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Abstract
The paper presents an in-depth analysis of a less known in-
teraction between Kneser-Ney smoothing and entropy pruning
that leads to severe degradation in language model performance
under aggressive pruning regimes. Experiments in a data-rich
setup such as google.com voice search show a significant
impact in WER as well: pruning Kneser-Ney and Katz models
to 0.1% of their original impacts speech recognition accuracy
significantly, approx. 10% relative.

1. Introduction
A typical voice search language model used in our system for
the US English query stream is trained as follows:

• vocabulary size: 1M words, OoV rate 0.57%

• training data: 230B words; we use only correct queries,
i.e. those that did not trigger spelling correction

The resulting size, as well as its performance on unseen
query data (10k queries) when using Katz smoothing is shown
in Table 1. We note a few key aspects:

• the first pass LM (15 million n-grams) requires very ag-
gressive pruning—to about 0.1% of its unpruned size—
in order to make it usable in standard ASR decoders

• the perplexity hit taken by pruning the LM is significant,
50% relative; similarly, the 3-gram hit ratio is halved

• the unpruned model has excellent n-gram hit ratios on
unseen test data: 77% for n = 5, and 97% for n = 3.

n Size Pruning PPL hit ratios
3 15M entropy (Stolcke) 190 47/93/100
3 7.7B none 132 97/99/100
5 12.7B cut-off (1-1-2-2-2) 108 77/88/97/99/100

Table 1: Typical voice search LM, Katz smoothing: the LM is
trained on 230 billion words using a vocabulary of 1 million
words, achieving out-of-vocabulary rate of 0.57% on test data.

The use of Katz smoothing in our language model is not
accidental: we examined the interaction between Stolcke prun-
ing and various n-gram LM smoothing techniques for aggres-
sive pruning regimes which cut the original LM to under 1%
of its original size. The main finding is that the increasingly
popular family of Kneser-Ney [1] smoothing methods is in fact
poorly suited for such aggressive pruning regimes, as explained
in Section 2. When evaluated in terms of both perplexity and
ASR word error rate, the more traditional ones, e.g. Katz/Good-
Turing [2] perform significantly better after pruning, as the ex-
periments in Section 2.3 show.

We wish to emphasize that this is not a new result, [3] also
pointed out this behavior of Kneser-Ney models and proposed

a solution that alleviates the problem by growing the LM, in-
stead of pruning it. [4] also suggests a variation of Kneser-Ney
smoothing more suitable for pruning.

2. Pruning Interaction with Smoothing
As mentioned in the introduction, the use of Katz smoothing in
our language model is not accidental. We examined the interac-
tion between Stolcke pruning and various n-gram LM smooth-
ing techniques for aggressive pruning regimes which cut the
original LM to under 1% of its original size. The main find-
ing is that the increasingly popular family of Kneser-Ney [1]
smoothing methods is in fact poorly suited for such aggressive
pruning regimes. This section attempts to explain what causes
this.

2.1. Language Model Smoothing

The goal of language model smoothing is to make sure that the
n-gram language model probability p(w|h) satisfies the con-
straint: p(w|h) > ε, ∀(h, w) ∈ V n, and some ε > 0, and
thus will assign a non-zero probability to any string of words
W = w1 . . . wl

1 belonging to a given vocabulary, W ∈ V ∗.
There has been a large amount of work on deriving various

smoothing methods for n-gram language modeling. An excel-
lent review is presented in [5]. Most smoothing methods—in
this paper we compare Katz/Good-Turing [2], Ney [6], Witten-
Bell [7], Ristad [8] as implemented in the SRILM toolkit [9]—
do not diverge too much from the relative frequency estimates,
with one notable exception: Kneser-Ney [1] and its variants,
which uses the left diversity count for a given n-gram as the
count for lower order n-grams, instead of the regular maximum
likelihood count.

Section 2.7 of [5] (pp. 15-16) derives Kneser-Ney smooth-
ing by imposing a consistency constraint between the unigram
marginal on the predicted word and its relative frequency esti-
mate, under the assumption that the n-gram context probability
is equal to the relative frequency estimate.

However, as the next section explains in more detail, Stol-
cke pruning replaces the relative frequency estimates for the
context probability f(h) with the estimates built by chaining
the lower order estimates provided by the model, which by con-
struction diverge significantly from their maximum likelihood
counterparts. This is one source of mismatch between Stolcke
pruning and Kneser-Ney smoothing.

