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Abstract

Kernel approximation is commonly used to scale
kernel-based algorithms to applications contain-
ing as many as several million instances. This
paper analyzes the effect of such approximations
in the kernel matrix on the hypothesis generated
by several widely used learning algorithms. We
give stability bounds based on the norm of the
kernel approximation for these algorithms, in-
cluding SVMs, KRR, and graph Laplacian-based
regularization algorithms. These bounds help de-
termine the degree of approximation that can be
tolerated in the estimation of the kernel matrix.
Our analysis is general and applies to arbitrary
approximations of the kernel matrix. However,
we also give a specific analysis of the Nyström
low-rank approximation in this context and re-
port the results of experiments evaluating the
quality of the Nystr̈om low-rank kernel approx-
imation when used with ridge regression.

1 Introduction

The size of modern day learning problems found in com-
puter vision, natural language processing, systems design
and many other areas is often in the order of hundreds of
thousands and can exceed several million. Scaling standard
kernel-based algorithms such as support vector machines
(SVMs) (Cortes and Vapnik, 1995), kernel ridge regression
(KRR) (Saunderset al., 1998), kernel principal component
analysis (KPCA) (Scḧolkopf et al., 1998) to such magni-
tudes is a serious issue since even storing the kernel matrix
can be prohibitive at this size.
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One solution suggested for dealing with such large-scale
problems consists of a low-rank approximation of the ker-
nel matrix (Williams and Seeger, 2000). Other variants
of these approximation techniques based on the Nyström
method have also been recently presented and shown to be
applicable to large-scale problems (Belabbas and Wolfe,
2009; Drineas and Mahoney, 2005; Kumaret al., 2009a;
Talwalkar et al., 2008; Zhanget al., 2008). Kernel ap-
proximations based on other techniques such as column
sampling (Kumaret al., 2009b), incomplete Cholesky de-
composition (Bach and Jordan, 2002; Fine and Scheinberg,
2002) or Kernel Matching Pursuit (KMP) (Hussain and
Shawe-Taylor, 2008; Vincent and Bengio, 2000) have also
been widely used in large-scale learning applications. But,
how does the kernel approximation affect the performance
of the learning algorithm?

There exists some previous work on this subject. Spectral
clustering with perturbed data was studied in a restrictive
setting with several assumption by Huanget al. (2008). In
Fine and Scheinberg (2002), the authors address this ques-
tion in terms of the impact on the value of theobjective
functionto be optimized by the learning algorithm. How-
ever, we strive to take the question one step further and di-
rectly analyze the effect of an approximation in the kernel
matrix on thehypothesisgenerated by several widely used
kernel-based learning algorithms.

We give stability bounds based on the norm of the ker-
nel approximation for these algorithms, including SVMs,
KRR, and graph Laplacian-based regularization algorithms
(Belkin et al., 2004). These bounds help determine the de-
gree of approximation that can be tolerated in the estima-
tion of the kernel matrix. Our analysis differs from pre-
vious applications of stability analysis as put forward by
Bousquet and Elisseeff (2001). Instead of studying the ef-
fect of changing one training point, we study the effect of
changing the kernel matrix. Our analysis is general and
applies to arbitrary approximations of the kernel matrix.
However, we also give a specific analysis of the Nyström
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low-rank approximation given the recent interest in this
method and the successful applications of this algorithm
to large-scale applications. We also report the results of
experiments evaluating the quality of this kernel approxi-
mation when used with ridge regression.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the problem of kernel stability and gives
a kernel stability analysis of several algorithms. Sec-
tion 3 provides a brief review of the Nyström approxima-
tion method and gives error bounds that can be combined
with the kernel stability bounds. Section 4 reports the re-
sults of experiments with kernel approximation combined
with kernel ridge regression.

2 Kernel Stability Analysis

In this section we analyze the impact of kernel approxima-
tion on several common kernel-based learning algorithms:
KRR, SVM and graph Laplacian-based regularization al-
gorithms. Our stability analyses result in bounds on the
hypotheses directly in terms of the quality of the kernel ap-
proximation. In our analysis we assume that the kernel ap-
proximation is only used during training where the kernel
approximation may serve to reduce resource requirements.
At testing time the true kernel function is used. This sce-
nario that we are considering is standard for the Nyström
method and other approximations.

