of query length is shown in Figure 1.

Since there are no spaces separating tokens in written Man-
darin, the concept of word is a fuzzy one. For example,
AR (people of China) can be regarded as a single word, and
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Figure 1: Length distribution of web queries.
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it can also be treated as the combination of word # [E| (China)
and A& (people). In our system, we use a segmenter which
can automatically generate the top m words for a given vocabu-
lary size m.

To identify the proper vocabulary size for our system, we
measure perplexity using a 3-gram model on the previously
mentioned testing set for different vocabulary sizes. Table 2
shows our results.

Table 2: Perplexity comparison for vocabulary size.

[ size [ perplexity |

250k 51.46
500k 51.65
800k 41.76

We can see that vocabulary size beyond a few hundred thou-
sand words does not have a big impact on the performance of a
language model. Despite the drop in perplexity between 500k
and 800k words, we saw no corresponding improvements in
recognition accuracy, while increasing tremendously the mem-
ory footprint of the system. For these reasons, we decided to
use a vocabulary size of about 500k words.

4. Lexicon development

In developing a pronunciation lexicon for Mandarin voice
search we faced several challenges: (1) The use of words, rather
than characters, in our language model means that the lexi-
con needs to supply pronunciations for words. While the in-
ventory of Chinese characters is comparatively small (around
27,000 in the Basic Multilingual Plane of Unicode!, out of
which only about 3,000 occur frequently), our word-based vo-
cabulary is large, comprising hundreds of thousnads of words.
There simply are no existing Mandarin word dictionaries that
would provide pronunciations for all of these words. (2) The oc-
currence of many foreign words, written in Latin characters, in
our language model means that we need to assign them approxi-
mate Mandarin pronunciations. (3) Our language model further
contains many non-standard words, including numbers and al-
phanumeric sequences. For example the query = Fe428 com-
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bines Chinese characters (to write the Korean brand name Sam-
sung, which has the Mandarin pronunciation ‘sanxing’), Latin
letters, and Arabic digits. We describe our efforts to address
these challenges in the rest of this section.

First, for pronouncing Chinese words, our lexicon compo-
nent first consults a small static dictionary of common words,
idiomatic expressions, and frequent characters. This dictionary
covers only about 10% of our entire vocabulary. This is aug-
mented with a fallback rule set that disambiguates each Chinese
character within its word context. The combination of static dic-
tionary plus rules assigns a Pinyin pronunciation to every word
in our vocabulary that’s written entirely with Chinese charac-
ters. From Pinyin we map to our phonetic representation by a
simple secondary dictionary lookup, since there are only about
2000 Pinyin syllables. Pivoting through Pinyin is beneficial in
several regards: During lexicon development, it aids debugging,
since people are much more accustomed to reading Pinyin than
they are to reading any kind of phonetic notation. Moreover,
the Pinyin representation of a character or word is standard and
more or less fixed, whereas there is no standard choice for the
phonetic inventory. By going via Pinyin, it becomes easy to
experiment with different phone inventories while leaving the
bulk of the lexicon representation unchanged.

For pronouncing foreign words, we first observed that most
of them seem to either come directly from English or have well-
known English pronunciations. We simply look up these words
in a very large English pronunciation dictionary we previously
developed for an English voice search system. This gives us the
English pronunciation of these words, which we then map to
Mandarin phones by simple context-independent phone substi-
tutions that replace each English phone by a phonetically simi-
lar Mandarin phone.

Non-standard words, including numbers, portions of URLs,
and other alphanumeric strings, are handled along similar lines:
Frequent word-fragments such as ‘www.” have entries in a
small hand-crafted exception dictionary. Numbers up to 10,000
are expanded offline into their numeric reading. Longer digit
strings are pronounced digit-by-digit, with a twist: The Chinese
character that represents the number one has two readings in
Mandarin, either y7 or ydo. If we allowed these two readings
to mix freely, than a long string of ones would have exponen-
tially many pronunciations. Instead, we assume that the digit
one is pronounced consistently as either y7 or ydo within the
same string, so that long digit strings have at most two pronun-
ciations.

5. Acoustic modeling

Our acoustic models are standard 3-state context dependent (tri-
phone) models with a variable number of Gaussians per state.
These are trained on a 39-dimensional vector composed of PLP
cepstral coefficients and their first and second order derivatives.
Cepstral mean normalization is applied as well as an energy
based endpointer to remove excessive silence. Our frontend
also uses Linear Discriminant Analysis (LDA). We use standard
decision-tree state-based clustering followed by semi-tied co-
variance (STC) modeling [5] and an FST-based search [6]. Our
acoustic models are gender independent, maximum-likelihood
trained followed by boosted MMI (BMMI) [7].

Mandarin is a tonal language, using 4 or 5 tonemes, where
the tone of a syllable conveys semantic information. There-
fore our acoustic modeling approach must account for these
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tonal differences somehow. In our system we opted for an in-
direct modeling approach, i.e. we did not use pitch features in
our front-end feature vector representation as our initial exper-
iments didn’t show any improvements over the baseline. We
assume that tone distinctions are tied to syllable nuclei and we
differentiate vowels and diphthongs by tone. We use an inven-
tory of 75 phonemes where vowels/diphthongs are replicated
several times, one per tone. Notice that we do not explicitly
model the light fifth tone. Table 3 shows the actual tonemes
used for acoustic modeling.