The same section (2.7 of [5], pp. 15-16) also makes the ar-
gument that since the lower order estimates are used only when
backing-off from the maximum order—the latter being typi-
cally a smoothed version of the maximum likelihood/relative
frequency estimate—a better choice for them is to complement
it rather than stay close to the maximum likelihood estimate.

1The actual words in the sentence are embedded in sentence
start/end symbols which are present as distinguished words in the lan-
guage model vocabulary V .



However, with aggressive pruning many of the highest or-
der n-grams may be discarded. The model will then back-
off, possibly at no cost, to the lower order estimates which are
far from the maximum likelihood ones and will thus perform
poorly in perplexity. This is a second source of mismatch be-
tween entropy pruning and Kneser-Ney smoothing.

Our experiments confirm that for models in the Kneser-Ney
smoothing family, aggressive Stolcke pruning severely damages
the model’s performance in perplexity as well as word-error-
rate. The deterioration can be attributed to the following factors:

1. poor model estimates for the context frequency f(h)
when chaining lower order estimates:

f(h) 6' pKN (h1) · . . . · pKN (hn|h1 . . . hn−1)

2. after pruning, a significant number of predictions on test
data are likely to be made using lower order estimates,
which diverge significantly from maximum-likelihood
ones by construction.

2.2. Language Model Pruning

A very simple form of reducing the LM size is count cut-off
pruning—removing the n-grams whose count is below a certain
threshold. The method doesn’t allow for fine grained control
over the size of the resulting LM, and so entropy pruning tech-
niques are by far the most popular.

Stolcke pruning [10] is probably the most popular technique
used for trimming the size of back-off n-gram language mod-
els in speech recognition. Its most appealing advantage over
Seymore-Rosenfeld pruning [11] is self-containedness, namely
that it operates on the back-off model alone, not needing to store
the n-gram counts. A more recent attempt at improved LM
pruning is presented in [12].

2.2.1. Stolcke Pruning

Section 3 of [10] explains the algorithm in detail. We reproduce
a high level description here for completeness’ sake: let (h, w)
be an n-gram under consideration for pruning. Its current prob-
ability estimate in the model is p(w|h); were we to remove it
from the model, this would become p′(w|h) = α′(h)p(w|h′)
where h′ is the context obtained by dropping the left-most word
in h. The decision on whether we should prune or retain the
n-gram (h, w) in the model is based on the relative entropy

D[p(·|h)‖p′(·|h)] = p(h)
X
w

p(w|h) log
p(w|h)

p′(w|h)

We note the presence of the term p(h) for the context probabil-
ity which is computed using the chain rule and lower order n-
gram estimates in [10], whereas [11] uses the relative frequency
in the training data: p(h) = f(h) .

For Kneser-Ney models the lower order estimates for a
given n-gram are based on left-diversity counts, and thus di-
verge significantly from the relative frequency estimate.

A blatant example is the sentence beginning context <s>:
its left-diversity count is 1 (always preceded by </s>) and
thus the Kneser-Ney estimate for its unigram probability in
a 2-gram model will be very different from the relative fre-
quency estimate. It can be easily verified that log pKN (<s>)
is upper bounded by − log |V |, where |V | is the vocabulary
size2, instead of being roughly equal to − log L, where L is

2In practice it ends up being much lower since the left diversity for
many 1-grams is much larger than 1

the average sentence length in the training data. Typical val-
ues are |V | = 105, L = 20 which will result in many more
2-grams (<s>, w) being pruned from a Kneser-Ney model than
its Good-Turing counterpart, for example.

Section 4 in [10] contrasted Stolcke pruning against
Seymore-Rosenfeld pruning for Katz models and found no sig-
nificant differences in either perplexity or ASR word error rate
on Katz smoothed models, even when pruned to 2% of their
original size. However, the author clearly states that no study
of the interaction between various smoothing techniques and
pruning has been carried out. As our experiments reported be-
low show, the perplexity of models in the Kneser-Ney family of
smoothing techniques degrades very fast with pruning. This is
partly due to the mis-estimate for p(h) outlined previously: us-
ing the relative frequency f(h) instead, e.g. Seymore-Rosenfeld
pruning [11], improves the behavior with pruning but does not
fully fix the problem, as anticipated in Section 2.1, and con-
firmed experimentally in Section 2.3.2.

