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Abstract
One of the difficult problems of acoustic modeling for Au-

tomatic Speech Recognition (ASR) is how to adequately model
the wide variety of acoustic conditions which may be present
in the data. The problem is especially acute for tasks such as
Google Search by Voice, where the amount of speech available
per transaction is small, and adaptation techniques start show-
ing their limitations. As training data from a very large user
population is available however, it is possible to identify and
jointly model subsets of the data with similar acoustic qualities.

We describe a technique which allows us to perform this
modeling at scale on large amounts of data by learning a tree-
structured partition of the acoustic space, and we demonstrate
that we can significantly improve recognition accuracy in var-
ious conditions through unsupervised Maximum Mutual Infor-
mation (MMI) training. Being fully unsupervised, this tech-
nique scales easily to increasing numbers of conditions.

Index Terms: acoustic modeling, unsupervised learning, clus-
tering, too much data.

1. Introduction
Acoustic variability is a well-known problem in speech recog-
nition: an application which works well for some class of users
may not be functional for others, and a system that can be
used by many in a quiet room may break down in harsh en-
vironments. This is especially true of complex systems such as
Google Search by Voice [1], or Voice Search for short, where
the language model imposes weaker constraints on the recog-
nition search and where, at the same time, the generality of the
application (web search) invites users with a wide variety of
backgrounds to access the system anytime, from virtually any-
where.

Not surprisingly, a lot of research has been devoted to this
issue. The table below illustrates the spectrum of commonly
used acoustic modeling techniques, coarsely organized on a
continuum between universal models and speaker-dependent
models.

Class of Acoustic Model Ref.
Generic single model

Task-adapted [2]
Gender-dependent [3]
Ensemble models [4, 5]
Cluster-adapted [6, 7]
Speaker-adapted [8, 9]
Speaker-specific

Table 1: List of common acoustic modeling techniques, in in-
creasing order of expressiveness.

Different tasks find themselves achieving optimal perfor-
mance at different points on this continuum: most transcription
tasks best operate on the lower end of this list, whereas tasks
which involve short, independent, transactions such as Voice
Search, have found that a better speed / complexity tradeoff can
be achieved in the upper portion of this list.

Indeed Voice Search presents a special challenge: interac-
tions are very short, making it difficult to estimate powerful
transforms from a single interaction. Accumulating statistics
across interactions has its own issues, including the complex-
ity of the machinery needed to estimate, store, and serve in
real-time millions of speaker-dependent transforms. Moreover,
since users access the application from their mobile phone, it is
not clear that speaker characteristics are indeed the most salient
factor of variability; perhaps the noise conditions, or channel
distorsion, or some combination of these, are more relevant.

The method we propose discovers factors of variability di-
rectly from the data, and does so in a hierarchical fashion, al-
lowing an arbitrarily deep investigation into the long tail of
acoustic conditions present in the data. Although adaptation
techniques could be considered within this framework as well,
this paper focuses on an approach more akin to ensemble mod-
els.

Interestingly, relatively little attention has been devoted to
this portion of the modeling continuum sketched in Table 1, per-
haps because ensemble models often partition the input space
in ways that quickly result in data starvation and lost perfor-
mance. We overcome this problem by using a totally unsuper-
vised method which, by freeing us from the need for human
transcriptions, gives us access to the virtually unlimited amount
of speech that flows back from the Voice Search application into
our servers.

This paper explores and expands a technique which is
suprisingly effective at segregating data into clusters with max-
imal acoustic dissimilarity in a Kullback-Leibler sense [5]. The
technique relies on representing every utterance as a relatively
small sparse vector of Gaussian posteriors which summarizes
in compact form the range of acoustic variability encountered
in each acoustic state observed during recognition. These vec-
tors are then partitioned iteratively using Vector Quantization
(VQ) to yield a tree of increasingly small clusters of utterances
which span the acoustic space.

The paper is divided into three main sections. In Sec-
tion 2, we briefly review the clustering and tree generation al-
gorithms, and describe an efficient distributed implementation
using MapReduce [10]. In Section 3, we describe the recog-
nition system, data sets, and baseline accuracy with unsuper-
vised MMI training. In Section 4, we describe some recogni-
tion experiments with ensemble models trained for the nodes of
a depth-3 clustering tree, and we analyze the nature of two early
splits made by the clustering algorithm.