We consider the standard supervised learning setting where
the learning algorithm receives a sample ofm labeled
pointsS = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y )m, where
X is the input space andY the set of labels,Y = R with
|y| ≤ M in the regression case, andY = {−1,+1} in the
classification case. Throughout the paper the kernel matrix
K and its approximationK′ are assumed to be symmetric,
positive, and semi-definite (SPSD).

2.1 Kernel Ridge Regression

We first provide a stability analysis of kernel ridge re-
gression. The following is the dual optimization problem
solved by KRR (Saunderset al., 1998):

max
α∈Rm

λα
⊤

α + αKα − 2α
⊤y, (1)

whereλ = mλ0 > 0 is the ridge parameter. The problem
admits the closed form solutionα=(K+λI)−1y. We de-
note byh the hypothesis returned by kernel ridge regression
when using the exact kernel matrix.

Proposition 1. Let h′ denote the hypothesis returned by
kernel ridge regression when using the approximate kernel

matrix K′ ∈ R
m×m. Furthermore, defineκ > 0 such that

K(x, x)≤ κ andK ′(x, x)≤ κ for all x ∈ X. This condi-
tion is verified withκ=1 for Gaussian kernels for example.
Then the following inequalities hold for allx ∈ X,

|h′(x) − h(x)| ≤ κM

λ2
0m

‖K′ − K‖2. (2)

Proof. Let α
′ denote the solution obtained using the ap-

proximate kernel matrixK′. We can write

α
′ − α = (K′ + λI)−1y − (K + λI)−1y (3)

= −
[
(K′ + λI)−1(K′ − K)(K + λI)−1

]
y, (4)

where we used the identityM′−1 −M−1 =−M′−1(M′ −
M)M−1 valid for any invertible matricesM,M′. Thus,
‖α′ − α‖ can be bounded as follows:

‖α′ − α‖ ≤ ‖(K′ + λI)−1‖‖K′ − K‖‖(K + λI)−1‖‖y‖

≤ ‖K′ − K‖2 ‖y‖
λmin(K′ + λI)λmin(K + λI)

, (5)

whereλmin(K′ +λI) is the smallest eigenvalue ofK′ +λI

and λmin(K + λI) the smallest eigenvalue ofK + λI.
The hypothesish derived with the exact kernel matrix is
defined byh(x) =

∑m
i=1 αiK(x, xi) = α

⊤kx, where
kx = (K(x, x1), . . . ,K(x, xm))⊤. By assumption, no ap-
proximation affectskx, thus the approximate hypothesish′

is given byh′(x)=α
′⊤kx and

|h′(x) − h(x)| ≤ ‖α′ − α‖‖kx‖ ≤ κ
√

m‖α′ − α‖. (6)

Using the bound on‖α′−α‖ given by inequality (5), the
fact that the eigenvalues of(K′ + λI) and (K + λI) are
larger than or equal toλ sinceK andK′ are SPSD matri-
ces, and‖y‖≤√

mM yields

|h′(x) − h(x)| ≤ κmM‖K′ − K‖2

λmin(K′ + λI)λmin(K + λI)

≤ κM

λ2
0m

‖K′ − K‖2.

The generalization bounds for KRR, e.g., stability bounds
(Bousquet and Elisseeff, 2001), are of the formR(h) ≤
R̂(h) + O(1/

√
m), where R(h) denotes the generaliza-

tion error andR̂(h) the empirical error of a hypothesish
with respect to the square loss. The proposition shows
that |h′(x) − h(x)|2 = O(‖K′ −K‖2

2/λ4
0m

2). Thus, it
suggests that the kernel approximation tolerated should be
such that‖K′−K‖2

2/λ4
0m

2≪O(1/
√

m), that is, such that
‖K′−K‖2≪O(λ2

0m
3/4).

