Reprinted from the

Proceedings of the
GCC Developers’ Summit

June 17th—19th, 2008
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Ben Elliston, IBM

Janis Johnson, /IBM

Mark Mitchell, CodeSourcery
Toshi Morita

Diego Novillo, Google

Gerald Pfeifer, Novell

Ian Lance Taylor, Google

C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Feedback-Directed Optimizations in GCC with Estimated Edge Profiles
from Hardware Event Sampling

Vinodha Ramasamy
Google Inc.
vinodhal@google.com

Paul Yuan
Peking University
yingbo.com@gmail.com

Dehao Chen
Tsinghua University
danielcdh@gmail.com

Robert Hundt
Google Inc.
rhundt@google.com

Abstract

Traditional feedback-directed optimization (FDO) in
GCC uses static instrumentation to collect edge and
value profiles. This method has shown good applica-
tion performance gains, but is not commonly used in
practice due to the high runtime overhead of profile col-
lection, the tedious dual-compile usage model, and diffi-
culties in generating representative training data sets. In
this paper, we show that edge frequency estimates can
be successfully constructed with heuristics using pro-
file data collected by sampling of hardware events, in-
curring low runtime overhead (e.g., less then 2%), and
requiring no instrumentation, yet achieving competitive
performance gains. We describe the motivation, design,
and implementation of FDO using sample profiles in
GCC and also present our initial experimental results
with SPEC2000int C benchmarks that show approxi-
mately 70% to 90% of the performance gains obtained
using traditional FDO with exact edge profiles.

1 Introduction

This paper is a continuation of our previous work
[13]. We have reproduced with minor modifications
and slightly extended the introduction. Readers famil-
iar with the motivation for this work may skip directly
to Section 3.

GCC uses execution profiles consisting of basic block
and edge frequency counts to guide optimizations
such as instruction scheduling, basic block re-ordering,
function splitting, and register allocation. The cur-
rent method of feedback-directed optimization in GCC
(shown in Figure 1) involves the following steps:

Optimized

Instrumentation Instrumented
Build Binary Binary
Training

Figure 1: Traditional FDO Model

1. Build an instrumented version of the program for
edge and value profiling.

2. Run the instrumented version with representative
training data to collect the execution profile. These
runs typically incur significant overhead (reported
as 9% to 105% [3] [2], but observed to be much
higher, often in the order of 50% to 200% in our
experience) due to the additional instrumentation
code that is executed.

3. Build an optimized version of the program by us-
ing the collected execution profile to guide the op-
timizations (FDO build).

The instrumentation and FDO builds are tightly cou-
pled. GCC requires that both builds use the same inline
decisions and similar optimization flags to ensure that
the control-flow graph (CFG) that is instrumented in the
instrumentation build matches the CFG that is annotated
with the profile data in the FDO build.

To overcome the limitations of the current FDO model,
we propose skipping the instrumentation step altogether.
Instead, we use sampling of the Instruction Retired
(INST_RETIRED) hardware event which is available

e 87 o

88 e Feedback-Directed Optimizations in GCC with Estimated Edge Profiles from Hardware Event Sampling

on performance monitoring units of modern processors
(e.g., Intel Core-2, AMD Opteron, Itanium) to obtain
estimated edge profiles. This approach enables different
usage models:

1. Profile collection can occur on production systems
(e.g., in internet companies) using the default bi-
naries, with the sample profile data being stored
in a profile repository. The profiles shall there-
fore be readily available for FDO builds without the
need for any special instrumentation build and run.
Moreover, there is no discrepancy between training
run input data and real usage data in this case.

2. In cases where representative training data sets
are available, the profile collection could be done
by sampling of debug or un-optimized binaries.
The profile data thus collected during the test-
ing and development phase can then be used to
build the optimized binary. This is similar to the
instrumentation-based FDO model, except that the
overhead of profile collection is much lower.

3. The traditional FDO model using instrumented
runs to collect profile data is not suitable for cases
where execution of the instrumented code changes
the behavior of time-critical code such as operat-
ing system kernel code. Profile collection using
hardware event sampling can be used in such cases
without perturbing the run-time behavior.

4. The current instrumentation-based FDO model
does not support obtaining execution counts for
kernel code, as the counters are written out at ap-
plication/process exit time. Sample-based profile
collection is therefore an apt choice to enable FDO
for kernel code.

The sample profile data does not contain any informa-
tion on the intermediate representation (IR) used by the
compiler. Instead, source position information is used
to correlate the profile data to specific basic blocks dur-
ing the FDO build. This method therefore eliminates
the tight coupling between profile collection and profile
feedback builds. In fact, the binary used for profile col-
lection can be built by one compiler, and the profile data
thus collected can be fed to another compiler. To make
the case, in [13], we use GCC-built binaries for profile
collection and open64 for FDO builds and performance

experiments. In this paper, we focus on FDO support
for sample profiles in GCC.