2. Clustering And Tree Generation
The goal of this algorithm is to generate a very compact acous-
tic signature which faithfully represents the deviation between
an acoustic model and a given training utterance. A desirable
property of this signature is that it should be impervious to pho-
netic variability in order not to segregate utterances by content
but rather solely by acoustic condition. In a typical ASR model,
acoustic variability is well summarized by the Gaussian Mixture
Model (GMM) distribution at each state. An effective way to
measure acoustic similarity between an utterance and a model is
to align its frames to the corresponding model states, and mea-
sure the divergence between the model and the sample distri-
bution which is generated by the frame observations. This ob-
servation is at the core of many Maximum A Posteriori (MAP)
speaker identification methods [11]. It was further argued in
[5] that this divergence can be approximated using sufficient
statistics which exclusively derive from the Gaussian posteriors
accumulated over the frame observations. More specifically, if
pg,s,m,u is the posterior probability of Gaussian g for state s in
model m and utterance u, and wg,s,m is the average posterior
over the whole training data for model m (denoted w since it’s
the Gaussian’s mixture weight under the Maximum Likelihood
(ML) estimation criterion), the Kullback-Leibler divergence be-
tween the model and utterance u for state s can be approximated
as:

D(s, m, u) =
X
g∈s

pg,s,m,u log
pg,s,m,u

wg,s,m
(1)

Since the total distance over all states should not depend on
how many states are observed, the overall similarity measure
between utterance u and the model can be averaged over the set
Ou of states observed in u to yield:

D(m, u) =
1

|Ou|
X

s∈Ou

D(s, m, u) (2)

This implies that each utterance can be represented by a
sparse ’supervector’ S(m, u) = [. . . pg,s,m,u . . .] of Gaussian
posteriors, whose intrinsic dimensionality is the total number of
Gaussians in the system. An acoustic model can be represented
by a non-sparse vector W(m) = [. . . wg,s,m . . .] of the same
dimensionality. Each entry in that vector is the mixture weight
of each Gaussian in the system under the ML assumption. A
major advantage of this coarse representation of acoustic vari-
ability is that since it is based on relatively sparse vectors of
fixed length, it is very well suited to a wide range of data anal-
ysis algorithms which can operate very efficiently over datasets
containing tens of millions of utterances. In particular, we will
show how to apply distributed Principal Component Analysis
(PCA) and Vector Quantization (VQ) algorithms to the dataset
to cluster the training data.

2.1. Extracting the Dominant Source of Variability using
Distributed PCA

While computing a full PCA over the entire dataset would be
prohibitively expensive, one can use an iterative Expectation
Maximization (EM) approach to extract the dominant principal
component [12]. This approach parallelizes efficiently using the
MapReduce framework, where a “Map phase” performs paral-
lel computations whose intermediate results are then combined
under a “Reduce phase” to produce the end results. Starting
with a random principal component P:
• For each utterance, compute (Map phase):
P(m, u) = [P.(S(m, u)−W(m))](S(m, u)−W(m)),

• Accumulate the updated estimate (Reduce phase):
P (m)←

P
u P(m,u)

|
P

u P(m,u)| ,

• Iterate until convergence.

In a 2-class scenario, a single PCA component is sufficient.
Otherwise, the above process can be reapplied to yield principal
components of lower orders. Note that PCA optimizes the L2
divergence, not the KL divergence we derived this model from.
This will be addressed when refining the classifier using VQ
clustering. In practice few iterations are required for a good
separation.

2.2. Dataset Clustering using Distributed VQ

The PCA analysis can be used to boostrap a VQ clustering of the
data using simple k-means directly optimizing the divergence in
Eq. 2. Again using the MapReduce framework:

• Compute the class label associated with each utterance
(Map phase). In the 2-class scenario, the class associ-
ation can be boostrapped from the estimated Principal
Component based on the sign of: P(m).(S(m, u) −
W(m)). In subsequent iterations, it is obtained by find-
ing the class m which minimizes D(m, u),

• Accumulate the updated Gaussian posteriors for each
cluster m: wg,s,m = 1

Nm

P
u pg,s,m,u, where Nm is

the number of utterances assigned to cluster m.