2.2.2. Seymore-Rosenfeld Pruning

Seymore-Rosenfeld pruning is an alternative to Stolcke prun-
ing that relies on the relative frequency in the training data for
a given context f(h) instead of the probability P (h) computed
from lower order estimates. For Kneser-Ney models this elim-
inates one source of potential problems in pruning: since the
P (h) calculation involves only lower order n-gram estimates it
will use the diversity based estimates, which are quite different
from the relative frequency ones.

2.3. Pruning Experiments

Whenever possible, we ran our experiments investigating the
interaction of smoothing with pruning on Broadcast News data
and used the SRILM toolkit for easy reproduce ability. For
training we used 128M words, and for testing 692k words. The
143k word vocabulary was estimated by retaining only the 1-
grams whose count in the training data was higher than 1.

2.3.1. Stolcke Pruning

A first batch of experiments compared the PPL of various
models—we varied both the n-gram order n and the smooth-
ing technique involved—before and after pruning to about the
same size, measured in number of n-grams. Tables 2-3 shows
the results for n = 3, 4, respectively; no tuning was performed
for any smoothing technique, we took the default values as im-
plemented by the SRILM toolkit.

As anticipated, the Kneser-Ney family of models is hurt
significantly by aggressive Stolcke pruning. Notably, the rel-
ative increase in perplexity for Kneser-Ney models is twice as
large as for the other smoothing techniques evaluated—100%
vs. 54% and 135% vs. 65% rel. increase for n = 3, 4, respec-
tively.

A secondary observation is that the particular choice of
smoothing technique is not so important: with the exception
of Ristad’s smoothing, the unpruned models are within 5% rel-
ative of the best PPL value—attained by the Kneser-Ney model.
The same holds for the pruned models, with the exception of the
Kneser-Ney models.

In a second batch of experiments we took a closer look at
the change in perplexity with the number of n-grams in the
pruned model. Figure 1 shows the results for 4-gram models.
Although the unpruned Kneser-Ney models start from a slightly
lower perplexity than the Katz model, they degrade faster with



3-gram Perplexity Perplexity No. n-grams
LM smoothing un/pruned rel. increase un/pruned
Ney 130.1/201.3 54.76% 18,483,341/371,683
Ney, Interpolated 129.5/201.9 55.86% 18,483,341/375,849
Witten-Bell 129.5/200.1 54.54% 18,483,341/370,923
Witten-Bell, Interpolated 131.3/205.7 56.69% 18,483,341/389,102
Ristad 135.9/206.7 52.08% 18,483,341/389,439
Katz (Good-Turing) 129.5/199.1 53.75% 18,483,341/394,026
Kneser-Ney 125.5/256.4 104.27% 18,483,341/395,733
Kneser-Ney, Interpolated 126.6/252.9 99.75% 18,483,341/390,116
Kneser-Ney (Chen-Goodman) 126.6/257.1 103.09% 18,483,341/384,279
Kneser-Ney (Chen-Goodman), Interpolated 124.5/250.0 100.80% 18,483,341/389,103

Table 2: 3-gram model perplexity degradation after aggressive Stolcke pruning (2% of original size), for various smoothing methods

4-gram Perplexity Perplexity No. n-grams
LM smoothing un/pruned rel. increase un/pruned
Ney 120.5/197.3 63.75% 31,095,260/383,387
Ney, Interpolated 119.8/198.1 65.33% 31,095,260/386,214
Witten-Bell 118.8/196.3 65.16% 31,095,260/380,372
Witten-Bell, Interpolated 121.6/202.3 66.31% 31,095,260/396,424
Ristad 126.4/203.6 61.09% 31,095,260/395,639
Katz (Good-Turing) 119.8/198.1 65.33% 31,095,260/386,214
Kneser-Ney 114.5/285.1 148.98% 30,360,224/388,184
Kneser-Ney, Interpolated 115.8/274.3 136.93% 30,360,224/398,750
Kneser-Ney (Chen-Goodman) 116.3/280.6 141.23% 30,360,224/396,217
Kneser-Ney (Chen-Goodman), Interpolated 112.8/270.7 139.98% 30,360,224/399,129

Table 3: 4-gram model perplexity degradation after aggressive Stolcke pruning (1.3% of original size) for various smoothing methods

pruning.
In experiments for voice search, we trained much larger

language models on different data than that used in the experi-
ments reported in this section. We observed similar relative dif-
ferences in perplexity between much bigger Kneser-Ney/Katz
models—after pruning them to 0.1% of their original size. The
differences were also found to impact speech recognition accu-
racy significantly, approx. 10% relative.