In general, deriving exact basic block and edge fre-
quency counts from sample profiles is not always fea-
sible [12]. We use heuristics to derive relative basic
block and edge frequency count estimates from the sam-
ple profiles. We’ve found that these approximations are
sufficient for all practical purposes.

Increasing the sampling rate will in general increase the
quality of the sample profile at the expense of increas-
ing the overhead of profile collection. Our experiments
show that we can get sample profiles with reasonable
quality with overheads of less than 2%.

We use a degree of overlap measure [9] which compares
the relative edge weights between the edge profiles con-
structed from instrumented runs and sample profiles as
an indicator of the quality of the sample profiles and the
heuristics used. However, the definitive measure of the
sample profile quality and effectiveness of the heuris-
tics employed is ascertained only from the performance
gains obtained in using the sample profiles for feedback-
directed optimizations.

In open64, our edge count estimation algorithm used
higher level program constructs such as branches and
loops for recursively smoothing the basic block sample
counts [13]. Levin et al. [9] describe another algorithm
used in IBM’s post-link time optimizer, FDPR-Pro, for
deriving edge profile estimates from basic block sam-
ple counts. Our task is more challenging since we need
to rely on source correlation to attribute samples to ba-
sic blocks, since the feedback is done at compile-time
rather than post-link time. However, the edge estima-
tion algorithm described in [9] is directly applicable to
our sample profile support in GCC.

The source line execution metrics collected via sam-
pling are mostly platform independent, so the profile
data collected on one platform can be used to build a
binary optimized for another platform. We use the In-
tel Core-2 platform for profile collection and the AMD
Opteron platform for our performance runs. Since the
profile data is stored by samples per source line, it does
not matter if the profile collection is done using op-
timized or unoptimized binaries in most cases. Our
heuristics depend on the correctness of the source po-
sition information present in the binaries to correlate the

samples to the corresponding basic blocks.'

On the SPEC2000int C benchmarks, we currently obtain
an average performance gain of 2.13% (2.46% if only a
subset of the edge profile specific options are enabled)
using FDO with sample profiles collected using -O2 bi-
naries, as compared to an average of 2.94% using tradi-
tional FDO runs with edge profiles alone. We expect to
get improved results with better source correlation sup-
port in GCC. Using -O0 binaries for profile collection,
we are able to achieve an average performance gain of
2.52%, which is approximately 86% of the performance
gains seen using traditional FDO with edge profiling.

The rest of the paper is organized as follows: Section 2
gives a background of hardware event sampling. Sec-
tion 3 describes the design and algorithms used for sam-
ple profile support in the GCC compiler. Section 4
gives a background of current instrumentation-based
FDO support in GCC and then describes the implemen-
tation details for adding sample profile-based FDO sup-
port. Section 5 discusses challenges faced and open is-
sues. Section 6 describes the experimental evaluation
of using FDO with sample profiles. Finally, Section 7
discusses current status and future work for support of
FDO with sample profiles in GCC.

2 Hardware Event Sampling

Most modern microprocessors support hardware event
sampling, which works as follows: the Program Counter
(PC) and other register contents are recorded whenever
a specified number of the hardware event of interest has
occurred. This helps to identify the program locations,
i.e., the instruction addresses incurring the measured
hardware event. For example, the DCPI tool [1] samples
on the event CPU_CYCLES to determine performance
bottlenecks in programs.

Events can be differentiated by whether they indicate
execution time or execution frequency, i.e., whether
they are time-based or frequency-based [14]. The
CPU_CYCLES is a time-based event, so program lo-
cations that take a relatively longer time to execute will
incur more CPU_CYCLES event samples. To obtain

I'We ran into a couple of GCC issues—source information is at
times lost during transformations in optimization builds. These is-
sues are being fixed, which will help to improve the accuracy of
sample attribution when using optimized binaries for profile collec-
tion.

2008 GCC Developers’ Summit e 89

INPUT
DATA

-

OPTIMIZED
BINARY

SAMPLE
PROFILE

FDO BUILD }=

Figure 2: FDO Model with Sample Profiles

an execution count from such time-based samples, one
must scale by the instruction latency, which necessitates
knowing the individual instruction execution latencies
and latencies incurred due to TLB misses, cache misses,
and branch misprediction, as well as other pipeline
stalls, which are micro-architecture-specific. Additional
hardware events (such as cache and TLB misses) will
therefore need to be sampled for this purpose, thereby
increasing the sampling overhead and making the de-
termination of execution counts from time-based event
samples more complex. Most modern microproces-
sors also support sampling of frequency-based events
such as the instruction retired (INST_RETIRED) event,
which correlates directly to instruction and basic block
execution count. We therefore use sampling of the
INST_RETIRED event for our execution profile estima-
tion.