• Iterate until convergence.

2.3. Generation of a Clustering Tree

Sections 2.1 and 2.2 showed how to split a set of utterances in
two maximally distinct subsets. The process can be repeated
hierarchically under the form of a binary tree as much as de-
sired ... or as training data lasts. To this effect, an acoustic
model must be estimated at each node. This can be made rel-
atively lightweight by training a root-node context-independent
model, and only doing a few additional iterations of training
with a fixed amount of cluster-specific data at each node. The
whole splitting and tree generation process takes only a few
hours to generate a depth-5 tree with a few hundred CPUs.

3. Recognition System
3.1. Recognizer and Metrics

The speech recognition engine is a standard, large-vocabulary
recognizer, with PLP features and LDA, decision trees, GMM-
based triphone HMMs with variable numbers of Gaussians per
state, STC [13] and an FST-based search [14]. ML training is
followed by boosted MMI (BMMI) [15]. The language model
is a 3-gram model trained from web and Voice Search queries.

Recognition performance is measured in terms of word er-
ror rate (WER), and ’normalized’ sentence error rate (SER),
where small variations such as multiword spacing, dashes, apos-
trophes, etc are normalized out prior to scoring.

3.2. Data Sets

The test set for the experiments reported below consists of 15K
utterances collected from the field. Utterances containing side-
speech (as marked by the transcribers) were discarded.

The training data consists of a set of 2M transcribed utter-
ances collected roughly at the same time as the test set, and a
set of 40M untranscribed utterances. These were selected out
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Figure 1: Unsupervised BMMI performance of baseline and cluster models. The WER/SER pair for the baseline and cluster model is
given at each node, with the relative improvement below in a round box. The number of test utterances in a node is listed along the
branch leading to that node (total = 14581 utterances). Nodes are named with binary indices, with an additional bit at each tree level.

of a more recent set of 80M utterances, of which the half with
lowest confidence scores was discarded.

3.3. Baselines

A first acoustic model was trained from scratch with the 2M
transcribed utterances, with ML and BMMI iterations. This
model was carefully optimized for accuracy and latency.

Unsupervised training was then performed: we randomly
selected 2M utterances out of the untranscribed 40M set, and
did two more passes of BMMI training on top of the supervised
models. The performance improvement is reported in Table 2.
We use this new model as a baseline for our experiments which,
as we will describe below, also involve unsupervised training
with sets of 2M utterances. It is likely that performance could
be further improved by using more untranscribed data, but we
chose to keep a fairly lightweight process for experimental pur-
poses.

Model WER SER
2M Sup. BMMI 17.5% 29.0%
2M Sup. BMMI + 2M Unsup. BMMI 17.2% 28.3%

Table 2: Supervised and unsupervised BMMI root-node models.

4. Experiments
4.1. Recognition Experiments

Using the 2M transcribed training utterances, we trained a clus-
tering tree down to three splits, resulting in eight leaf nodes.
(We later trained another tree from untranscribed data and found
little difference between the two trees.)

We then percolated the 40M untranscribed training utter-
ances down the tree, and selected at each node a random subset
of 2M utterances, which we used to do BMMI unsupervised it-
erations on top of the root-node supervised model. This process
could be interpreted as a form of unsupervised discriminative
adaptation, in that the structure and dimension of the model
are not affected, but its parameters are re-estimated based on
cluster-specific data. At run-time, every test utterance is per-
colated down the tree (a fairly low-cost operation since it only

requires a VQ cluster assignment at each node), and then rec-
ognized with the BMMI model associated with the selected leaf
node.

We also evaluated a slightly different model training strat-
egy, where each node is adapted from its immediate parent
node, rather than from the root node. This gave small but con-
sistent improvements over the previous strategy, possibly be-
cause it exposes the model to more data and thus to more errors
the algorithm can learn from. These results are shown in Fig. 1.