18 19 20 21 22 23 24 25
6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

Model Size in Number of N−grams (log2)

P
P

L 
(lo

g2
)

Perplexity Increase with Pruned LM Size

 

 
Katz (Good−Turing)
Kneser−Ney
Interpolated Kneser−Ney

Figure 1: Stolcke pruned 4-gram model perplexity as a function
of model size (no. n-grams) for Katz, Kneser-Ney and Interpo-
lated Kneser-Ney models

2.3.2. Seymore-Rosenfeld Pruning

We contrasted Stolcke and Seymore-Rosenfeld pruning as im-
plemented in our own language modeling tools [13] since the
SRILM toolkit doesn’t implement the latter. A second batch
of experiments used our language model training infrastruc-
ture to estimate both Katz (Good-Turing) and Kneser-Ney 4-
gram models, and prune them using both Stolcke and Seymore-
Rosenfeld pruning. The LM training data and vocabulary are
fixed to the same ones used in the previous experiments. Ta-
ble 4 presents the results. For such aggressive pruning regimes,
Seymore-Rosenfeld pruning is significantly better than Stolcke
for Kneser-Ney models. However, it does not fully bridge the
gap relative to Katz smoothing: as the last two rows of the ta-
ble illustrate, there is still a significant difference between Katz
and Kneser-Ney smoothing after pruning, even though the con-
text frequency estimation problem has been factored out by
using Seymore-Rosenfeld pruning. As outlined at the end of
Section 2.1, we can explain the poor PPL performance of the
pruned model on the direct use of diversity-based estimates in
the Kneser-Ney model, without any adjustment of the lower or-
der estimates used after back-off. Since the difference between
Katz and Kneser-Ney is very small on unpruned models, and
significant on pruned models we chose to use Katz smoothing
when building a LM for voice search.
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Toolkit Pruning Smoothing PPL No. n-grams
SRILM none (1-1-2-2 cutoff) Katz (Good-Turing) 130 31,095,260
SRILM none (1-1-2-2 cutoff) Kneser-Ney 116 30,360,224
SRILM Stolcke (1-1-2-2 cutoff) Katz (Good-Turing) 198 386,214
SRILM Stolcke (1-1-2-2 cutoff) Kneser-Ney 274 398,750
Google LM none (1-1-1-1 cutoff) Katz (Good-Turing) 119 111,323,496
Google LM none (1-1-1-1 cutoff) Kneser-Ney 111 112,127,986
Google LM none (1-1-2-2 cutoff) Katz (Good-Turing) 121 31,095,260
Google LM none (1-1-2-2 cutoff) Kneser-Ney 148 31,429,487
Google LM Stolcke (1-1-2-2 cutoff) Katz (Good-Turing) 210 387,150
Google LM Stolcke (1-1-2-2 cutoff) Kneser-Ney 336 395,494
Google LM Seymore-Rosenfeld (1-1-2-2 cutoff) Katz (Good-Turing) 205 386,437
Google LM Seymore-Rosenfeld (1-1-2-2 cutoff) Kneser-Ney 247 389,536

Table 4: Comparison of Stolcke and Seymore-Rosenfeld pruning for Katz (Good-Turing) and Kneser-Ney 4-gram models estimated
using Google LM training tools.

strumental role on training the voice search language model and
evaluating it.

4. Conclusions
We have confirmed in a different experimental setup the less
known fact that aggressive entropy pruning (in particular Stol-
cke pruning) significantly degrades language models built us-
ing Kneser-Ney smoothing, whereas Katz smoothing performs
much better. Part of the loss of Stolcke pruning can be re-
gained by using Seymore-Rosenfeld pruning, which uses counts
instead of chaining to obtain p(h). The remaining difference
between Katz and Kneser-Ney smoothing may be addressed in
future work with a mechanism along the lines of Eq. (9) of [4].
It changes the backoff distribution to use a combination of left-
diversity count and raw count, where the weighting of the mix
depends on the amount of pruning done.

As a concluding remark, although no WER results were re-
ported in this paper, we generally see excellent correlation with
PPL under various pruning regimes, as long as the training set
and vocabulary stays constant, see [14] (presentation slides).
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