Note that the main bound used in the proof of the theorem,
inequality (5), is tight in the sense that it can be matched
for some kernelsK andK ′. Indeed, letK andK ′ be the
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kernel functions defined byK(x, y)=β andK ′(x, y)=β′

if x=y, K ′(x, y)= K(x, y)=0 otherwise, withβ, β′≥0.
Then, the corresponding kernel matrices for a sampleS are
K = βI andK′ = β′I, and the dual parameter vectors are
given byα = y/(β+λ) andα

′ = y/(β′+λ). Now, since
λmin(K′ + λI) = β′+λ andλmin(K + λI) = β+λ, and
‖K′ − K‖=β′ − β, the following equality holds:

‖α′ − α‖ =
|β′ − β|

(β′ + λ)(β + λ)
‖y‖ (7)

=
‖K′ − K‖

λmin(K′ + λI)λmin(K′ + λI)
‖y‖. (8)

This limits significant improvements of the bound of
Proposition 1 using similar techniques.

2.2 Support Vector Machines

This section analyzes the kernel stability of SVMs. For
simplicity, we shall consider the case where the classifica-
tion function sought has no offset. In practice, this corre-
sponds to using a constant feature. LetΦ: X → F de-
note a feature mapping from the input spaceX to a Hilbert
spaceF corresponding to some kernelK. The hypothesis
set we consider is thusH ={h : ∃w ∈ F |∀x ∈ X,h(x)=

w⊤Φ(x)}.

The following is the standard primal optimization problem
for SVMs:

min
w

FK(w) =
1

2
‖w‖2 + C0R̂K(w), (9)

whereR̂K(w) = 1
m

∑m
i=1 L(yiw

⊤Φ(xi)) is the empirical
error, withL(yiw

⊤Φ(xi)) = max(0, 1 − yiw
⊤Φ(xi)) the

hinge loss associated to theith point.

In the following, we analyze the difference between the hy-
pothesish returned by SVMs when trained on the sampleS

of m points and using a kernelK, versus the hypothesish′

obtained when training on the same sample with the kernel
K ′. For a fixedx ∈ X, we shall compare more specifi-
cally h(x) andh′(x). Thus, we can work with the finite set
Xm+1 ={x1, . . . , xm, xm+1}, with xm+1 =x.

Different feature mappingsΦ can be associated to the same
kernelK. To compare the solutionsw andw′ of the opti-
mization problems based onFK andFK′ , we can choose
the feature mappingsΦ andΦ′ associated toK andK ′ such
that they both map toRm+1 as follows. LetKm+1 denote
the Gram matrix associated toK andK′

m+1 that of kernel
K ′ for the set of pointsXm+1. Then for allu ∈ Xm+1, Φ

andΦ′ can be defined by

Φ(u) = K
∗1/2
m+1




K(x1, u)
...

K(xm+1, u)


 (10)

and Φ′(u) = K′∗1/2
m+1




K ′(x1, u)
...

K ′(xm+1, u)


 , (11)

where K∗
m+1 denotes the pseudo-inverse ofKm+1 and

K′∗
m+1 that of K′

m+1. It is not hard to see then that for
all u, v ∈ Xm+1, K(u, v) = Φ(u)⊤Φ(v) andK ′(u, v) =

Φ′(u)⊤Φ′(v) (Scḧolkopf and Smola, 2002). Since the op-
timization problem depends only on the sampleS, we can
use the feature mappings just defined in the expression of
FK andFK′ . This does not affect in any way the standard
SVMs optimization problem.

Let w ∈ R
m+1 denote the minimizer ofFK andw′ that of

FK′ . By definition, if we let∆w denotew′ − w, for all
s ∈ [0, 1], the following inequalities hold:

FK(w) ≤ FK(w + s∆w) (12)

and FK′(w′) ≤ FK′(w′ − s∆w). (13)

Summing these two inequalities, rearranging terms, and us-
ing the identity(‖w+s∆w‖2−‖w‖2)+(‖w′−s∆w‖2−
‖w′‖2)=−2s(1−s)‖∆w‖2, we obtain as in (Bousquet and
Elisseeff, 2001):

s(1 − s)‖∆w‖2 ≤ C0

[(
R̂K(w + s∆w) − R̂K(w)

)

+
(
R̂K′(w′ − s∆w) − R̂K′(w′)

)]
.