3 Design

In our FDO model using sample profiles (see Figure 2),
the instrumentation step is skipped altogether. Instead,
INST_RETIRED event samples gathered using profiling
tools such as perfmon2 /pfmon are used to create the
feedback data. The samples are recorded on the granu-
larity of instruction addresses and attributed to the corre-
sponding program source filename and line number us-
ing the source position information present in unstripped
binaries. Consider two source lines, S1 and S2, in the
same basic block which have identical execution counts.
If 5 assembly instructions are generated for S1 and 10
for S2, then S2 will have approximately twice the total
number of samples of S1—i.e., source lines with larger
number of instructions will have correspondingly larger
total number of samples attributed. Therefore, the total
number of samples attributed per source line is divided
by the number of contributing instructions to derive the

90 e Feedback-Directed Optimizations in GCC with Estimated Edge Profiles from Hardware Event Sampling

average number of samples per source line, which is
stored in the feedback data file. In the example below,
the sample count attributed to each individual instruc-
tion of the source line pbla.c: 60 is shown in the first
column of the disassembly code. The sample count de-
rived for this source line is 70 as shown.

pbla.c:60 iplus = iplus->pred;
// (100 + 30 + 70 + 80)/ 4 = 280/4 = 70

100 : 804a8b7: mov 0x10 (%ebp), %eax

30 : 804a8ba: mov 0x8(%eax), %$eax
70 : 804a8bd: mov %eax, 0x10 (%ebp)
80 : 804a8c0: jmp 804a94b <this+0x137>

The feedback file is read into GCC, and is used to an-
notate the IR statements for the current program unit
with the relative execution counts of the correspond-
ing source position information (IR.count). This
is done in the same pass (pass_tree_profiling)
as the original GCC profile instrumentation/annotation
for instrumentation-based FDO. The basic block sam-
ple count (BB. count) is then computed from its asso-
ciated IR statements as shown below:

Nstaremem‘: IR Count'
BB.count = L d (1)

Nstatements

When scaling the basic block count, all statements are
given the same weight—i.e., we do not differentiate the
IR statements by the type of operator. If different feed-
back data files collected with different sampling rates
are used, the basic block count should be normalized to
a fixed sampling rate.

ixed li t
BB.count,,,,;, = BB.count x Jixe _san?p ine_rate 2)
sampling_rate

Note that different heuristics from the one used here
can be employed to derive basic block sample counts
from source-code-correlated samples. The basic block
counts are then used to derive edge frequency counts
using heuristics which are described in more detail in
Section 3.1.

At the end of this pass, GCC internal data structures will
be initialized appropriately with estimated basic block

Plain CFG

Exact Edge Profiles
Instrumentation (-fprofile-arcs)

\
Sampling Profiles

Annotation

Annotation (-fsampling-profile)

(-fbranch-probabilities)

S~

Static Profiles

Annotation
(-fguess-branch-probability)

A

Instrumented/
Annotated
CFG

Figure 3: Constructing an Instrumented/Annotated CFG

and edge frequency counts determined from the sam-
ple profile data, in a manner similar to what is done
when using instrumentation-based profile data. It should
therefore not matter to later optimization phases whether
the feedback data was collected via sampling or via in-
strumentation. This makes the design and implementa-
tion modular, and helps to leverage existing feedback-
based optimization methods, and support in GCC to
maintain, propagate, and verify the feedback data.

3.1 Edge frequency estimation

The derivation of edge frequencies from the basic block
sample counts is a core component of the sample profile
support. We use the edge estimation algorithm outlined
in [9], which formalizes the problem as a minimum-cost
circulation problem [7]. In this case, the flow conserva-
tion rule is that for each vertex in a procedure’s CFG, the
sum of the incoming edge frequency counts should be
equal to the sum of the outgoing edge frequency counts.
The idea is that by ensuring the flow conservation rule,
and at the same time, limiting the amount of weighted
change from the initial edge weights predicted by static
profiles [2] to a mininum, a near approximation to ac-
tual edge counts obtained via instrumentation can be
achieved.

The minimum-cost circulation problem is equivalent to
a minimum-cost maximal flow problem. To formulate

2008 GCC Developers’ Summit e 91

the problem of computing the intra-procedural edges
as a minimum-cost, maximal-flow problem, we need to
construct the following [9]:

e G'= (V' E') : the fixup graph

e min(e),max(e) : minimum and maximum capaci-
ties for flow on each edge, e in E’

e k(e) : confidence constant for any edge e in E’. The
values are set as following in [9]:

b = \/avg_vertex_weight (cfg) 3)

kT (e)=b 4)

k™ (e) =50b)

where kT (e) is used when increasing the flow on the

edge e, and k™~ (e) is used when decreasing the flow on
edge e.

Cost coefficent function for the edges:
cp(e) =K (A(e))/In(w(e) +2) (6)

where

K(Ale)) = kT, if Ae) > 0,

K (Ale)) = k™, if Ale) <0,

and w(e) is the initial assigned edge weight.

These values ensure that the cost of decreasing the
weight on an edge is significantly larger than increas-
ing the weight on an edge and higher confidence in an
initial value of e results in a higher cost for changing the
weight of that edge.