Table 3: Phoneme+toneme inventory

| phoneme [ tone variants ‘

y yly2y3y4

u ul u2 u3 u4
uo uol uo2 uo3 uo4
ou oul ou2 ou3 oud
i ili21i3 14

ih ih1 ih2 ih3 ih4
ei eil ei2 ei3 eid
e ele2e3ed

a al a2 a3 a4

ai ail ai2 ai3 ai4
ao aol ao2 ao3 ao4
@ @] @2 @3 @4

While this results in a phonetic inventory that is larger than
usual, it allows us to model tones indirectly. Our tree cluster-
ing algorithm is adapted to this inventory with appropriate tone
related questions.

6. Experimental results

We use a testing set composed of about 4,000 queries coming
from real users. Our testing set only contains Mandarin utter-
ances, given the problems we encountered during data collec-
tion with English queries and the fact that most English queries
were poorly spoken.

6.1. Performance metrics

We used different accuracy metrics to analyze the quality of
our system. In Mandarin it is typical to measure character er-
ror rate (CER), which in practice maps to syllable error rate.
However, our system often contains non-standard words. So
our approach is to re-segment Mandarin recognition hypothe-
ses to single characters while leaving non-standard words and
other tokens (such as numbers or URLs) unsegmented. There-
fore when we report CER we are actually reporting a hybrid
metric combining CER for Mandarin and WER for the other
tokens.

In general we focus mostly on web metrics such as web
score at one (WSC@1). In this metric we compare the top web
search results produced by the recognition hypothesis with the
top web result produced by the reference transcript. We count
the percentage of overlap between these two results. A WSC@1
of 100% would imply that there is no difference between the ref-
erence transcript and the recognition hypothesis from the point
of view of web search. Note that often this is possible even
if the reference transcript and recognition hypothesis are dif-
ferent, since web search engines often perform many complex



normalizations internally. Notice also that the metric can be ex-
tended to deeper lists such as Web Score at 5 (WSC@5) where
we compare a list of the top 5 results from the search engine.
Five results is arguable also a practical metric for current mo-
bile devices given the size of their screens.

6.2. Experiments

In our acoustic modeling experiments we explored different
clustering tree sizes as well as different modeling sizes (num-
ber of Gaussians). Our initial system was trained with about
250,000 transcribed utterances collected following the proce-
dures described in Section 2. We refer to this training set
as TrainSetl. For tuning purposes we did a rough parameter
space exploration and quickly settled on an acoustic model with
roughly 2,000 clustered states with about 100,000 Gaussians.
We also explored the effect of different language model n-gram
orders.

After the system was publicly launched we collected sev-
eral additional training corpora. First we augmented the initial
250,000 training corpus with an additional 500,000 transcribed
production utterances, creating a training set with 750,000 utter-
ances. We refer to this training set as TrainSet2. We later cre-
ated a third training set with an additional 250,000 transcribed
utterances, hence containing one million utterances. We refer
to this training set as TrainSet3. Table 4 shows our experiments
with acoustic models trained on each training set and different
n-gram orders.

Table 4: Results with different training sets

Train set LM order CER | WSC@1
(number of utterances)
TrainSet1 (250k) 4-gram 35.3% 50.2%
TrainSet2 (750k) 4-gram 25.5% 59.9%
TrainSet2 (750k) 5-gram 25.9% 59.4%
TrainSet3 (1M) 4-gram 23.1% 63.3%

As expected we observe how adding more acoustic data fur-
ther improves the performance of our system. It is remarkable
how once the system is trained with real production data we ob-
serve an absolute error rate reduction of almost 10 percentage
points and a similar increase in WSC@1. Indeed adding even
more data by going from TrainSet2 to TrainSet3 yields yet an-
other significant improvement of almost 4% absolute points in
WSC@]1. In light of these initial experiments our expectation
is that more training data will continue to provide significant
benefits.

Due to the great dialectal variability in mainland China we
were concerned about its effects on recognition performance.
In particular we looked at the performance of mostly Cantonese
accented Mandarin. We selected a testing subset of utterances
coming from Guangdong. This smaller set contained about
2,000 utterances. We observed a degradation of CER of up to
27.0% and WSC@1 down to 62.3%. Clearly as we collect more
regional data our system can benefit from acoustic adaptation
techniques. We plan to explore these ideas in future work.

Once the traffic to our voice search system became large
enough, the recognition hypotheses themselves became a viable
source of language modeling training data. We built a small
language model with around 350k automatically transcribed
queries and interpolated it with our best 4-gram query-based
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language model. We used an interpolation weight of 0.5. Table
5 shows our results. We observe a further improvement in CER
and WSC.

Table 5: Results of language model interpolation using Train-
Set3

[ Trainset | LMtype || CER | WSC@I | WSC@5 |
TrainSet3 Queries 23.1% 63.3% 64.3%
TrainSet3 | Interpolated || 21.0% 65.6% 66.5%

7. Conclusions

In this paper we have described our initial efforts building a
Mandarin Chinese voice search system. It was successfully
launched in October 2009 and since then it has served a large
variety of searches from Mandarin speakers in Mainland China,
Taiwan, Hong Kong, Singapore and other Chinese speaking re-
gions across the world.

Our experiments show consistent gains by increasing the
amounts of acoustic training data. They also show that using
unsupervised recognition hypotheses as a source of language
model training data leads to continuing improvements. Indeed
we do not seem to have reached a saturation point for the cur-
rent acoustic and language modeling techniques we use. The
opinion of users in mainland China has been extremely positive
and the system continues to get positive reviews. This system
represents the first efforts beyond English for Google’s speech
team and as such it provides us with a template to iterate across
many more languages.
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