Note thatw + s∆w = sw′ + (1− s)w andw′ − s∆w =

sw + (1 − s)w′. Then, by the convexity of the hinge loss
and thusR̂K andR̂K′ , the following inequalities hold:

R̂K(w + s∆w)−R̂K(w)≤s(R̂K(w′)−R̂K(w))

R̂K′(w′−s∆w)−R̂K′(w′)≤−s(R̂K′(w′)−R̂K′(w)).

Plugging in these inequalities on the left-hand side, simpli-
fying by s and taking the limits→0 yields

‖∆w‖2 ≤ C0

[(
R̂K(w′)−R̂K′(w′)

)
+

(
R̂K′(w)−R̂K(w)

)]

=
C0

m

m∑

i=1

[(
L(yiw

′⊤Φ(xi)) − L(yiw
′⊤Φ′(xi))

)

+
(
L(yiw

⊤Φ′(xi)) − L(yiw
⊤Φ(xi)

)]
,

where the last inequality results from the definition of the
empirical error. Since the hinge loss is1-Lipschitz, we can
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bound the terms on the right-hand side as follows:

‖∆w‖2 ≤ C0

m

m∑

i=1

[
‖w′‖‖Φ′(xi) − Φ(xi)‖

+ ‖w‖‖Φ′(xi) − Φ(xi)‖
]

(14)

=
C0

m

m∑

i=1

(‖w′‖ + ‖w‖) ‖Φ′(xi) − Φ(xi)‖. (15)

Let ei denote the ith unit vector of R
m+1, then

(K(x1, xi), . . . ,K(xm+1, xi))
⊤=Km+1ei. Thus, in view

of the definition ofΦ, for all i ∈ [1,m + 1],

Φ(xi) = K
∗1/2
m+1[K(x1, xi), . . . ,K(xm, xi),K(x, xi)]

⊤

= K
∗1/2
m+1Km+1ei = K

1/2
m+1ei, (16)

and similarlyΦ′(xi)=K
′1/2
m+1ei. K

1/2
m+1ei is theith column

of K
1/2
m+1 and similarlyK′1/2ei the ith column ofK′1/2

m+1.
Thus, (15) can be rewritten as

‖w′−w‖2 ≤ C0

m

m∑

i=1

(
‖w′‖+‖w‖

)
‖(K′1/2

m+1−K
1/2
m+1)ei‖.

As for the case of ridge regression, we shall assume that
there existsκ > 0 such thatK(x, x)≤ κ andK ′(x, x)≤ κ

for all x ∈ Xm+1. Now, sincew can be written in
terms of the dual variables0 ≤ αi ≤ C, C = C0/m

as w =
∑m

i=1 αiK(xi, ·), it can be bounded as‖w‖ ≤
mC0/mκ1/2 = κ1/2C0 and similarly‖w′‖ ≤ κ1/2C0.
Thus, we can write

‖w′ − w‖2 ≤ 2C2
0κ1/2

m

m∑

i=1

‖(K′1/2
m+1 − K

1/2
m+1)ei‖

≤ 2C2
0κ1/2

m

m∑

i=1

‖(K′1/2
m+1 − K

1/2
m+1)‖‖ei‖

= 2C2
0κ1/2‖K′1/2

m+1 − K
1/2
m+1‖. (17)

Let K denote the Gram matrix associated toK andK′ that
of kernelK ′ for the sampleS. Then, the following result
holds.

Proposition 2. Let h′ denote the hypothesis returned by
SVMs when using the approximate kernel matrixK′ ∈
R

m×m. Then, the following inequality holds for allx ∈ X :

|h′(x) − h(x)| ≤
√

2κ
3

4 C0‖K′ − K‖
1

4

2

[
1 +

[‖K′−K‖2

4κ

] 1

4

]
. (18)

Proof. In view of (16) and (17), the following holds:

|h′(x) − h(x)|
= ‖w′⊤Φ′(x) − w⊤Φ(x)‖
= ‖(w′ − w)⊤Φ′(x) + w⊤(Φ′(x) − Φ(x))‖
≤ ‖w′ − w‖‖Φ′(x)‖ + ‖w‖‖Φ′(x) − Φ(x)‖
= ‖w′ − w‖‖Φ′(x)‖ + ‖w‖‖Φ′(xm+1) − Φ(xm+1)‖

≤
(
2C2

0κ1/2‖K′1/2
m+1 − K

1/2
m+1‖

)1/2

κ1/2

+ κ1/2C0‖(K′1/2
m+1 − K

1/2
m+1)em+1‖

≤
√

2κ3/4C0‖K′1/2
m+1 − K

1/2
m+1‖1/2

+ κ1/2C0‖K′1/2
m+1 − K

1/2
m+1‖.