Let G = (V,E) be the CFG with initial weights:
V<u,v>cE :w(<u,v>)—wu)xp(<uv>)

where w(u) is the sample count of the basic block u,
and p(< u,v >) is the probability of the edge < u,v >
as determined using static profiles [2].

The algorithm to construct the fixup graph G'(V',E’)
from G = (V, E) is outlined below:

e

L1
@ Vertex Transformation
ef/\e(% 0

w(V) = 30

Figure 4: Vertex Transformation

e2"
ell |e2) e
O
max(el') = max(el); k'(el') = 0.5 * k'(el)
max(e2') = max(el); k'(e2') =0.5* k'(el)
max(e2'') = max(e2); k'(e2'') = k'(e2)

Figure 5: Normalization

1. Vertex Transformation

Construct G; = (V;,E;) from the initial CFG G = (V,E) by
doing vertex transformations Vv € V. Split each vertex v into
two vertices v/ and V", connected by an edge from V' to v”.
The weight of the new edge < v/,v" > is set to the basic block

count of v. This is shown in Figure 4.

2. Initialize

(a) For each vertex v € V;, let:

D(V) = Ze,»eauf(v) W(ei) - Ze,ein(v) W(e./)
(b) For each e € E;, do:

min(e) «— 0,max(e) « oo,k () — kT (e)

(c) Er<—0,L—0

3. Add Reverse Edges

For each e =< u,v >€ E; such that e, =< v,u >¢ E;, do:
o Addedge e,
o min(e,) «— 0,max(e,) — w(e),k (ey) — k™ (e)

o E. —E.U{er}

92 e Feedback-Directed Optimizations in GCC with Estimated Edge Profiles from Hardware Event Sampling

4. Create Single Source and Sink
Add a source vertex s” and connect it to all function entry ver-
tices. Add a sink vertex ¢’ and connect it to all function exit
vertices.
(a) Vs e S where S is the set of function entry vertices, do:
e Addedge e, =<s',s >
e min(eg) — 0,max(es) — w(s),cp(es) — 0
o L—LU{es}
(b) Vt € T where T is the set of function exit vertices, do:
e Addedge e, =<t,t' >
o min(e;) — 0,max(e;) — w(t),cp(e;) 0
o L—LU{e}
5. Balance edges
For each v € V;/(SUT) do:

(a) ifD(v)>0:
e Addedge v, =<t >
e min(v;) < D(v),max(v;) < D(v)
o L—LU{w}

(b) if D(v) <0:
e Addedgevs=<s',v>
e min(vg) — —D(v),max(vs) — —D(v)
o L—LU{v}

6. Normalization

This step is needed to remove anti-parallel edges. Anti-
parallel edges are created by the vertex transformation step
from self-edges in the original CFG G and by the reverse edges
added during Step 3.

Ve =<u,v>€ E, UE, such that e, =< v,u >€ E; UE,, do:
(a) Add new vertex n
(b) Delete edge e, =< v,u >
(c) Addedgee,, =<v,n>
K (eyn) < 0.5%k" <u,v>
min(ey,) < 0,max(eyn) — max(< u,v >)
(d) Addedge en, =< n,u>
K(eny) — K <vu>
min(epy) < 0,max(epy) — max(< v,u >)
(€) K(<uyv>)—05xk(<uv>)
(f) E' —E'U{ewm,en)},V' «— V' U{n}
An example of the normalization step is shown in Figure 5.

7. Finalize

e E' — E'UE,UE,UL
o VI —V'UV,

The output of this algorithm is:

1. The fixup graph, G’ = (V' E’)

2. Ve € E' : min(e),max(e),cp(e) — the minimum ca-
pacity, maximum capacity, and cost of each edge.

This is used as input to the minimum-cost, maximal-
flow problem.

The solution of the minimum-cost, maximal-flow prob-
lem will be a flow function f(e)Ve € E’.

The fixup vector A(e)Ve =< u,v > in the original edge
set E is calculated as follows:

Ale<uyv>)=f<uyv>—f<vu> 7

where < v,u > is the reverse edge added during the fixup
graph construction.

The corrected edge weights will be calculated as fol-
lows: For each e € E:

w(e) =w(e) +A(e) (®)

By mapping back the edges which were derived from
the vertices in the vertex transformation step, we can
determine the corrected basic block counts as well [9].

3.2 Minimum-cost Maximal Flow Algorithm

Our implementation of the minimum-cost maximal flow
algorithm is based on Klein’s negative cycle cancella-
tion algorithm, shown in Figure 6.

Any edge that is not saturated is a residual edge. The
residual capacity cy of an edge e =< u,v > is defined
as cp(<u,v>)=max(e) — f(<u,v>).

An augmenting path is a path where every edge is a
residual edge. The residual capacity of an augmenting
path is the minimum of the residual capacity of its edges.

A residual cycle is a simple cycle of residual edges. The
capacity of a residual cycle is the minimum of the resid-
ual capacities of its edges. The cost of a cycle is the sum
of the costs of its edges. A residual cycle is negative if
it has negative cost.