As indicated in Fig. 1, some clusters benefit highly from re-
training (e.g. N0100, with a relative SER reduction of almost
11%), others less so. One cluster, N0000, is actually better
served by its parent node model than by its own (28.3% SER
instead of 28.6%). It would thus make sense in a production
environment to retain only some of these models. The choice
of which ones depends on the goal: improving accuracy where
we best can, or minimizing the overall test set error rate. A sen-
sible choice, for example, might be to keep, in addition to the
root node model, the models for N0001, N0100 N0101 and N011,
which would improve the recognition of about 62% of the data,
for an average relative SER reduction of a little over 5%.

A related question that we are currently exploring is how
to best scale both the baseline and the individual cluster models
with more data. The choice we made of working with sets of
2M utterances was dictated in part by our desire to have a fast
experimental turn-around, but also because this appears to be
the “knee” in the growth curve of our current models. In other
words, these models are fairly saturated with data, and doubling
or quadrupling the amount of data at the root node gives little
incremental improvement, on the order of 0.2 or 0.3%. In the
limit, with an infinite set of training data, the question of how
much data can be used to train a model is irrelevant. The in-
teresting question instead becomes how to scale the system so
it can absorb more data, be it by growing larger models, train-
ing more models, or both. So far, our experiments showed that
there is significant promise in training specific models for var-
ious acoustic conditions, and that “staged” MMI adaptation of
cluster models from their parent nodes seem to make good use
of the training data.



4.2. Interpreting the Clustering Decisions

As described in Section 2, the data clustering is unsupervised:
the algorithm discovers at each node the best dimension along
which to split the data. It is therefore tempting to try to interpret
some of the decisions it made.

In particular, one might expect the first split, N0 →
(N00, N01), to be related to gender, although the difference of
accuracy between the 2 child nodes, about 30% relative, indi-
cates that there must be some other factor as well [16].

Figure 2: Pitch histograms: left: N00, N01, right: N010, N011.

To explore this hypothesis, we compared the pitch profiles
of N00 and N01 in Fig. 2 (left). In first approximation, the
histograms do show a gender bias, with peaks at 100 and 200
Hz. The higher-pitch node, N01, however, has a rather broad
distribution. The pitch histograms for its child nodes, in the
right-hand-side figure, show a mostly-female cluster, N010, and
a broader cluster seemingly dominated by male voices, N011.

To further analyze this broader cluster, we looked at various
signals. Utterance loudness, computed as the 95th percentile
of the average filterbank energy distribution, was the most re-
vealing (see Fig. 3). Indeed, whereas the first split (left figure)
shows little difference in loudness between the two top-level
nodes, the second split (right figure) reveals a bimodal distri-
bution for N011, indicating a large fraction of loud data. This
likely correlates with the rather poor performance of that node
(37.6% WER). It is difficult to measure noise and SNR with
high-end cellular phones as noise is typically suppressed by the
device, but we guess that this loud speech was indeed produced
by users speaking over noise.

Figure 3: Loudness histograms: left: N00, N01, right: N010, N011.

Interestingly, our analysis also revealed a perplexity differ-
ence: 172 for N011 vs. 135 for N010, itself close to N00 which
has a perplexity of 145.

Thus the first split seems to separate clean male data from
female plus both-gender “formerly noisy” data, which then sep-
arates at the next split into female clean data and both-gender
harder data. This probably explains why we were more suc-
cessful training 2 separate models for the child nodes, N010 and
N011, rather than a single one for their parent node, N01, whose

composition is more heterogenous (2% abs. SER reduction in-
stead of 1%). We expect similar behaviors at deeper tree levels,
with recognition improvements showing each time we segregate
a fairly homogeneous acoustic condition.

5. Conclusions
We described a clustering technique which discovers factors of
variability in the acoustic data, and allows a hierarchical par-
titioning of the input space into maximally dissimilar clusters.
We showed that discriminative techniques such as BMMI can
be used to model these clusters using only untranscribed data.
Because the proposed technique rests completely on unsuper-
vised training, it may be used to explore and hopefully improve
arbitrarily deep pockets of difficult conditions in large bodies
of data, such as Voice Search’s. A small step was taken in this
direction by training unsupervised BMMI models for the nodes
of a depth-3 clustering tree, and showing that we could signif-
icantly improve the recognition performance of about half our
test data using such models.
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