Now, by Lemma 1 (see Appendix),‖K′1/2
m+1−K

1/2
m+1‖2 ≤

‖K′
m+1 − Km+1‖1/2

2 . By assumption, the kernel ap-
proximation is only used at training time soK(x, xi) =

K ′(x, xi), for all i ∈ [1,m], and since by definition
x = xm+1, the last rows or the last columns of the ma-
tricesK′

m+1 andKm+1 coincide. Therefore, the matrix
K′

m+1−Km+1 coincides with the matrixK′−K bordered

with a zero-column and zero-row and‖K′1/2
m+1−K

1/2
m+1‖2≤

‖K′−K‖1/2
2 . Thus,

|h′(x) − h(x)| ≤
√

2κ3/4C0‖K′ − K‖1/4

+ κ1/2C0‖K′ − K‖1/2, (19)

which is exactly the statement of the proposition.

Since the hinge lossl is 1-Lipschitz, Proposition 2 leads
directly to the following bound on the pointwise difference
of the hinge loss between the hypothesesh′ andh.

Corollary 1. Let h′ denote the hypothesis returned by
SVMs when using the approximate kernel matrixK′ ∈
R

m×m. Then, the following inequality holds for allx ∈ X
andy ∈ Y:

∣∣L
(
yh′(x)

)
− L

(
yh(x)

)∣∣ ≤
√

2κ
3

4 C0‖K′ − K‖
1

4

2

[
1 +

[‖K′−K‖2

4κ

] 1

4

]
. (20)

The bounds we obtain for SVMs are weaker than our bound
for KRR. This is due mainly to the different loss functions
defining the optimization problems of these algorithms.

2.3 Graph Laplacian regularization algorithms

We lastly study the kernel stability of graph-Laplacian reg-
ularization algorithms such as that of Belkinet al. (2004).
Given a connected weighted graphG = (X,E) in which
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edge weights can be interpreted as similarities between ver-
tices, the task consists of predicting the vertex labels of
u vertices using a labeled training sampleS of m ver-
tices. The input spaceX is thus reduced to the set of
vertices, and a hypothesish : X → R can be identified
with the finite-dimensional vectorh of its predictionsh=

[h(x1), . . . , h(xm+u)]⊤. The hypothesis setH can thus be
identified withR

m+u here. LethS denote the restriction
of h to the training points,[h(x1), . . . , h(xm)]⊤∈R

m, and
similarly letyS denote[y1, . . . , ym]⊤∈R

m. Then, the fol-
lowing is the optimization problem corresponding to this
problem:

min
h∈H

h⊤Lh +
C0

m
(hS − yS)⊤(hS − yS) (21)

subject to h⊤1 = 0,

where L is the graph Laplacian and1 the column
vector with all entries equal to1. Thus, h⊤Lh =∑m

ij=1 wij(h(xi)−h(xj))
2, for some weight matrix(wij).

The label vectory is assumed to be centered, which implies
that1⊤y = 0. Since the graph is connected, the eigenvalue
zero of the Laplacian has multiplicity one.

DefineIS ∈R
(m+u)×(m+u) to be the diagonal matrix with

[IS ]i,i = 1 if i ≤ m and 0 otherwise. Maintaining the
notation used in Belkinet al. (2004), we letPH denote
the projection on the hyperplaneH orthogonal to1 and let

M = PH

(
m
C0

L + IS

)
andM′ = PH

(
m
C0

L′ + IS

)
. We

denote byh the hypothesis returned by the algorithm when
using the exact kernel matrixL and byL′ an approximate
graph Laplacian such thath⊤L′h =

∑m
ij=1 w′

ij(h(xi) −
h(xj))

2, based on matrix(w′
ij) instead of(wij). We shall

assume that there existM > 0 such thatyi ≤ M for i ∈
[1,m].