To find a maximal flow (step 1 of Figure 6), we use the
Edmonds-Karp algorithm which is a specific implemen-
tation of the Ford-Fulkerson [6] method. The Edmonds-
Karp algorithm uses a Breadth-First Search (BFS) to
find the augmenting paths.

An example of the Edmonds-Karp algorithm is outlined
in Figure 7. (a) shows the graph with initial flow of 0
(Step 1a of Figure 6). Steps (b), (¢), and (d) in Figure 7
each demonstrate Steps 2b and 2c in Figure 6 and are
explained in more detail below.

1. Use a maximal flow routine to find a flow f of value v for the
fixup graph G'(V',E’) as follows:
a Initialize flow to O:
V<uyv>€E: f(<uv>)—0.
b Find an augmenting path from source s to the sink ¢.
¢ Send flow equal to the path’s residual capacity along
the edges of this path.
d Repeat steps b and ¢ until no new augmenting path is
found.
2. Form the residual network G(V', Ef) which is the network
with capacity
cp <uv>—max(<u,v>)— f(<uv>)
cr(<vu>) — f(<uv>)
The cost of each reverse edge is set as follows:
ep(<vu>) — —cp(<u,v>)
3. Repeat: While G contains a negative cost cycle C, reverse
the flow on the found cycle by the minimal residual capacity
in that cycle.

4. Form the minimum-cost maximal flow network G'(V' E’)
from Gy:

V<uyv>eE': f(<uy>)—cp(<vu>)

Figure 6: Mimimum Cost Maximal Flow Algorithm

(b) The augmenting path ABDF is found and flow
equal to its residual capacity of 1 unit is sent
through this path.

(c) The augmenting path ABEF is found and flow
equal to its residual capacity of 2 units is sent
through this path.

(d) The augmenting path ACDBEEF is found and flow
equal to its residual capacity of 1 unit is sent
through this path. Note how flow is pushed back
i.e., reversed along path BD. The resulting graph is
a maximal-flow network.

The residual network (step 2 of Figure 6) for the exam-
ple above is shown in Figure 8. This has no cycles and
therefore no negative cost cycle. In this case, the maxi-
mal flow is also a minimum-cost flow.

We use the Bellman-Ford [4] algorithm to test the exis-
tence of a negative directed cycle (step 3 of Figure 6).
Figure 9 illustrates the derivation of a minimum-cost
maximal flow network.

(a) The maximal flow network with edges labeled with
pairs (flow/capacities, cost).

2008 GCC Developers’ Summit e 93

03 e 0/5 113 , 0/5

o ———* 0/5 12 0/6

33 ,(B)2/5

-
N

(©) (d
Edges are labeled with flow/capacity. A = source; F = sink.

" 114 A@%

Figure 7: Example for Edmonds-Karp Algorithm

S
3

Figure 8: Residual Network

(b) Residual network derived.

(c) Negative cost cycle with minimul residual capacity
of 2 units.

(d) New residual network after reversing the flow on
the cycle ABCA by 2 units. No more negative cost
cycles exist.

(e) Minimum-cost maximal flow network derived.

We are currently evaluating the compile-time perfor-
mance of the above method. If the compile-time is
not within acceptable limits, we will then implement
Goldberg and Tarjan’s [7] algorithm for solving the

94 e Feedback-Directed Optimizations in GCC with Estimated Edge Profiles from Hardware Event Sampling ___

Figure 9: Cycle Canceling Algorithm

minimum-cost circulation algorithm. They propose an
improvement over previous negative cycle canceling al-
gorithms by judicious choice of the negative cycle to
cancel at each step, namely the cycle with the minimum
mean cost.”

An interesting observation from [9] is that using sample
profiles in combination with static profiles to obtain ini-
tial edge frequency count estimates without applying the
minimum-cost flow algorithm described above, is suffi-
cient to realize a large percentage (> 70%) of the per-
formance gain obtained by instrumentation-based FDO
with exact edge profiles. However, in our experiments
with the implementation of sampling-based FDO sup-
port in GCC (see Section 6), we found that it is neces-
sary to employ the minimum-cost maximal flow algo-
rithm to realize the performance gains.

4 Implementation

This section describes the existing implementation
for instrumentation-based FDO support in GCC. An

2The mean cost of a cycle is its cost divided by the number of
edges it contains.

SOURCE

tree-profile
static-profile

GENERIC

Optimizations
(loop, CCP, PRE,
DCE...)

GIMPLE

(Register
allocation,

Instruction

scheduling,
CSE, tracer,
BB reorder)

RTL Optimizer
RTL
- Optimizations

Figure 10: Overview of GCC Stages

overview of the GCC stages is given in Figure 10. The
stages involved in the CFG annotation with profile data
are shown highlighted.

4.1 Edge profiles

Edge profiles provide the execution count of each edge
in the function CFG, which are then used to compute the
basic block execution counts.