Proposition 3. Leth′ denote the hypothesis returned by the
graph-Laplacian regularization algorithm when using an
approximate LaplacianL′ ∈ R

m×m. Then, the following
inequality holds:

‖h′ − h‖ ≤ m3/2M/C0

( m
C0

λ̂2 − 1)2
‖L′ − L‖, (22)

where λ̂2 = max{λ2, λ
′
2} with λ2 denoting the second

smallest eigenvalue of the kernel matrixL andλ′
2 the sec-

ond smallest eigenvalue ofL′.

Proof. The closed-form solution of Problem 21 is given

by Belkin et al. (2004): h =
(
PH

(
m
C0

L+IS

))−1

yS .

Thus, we can use that expression and the matrix identity
for (M−1−M′−1) we already used in the analysis of KRR

to write

‖h − h′‖ = ‖M−1yS − M′−1yS‖ (23)

= ‖(M−1 − M′−1)yS‖ (24)

= ‖−M−1(M − M′)M′−1yS‖ (25)

≤ m

C0
‖−M−1(L − L′)M′−1yS‖ (26)

≤ m

C0
‖M−1‖ ‖M′−1‖ ‖yS‖ ‖L′ − L‖. (27)

For any column matrixz ∈ R
(m+u)×1, by the triangle in-

equality and the projection property‖PHz‖ ≤ ‖z‖, the
following inequalities hold:

‖ m

C0
PHL‖ = ‖ m

C0
PHL + PHISz − PHISz‖ (28)

≤ ‖ m

C0
PHL + PHISz‖ + ‖PHISz‖ (29)

≤ ‖PH

( m

C0
L + IS

)
z‖ + ‖ISz‖. (30)

This yields the lower bound:

‖Mz‖ = ‖PH

(
m

C0
L + IS

)
z‖ (31)

≥ m

C0
‖PHL‖ − ‖ISz‖ (32)

≥
(

m

C0
λ2 − 1

)
‖z‖, (33)

which gives the following upper bounds on‖M−1‖ and
‖M′−1‖:

‖M−1‖ ≤ 1
m
C0

λ2 − 1
and ‖M′−1‖ ≤ 1

m
C0

λ′
2 − 1

.

Plugging in these inequalities in (27) and using‖yS‖ ≤
m1/2M lead to

‖h − h′‖ ≤ m3/2M/C0

( m
C0

λ2 − 1)( m
C0

λ′
2 − 1)

‖L′ − L‖.

The generalization bounds for the graph-Laplacian algo-
rithm are of the formR(h)≤R̂(h)+O( m

( m

C0
λ2−1)2 ) (Belkin

et al., 2004). In view of the bound given by the theorem,
this suggests that the approximation tolerated should verify
‖L′ − L‖≪O(1/

√
m).

3 Application to Nystr öm method

The previous section provided stability analyses for sev-
eral common learning algorithms studying the effect of us-
ing an approximate kernel matrix instead of the true one.
The difference in hypothesis value is expressed simply in
terms of the difference between the kernels measured by



On the Impact of Kernel Approximation on Learning Accuracy

Dataset Description # Points (m) # Features (d) Kernel Largest label (M )
ABALONE physical attributes of abalones 4177 8 RBF 29
KIN-8nm kinematics of robot arm 4000 8 RBF 1.5

Table 1: Summary of datasets used in our experiments (Asuncion and Newman, 2007; Ghahramani, 1996).

some norm. Although these bounds are general bounds
that are independent of how the approximation is obtained
(so long asK′ remains SPSD), one relevant application of
these bounds involves the Nyström method.

As shown by Williams and Seeger (2000), later by Drineas
and Mahoney (2005); Talwalkaret al. (2008); Zhanget al.
(2008), low-rank approximations of the kernel matrix via
the Nystr̈om method can provide an effective technique for
tackling large-scale data sets. However, all previous the-
oretical work analyzing the performance of the Nyström
method has focused on the quality of the low-rank approx-
imations, rather than the performance of the kernel learn-
ing algorithms used in conjunction with these approxima-
tions. In this section, we first provide a brief review of the
Nyström method and then show how we can leverage the
analysis of Section 2 to present novel performance guaran-
tees for the Nystr̈om method in the context of kernel learn-
ing algorithms.