Both the TREE and RTL intermediate representations in
GCC use data structures basic_block and edge to
describe the CFG.

The instrumentation and annotation passes work on
the TREE intermediate representation. The function
branch_prob in profile.c implements these two
passes.

Instrumentation

If the -fprofile-arcs option is specified, GCC in-
struments the CFG. For each function’s CFG, a span-
ning tree is computed and counter code inserted on the
non-spanning-tree edges. When the program runs, the
counter code writes the edge execution counts into a
profile data file (. gcno and . gcda).

Annotation

When the —fbranch-probabilities option is
specified, GCC reads the profile data file and annotates

2008 GCC Developers’ Summit e 95

the CFG. All edges and basic blocks are marked with
execution counts.

There is also support for synthetic profiles in GCC.
When the —-fguess-branch-probability op-
tion is specified, GCC predicts branch probabilities and
estimates edge profiles using static heuristics [2].

The data structures basic_block and edge have a
64-bit integer member field count to record the execu-
tion count during the training run. This field is normal-
ized to a new value in the range 0 to BB_FREQ_MAX
and stored in the member field frequency. This data
is used by all profile based optimizations for decision-
making.

The following optimizations in GCC use edge profile
data:

1. Basic block reordering (tracer)
2. Register allocation (register priority)
3. Instruction scheduling (EBB)

4. Function reordering (hot/cold, use the first basic
block frequency as the function frequency)

5. Modulo scheduling (loop trip count)

4.2 Sample Profile Implementation

This section highlights the implementation details for
adding sample profile support in GCC. The implemen-
tation is done on the GCC 4.3 branch.

4.2.1 Feedback datafile format

The design of the sample profile feedback data file for-
mat is based on the open64 feedback file format, where a
single file is used to store profile data for an executable.
The layout of the sample profile data file is given in Fig-
ure 11.

Fb_Sample_Hdr is the file header. The data struc-
ture Pu_Sample_Hdr holds the header information
pertaining to each program unit. A program unit cor-
responds to a function. This format supports the aggre-
gation of samples for inlined functions by caller func-
tion. If a function A has 3 inlined functions B, C, and

FB_Sample_Hdr
PU_Sample_Hdr for PU 1
Pu_Sample_Hdr for PU 2

Pu_Sample_Hdr for PU NUM_PU
Pu_Sample_Hdr for Inline 1

Pu_Sample_Hdr for Inline NUM_INLINE
STRING TABLE
Fb_Info_Freqg 1 for PU 1

Fb_Info_Freg N for PU 1
Fb_Info_Freqg 1 to N for PU 2

Fb_Info_Fregq 1 to N for PU NUM_PU
Fb_Info_Freqg for Inline 1 to NUM_INLINE

Figure 11: Feedback Datafile Format

D with samples, the program header corresponding to
A will have the pu_num_inline_entries setto 3
and assign the offset of the inline program header to
pu_inline_hdr_offset (which shares the same
structure as Pu_Sample_Hdr) corresponding to the
inlined instance of B within function A. The inline head-
ers for the inlined instances of functions C and D within
function A will be stored consecutively following the
inline header for B. The samples attributed to each in-
lined function can then be handled in a manner similar
to non-inlined functions. Please note that the current
debug/source position information design in GCC does
not support differentiating between different instances
of the same callee function inlined in a caller routine.

The data structure Fb_Info_Freqis used to store the
sample count associated with each source line within a
function. The Fb_Info_Freq data associated with
a function will be stored consecutively. The Pu_
Sample_Hdr for the function has the offset of the first
Fb_Freq_ Info datainthe pu_freq_ offset field
and the number of Fb_Freq_Info associated with its
function.

4.2.2 Sample profile annotation

When the new option —fsample-profile is en-
abled:
1. The sample profile datafile is read.

2. sp_annotate() is called in the new pass added
pass_sample_profiling.

96 e Feedback-Directed Optimizations in GCC with Estimated Edge Profiles from Hardware Event Sampling

3. Feedback-directed optimizations are enabled.

sp_annotate is the main entry of sample profile an-
notation which annotates the CFG with the sample pro-
file data.

sp_annotate ()
sp_read_sample_profile();
for each BB
sp_annotate_BB () ;
sp_smooth_cfg();

sp_read_sample_profile reads the sample pro-
file data to build a hash table with the set of <source__
line_number, execution_count> mapping of
samples per function.

sp_annotate_BB computes the basic block sample
count from the sample counts of its individual IR state-
ments.

sp_annotate_BB ()
long long sum_IR_count=0;
int number_IR=0;
for EACH IR
number_IR++;
Get IR_sample_count from hash table;
if (IR_sample_count > 0)
sum_IR_count += IR_sample_count;
BB.count=sum_IR_count/number_IR

sp_smooth_cfgimplements the algorithm described
in [9].

sp_smooth_cfg()

1) Initialize k+ (o), k-(o), w(o)
sp_initialize_cfg();

2) Build fixup graph G’
sp_build_fixup_graph();

3) Minimum cost maximal flow algorithm
sp_minimum_cost () ;

4) Fixup the graph with fixup vector
sp_fixup_graph();

5) Convert edge counts to fregs
counts_to_fregs()

5 Challenges

Our methodology has several challenges, some due to
hardware-event sampling and others due to our reliance
on source position information to correlate samples to
basic blocks.

5.1 Sampling Issues

INST_RETIRED samples recorded per instruction may
not always be representative of actual instruction execu-
tion count due to the following reasons:

Program Synchronization

It is possible for the program execution to become syn-
cronized with the sampling rate. This will result in the
same instruction being sampled, for example in the pres-
ence of program loops. In order to mitigate this prob-
lem, when sampling every n INST_RETIRED event, n
should be chosen to be a prime number. Another so-
lution to avoid program synchronization is to apply a
randomization factor to every sample—this is supported
in the performance monitoring hardware of some archi-
tectures (e.g., Intel Core-2 processors).

Hardware

On out-of-order execution machines, such as the x86
platform, the instruction addresses recorded during sam-
pling may be skewed—i.e., the instruction address
recorded may not be the actual instruction incurring the
hardware event, and the skew distance may vary a lot.
For example, on the AMD Opteron microarchitecture,
there may be as many as 72 macro-ops in flight. These
skews distort the results for finer-grained measurements,
for example, measurements done on the granularity of
basic blocks, as needed for edge profile estimation. The
Intel Core-2 platform supports a Precise Event-Based
Sampling (PEBS) mode [8] which accurately records
the next instruction address following the instruction in-
curring the sampled event. We use this sampling mode
for our profile collection. One drawback of this sam-
pling mode is that it does not allow randomization of
every sample, as supported for the non-PEBS sampling
mode.

Profiling Tools

The choice of profiling tools used to collect the
hardware event samples also affect the quality of
samples collected. We compared oprofile [10]
and perfmon2 [11] (details omitted for brevity).
oprofile does not support the PEBS sampling
mode. Moreover, the quality of samples collected us-
ing oprofile were inferior to those obtained using
perfmon? in the non-PEBS sampling mode, as deter-
mined using our “degree of overlap” measures, and per-
formance runs with FDO using the sample profiles. We
therefore use per fmon?2 for profile collection.

5.2 Missing Source Position Information

Since we use source position information to correlate
samples to their corresponding source lines, it is im-
portant that the source position information is accurate
and complete in the binaries used for profile collec-
tion. We ran into a few GCC source correlation issues
with optimized (-O2) binaries—an example is shown
here. Consider the following sample counts (shown as
comments) attributed to a couple of hot basic blocks in
procedure new_dbox () in the SPEC2000 benchmark
300.twolf.

93 if (netptr->flag == 1) { //31366
94 newx = netptr->newx ; //3000

95 netptr->flag = 0 ; //37000
96 } else {

97 newx = oldx ;

98 }

No samples are attributed to lines 96 and 97, which
seems to indicate that the branch at line 93 is always
taken. However, instrumented runs show that the if
statement on line 93 is taken only 19% of the time.

The reason for no samples being attributed to lines 96
and 97, is the following transformations during opti-
mization in GCC.

1. Initial basic block corresponding to line 97:

<bb 7>:
[dimbox.c : 97] newx_25 = oldx_22;
<bb 8>:
newx_3=PHI<newx_24(6), newx_25(7)

2. After copy propagation into the PHI node:

<bb 7>:

[dimbox.c : 97] newx_25 = oldx_22;
<bb 8>:

newx_3=PHI<newx_24(6), oldx_22(7)>

3. Now the copy in bb_ 7 is dead and therefore elim-
inated during the dead code elimination phase.

4. bb_7 is then regenerated from the PHI node when
transitioning out of SSA. However, the correspond-
ing source position information is lost at this stage.

<bb 7>:
newx = oldx;
goto <bb 9>;

2008 GCC Developers’ Summit e 97

We see a similar problem in the 175.vpr bi-
nary compiled with ~02 -g in function get_non_
updateable_bb (). We are investigating the possi-
bility of enhancing GCC to maintain source position in-
formation across copy propagation into PHI nodes and
regeneration from PHI nodes in order to fix this issue.

5.3 Insufficient Source Position Information

Some cases require enhancements to the current debug/
source position information in order to be handled cor-
rectly by the sample profile-based FDO support.

Control Flow Statements in a Single Source Line

Examples:
if (cond) {stmtl} else {stmt2}
(cond) ? (taken_body) (not_taken_body) ;

In such cases, it is not possible to differentiate the sam-
ples that should be attributed to the basic block contain-
ing the branch condition and the samples that should be
attributed to the basic block containing the taken or not-
taken body of the branch, since all the samples will be
attributed to the single source line. In order to han-
dle such source statements, the debug information in
GCC should be enhanced to discriminate control trans-
fers within a single source line.