3.1 Nyström method

The Nystr̈om approximation of a symmetric positive
semidefinite (SPSD) matrixK is based on a sample ofn≪
m columns ofK (Drineas and Mahoney, 2005; Williams
and Seeger, 2000). LetC denote them×n matrix formed
by these columns andW then×n matrix consisting of the
intersection of thesen columns with the correspondingn
rows ofK. The columns and rows ofK can be rearranged
based on this sampling so thatK andC be written as fol-
lows:

K =

[
W K⊤

21

K21 K22

]
and C =

[
W

K21

]
. (34)

Note thatW is also SPSD sinceK is SPSD. For a uniform
sampling of the columns, the Nyström method generates a
rank-k approximationK̃ of K for k≤n defined by:

K̃ = CW+
k C⊤ ≈ K, (35)

whereWk is the bestk-rank approximation ofW for the
Frobenius norm, that isWk = argminrank(V)=k ‖W −
V‖F andW+

k denotes the pseudo-inverse ofWk . W+
k

can be derived from the singular value decomposition
(SVD) of W, W = UΣU⊤, whereU is orthonormal
andΣ = diag(σ1, . . . , σm) is a real diagonal matrix with
σ1 ≥ · · · ≥ σm ≥ 0. For k ≤ rank(W), it is given by

W+
k =

∑k
i=1 σ−1

i UiUi⊤, whereUi denotes theith col-
umn ofU. Since the running time complexity of SVD is
O(n3) andO(nmk) is required for multiplication withC,
the total complexity of the Nyström approximation compu-
tation isO(n3+nmk).

3.2 Nyström kernel ridge regression

The accuracy of low-rank Nyström approximations has
been theoretically analyzed by Drineas and Mahoney
(2005); Kumaret al. (2009c). The following theorem,
adapted from Drineas and Mahoney (2005) for the case
of uniform sampling, gives an upper bound on the norm-
2 error of the Nystr̈om approximation of the form‖K −
K̃‖2/‖K‖2 ≤ ‖K−Kk‖2/‖K‖2 +O(1/

√
n). We denote

by Kmax the maximum diagonal entry ofK.

Theorem 1. LetK̃ denote the rank-k Nystr̈om approxima-
tion of K based onn columns sampled uniformly at ran-
dom with replacement fromK, andKk the best rank-k ap-
proximation ofK. Then, with probability at least1− δ, the
following inequalities hold for any sample of sizen:

‖K − K̃‖2 ≤ ‖K − Kk‖2 + m√
n
Kmax

(
2 + log 1

δ

)
.

Theorem 1 focuses on the quality of low-rank approxima-
tions. Combining the analysis from Section 2 with this
theorem enables us to bound the relative performance of
the kernel learning algorithms when the Nyström method
is used as a means of scaling kernel learning algorithms.
To illustrate this point, Theorem 2 uses Proposition 1 along
with Theorem 1 to upper bound the relative performance of
kernel ridge regression as a function of the approximation
accuracy of the Nyström method.

Theorem 2. Let h′ denote the hypothesis returned by ker-
nel ridge regression when using the approximate rank-k

kernelK̃ ∈ R
n×n generated using the Nyström method.

Then, with probability at least1− δ, the following inequal-
ity holds for allx ∈ X,

|h′(x)−h(x)| ≤ κM

λ2
0m

[
‖K−Kk‖2+

m√
n
Kmax

(
2+log 1

δ

)]
.

A similar technique can be used to bound the error of the
Nyström approximation when used with the other algo-
rithms discussed in Section 2. The results are omitted due
to space constraints.
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Figure 1: Average absolute error of the kernel ridge regression hypothesis,h′(·), generated from the Nyström approxi-
mation,K̃, as a function of relative spectral distance‖K̃ − K‖2/‖K‖2. For each dataset, the reported results show the
average absolute error as a function of relative spectral distance for both the full dataset and for a subset of the data con-
tainingm = 2000 points. Results for the same value ofm are connected with a line. The different points along the lines
correspond to various numbers of sampled columns, i.e.,n ranging from1% to 50% of m.

3.3 Nyström Woodbury Approximation

The Nystr̈om method provides an effective algorithm for
obtaining a rank-k approximation for the kernel matrix. As
suggested by Williams and Seeger (2000) in the context of
Gaussian Processes, this approximation can be combined
with the Woodbury inversion lemma to derive an efficient
algorithm for inverting the kernel matrix. The Woodbury
inversion Lemma states that the inverse of a rank-k correc-
tion of some matrix can be computed by doing a rank-k

correction to the inverse of the original matrix. In the con-
text of KRR, using the rank-k approximationK̃ given by
the Nystr̈om method, instead ofK, and applying the inver-
sion lemma yields

(λI + K)−1 (36)

≈
(
λI + CW+

k C⊤)−1
(37)

=
1

λ

(
I − C

[
λIk + W+

k C⊤C
]−1

W+
k C⊤

)
. (38)

Thus, only an inversion of a matrix of sizek is needed as
opposed to the original problem of sizem.

4 Experiments

For our experimental results, we focused on the kernel sta-
bility of kernel ridge regression, generating approximate
kernel matrices using the Nyström method. We worked
with the datasets listed in Table 1, and for each dataset,
we randomly selected80% of the points to generateK and
used the remaining20% as the test set,T . For each test-
train split, we first performed grid search to determine the
optimal ridge forK, as well as the associated optimal hy-
pothesis,h(·). Next, using this optimal ridge, we generated

a set of Nystr̈om approximations, using various numbers
of sampled columns, i.e.,n ranging from1% to 50% of
m. For each Nystr̈om approximation,̃K, we computed the
associated hypothesish′(·) using the same ridge and mea-
sured the distance betweenh andh′ as follows:

average absolute error=

∑
x∈T |h′(x) − h(x)|

|T | . (39)

We measured the distance betweenK̃ andK as follows:

relative spectral distance=
‖K̃ − K‖2

‖K‖2
× 100. (40)

Figure 1 presents results for each dataset using allm points
and a subset of2000 points. The plots show the average
absolute error ofh(·) as a function of relative spectral dis-
tance. Proposition 1 predicts a linear relationship between
kernel approximation and relative error which is corrobo-
rated by the experiments, as both datasets display this be-
havior for different sizes of training data.

5 Conclusion

Kernel approximation is used in a variety of contexts and its
use is crucial for scaling many learning algorithms to very
large tasks. We presented a stability-based analysis of the
effect of kernel approximation on the hypotheses returned
by several common learning algorithms. Our analysis is in-
dependent of how the approximation is obtained and sim-
ply expresses the change in hypothesis value in terms of
the difference between the approximate kernel matrix and
the true one measured by some norm. We also provided a
specific analysis of the Nyström low-rank approximation in
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this context and reported experimental results that support
our theoretical analysis.

In practice, the two steps of kernel matrix approximation
and training of a kernel-based algorithm are typically ex-
ecuted separately. Work by Bach and Jordan (2005) sug-
gested one possible method for combining these two steps.
Perhaps more accurate results could be obtained by com-
bining these two stages using the bounds we presented or
other similar ones based on our analysis.

A Lemma 1

The proof of Lemma 1 is given for completeness.

Lemma 1. Let M and M′ be twon×n SPSD matrices.
Then, the following bound holds for the difference of the
square root matrices:‖M′1/2−M1/2‖2 ≤ ‖M′−M‖1/2

2 .

Proof. SinceM′ − M � ‖M′ − M‖2I whereI is the
n×n identity matrix. Thus,M′ � M + ‖M′ − M‖2I

andM′1/2 � (M + λI)1/2, with λ= ‖M′ − M‖2. Thus,
λmax(M

′) ≤ (λmax(M) + λ)1/2 ≤ λmax(M)1/2 + λ1/2,
by sub-additivity of

√·. This shows thatλmax(M
′) −

λmax(M)1/2 ≤ λ and by symmetryλmax(M)1/2 −
λmax(M

′) ≤ λ1/2, thus ‖M′1/2 − M1/2‖2 ≤ ‖M′ −
M‖1/2

2 , which proves the statement of the lemma.
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