Early Inlined Routines

At the time of sample annotation of the basic blocks, the
CFG contains early inlined routines. Samples that are
attributed to the basic blocks of the early inlined routines
should be scaled appropriately, if the aggregated sample
counts for the inlined routine are used. Furthermore,
the execution profile for a particular inlined instance
may not match the aggregated inlined function sample
count. Currently, the sample profile feedback file format
supports aggregating samples for inlined functions per
caller function. It would be more accurate to differenti-
ate the samples for each inlined callee function instance,
which requires enhancements to the current source po-
sition information format.

Macros

Currently all the instructions pertaining to MACROS are
attributed to the first source line of the MACRO use in
GCC. It is therefore not possible to differentiate samples

98 e Feedback-Directed Optimizations in GCC with Estimated Edge Profiles from Hardware Event Sampling

within the multiple statements within a MACRO, espe-
cially if the MACRO contains control transfers. Again,
enhancements to the source position information are
needed to handle sample attribution to MACROS cor-
rectly.

6 Results

6.1 Overlap Measures

The accuracy of the estimated edge profiles depend on
several factors:

1. The quality of the sample profiles

2. The completeness and accuracy of source position
information

3. The effectiveness of the edge profile estimation
heurisitics

We use the degree of overlap measure used in [9] to
compare the edge profiles constructed using the sample
profiles (G1) with the exact edge profiles (G2) obtained
using instrumentation. The edge set £ in both G1 and
G2 are identical.

overlap(G1,G2) = Y min(pw(e,G1), pw(e, G2))
ecE
9)

where pw(e,G) is defined as the percentage of the
edge e’s weight of the CFG G’s total edge weight. A
higher degree of overlap number indicates higher accu-
racy in the edge profile values estimated by the heuris-
tics. The degree of overlap numbers obtained for the
SPEC2000int benchmarks by comparing the estimated
edge profiles for the different cases with the exact edge
profiles obtained from instrumented runs is shown in Ta-
ble 1.

The columns in Table 1 are labeled as follows:
e Base: Default edge profile estimation using static
profiles.

e OO/N: Edge profile estimation using sample pro-
files collected from -OO0 binaries without applying
the minimum-cost maximal flow algorithm.

l Benchmark \ Base \ O0/N \ 00 \ 02 ‘

164.gzip 68.5 [5027 [77.14 | 73.68
175.vpr 6591 | 70.49 | 81 75.73
176.gcc 4545 | 51.78 | 54.58 | 59.41
181.mcf 4577 | 705 | 71.08 | 67.91
186.crafty | 59.96 | 51.61 | 71.86 | 64.46
197 .parser 7277 | 70.59 | 79.65 | 71.57
252.eon 87.75 | 62.01 | 66.22 | 62.5
253.perlbmk | 61.35 | 61.65 | 7233 | 75.67
254.gap 71.18 | 66.6 | 72.5 | 78.98
255.vortex | 59.26 | 57.35 | 613 | 60.26
256.bzip2 | 51.16 | 46.45 | 80.85 | 79.05
300.twolf 73.74 | 68.84 | 79.49 | 77.46

[Average | 63.47 [60.68 [72.33 | 70.56 |

Table 1: Degree of Overlap Measures

o O0: Edge profile estimation using sample profiles
collected from -O0 binaries.

e O2: Edge profile estimation using sample profiles
collected from -O2 binaries.

The average degree of overlap measure using static pro-
files, as done in default -O2 runs is 63.47%, which
is used as the base for comparision with edge profiles
constructed from sample profiles. We see that if we
use sample profiles, without employing the minimum-
cost maximal flow algorithm, then the degree of overlap
measure decreases to 60.68%. The value of the mea-
sure improves when applying the minimum-cost maxi-
mal flow algorithm to estimate the edge profiles when
using sample profile data collected with:

e -OO0 binaries to 72.33% and

e -O2 binaries to 70.56%.

for all the benchmarks, excepting the C++ benchmark
252 .eon. Currently we do not use the sample profile
data present for inlined functions during basic block an-
notation, and this may result in incorrect edge weights
being computed for early inlined routines, thereby af-
fecting the degree of overlap measure for 252 .eon.
We are currently investigating this issue.

We expect the degree of overlap and performance gains
to be better for FDO with sample profiles when using
-O0 binaries for profile collection as compared to us-
ing -O2 binaries due to source correlation issues seen
with optimized binaries. The performance run results

2008 GCC Developers’ Summit e 99

outlined in the next section correlate positively to the
overall trend in the average degree of overlap measures
and expectations.

6.2 Experimental Evaluation

Our performance experiments were carried out using
32-bit binaries of the SPEC2000int C benchmarks on
the AMD Opteron platform. We compare the perfor-
mance gains of instrumentation-based FDO with sample
profile based FDO using GCC built -O0 and -O2 bina-
ries for profile collection. The sample profile collec-
tion was done on Intel Core-2 platform using the PEBS
sampling mode. We also compare sample profile-based
FDO with and without using the minimum-cost maxi-
mal flow algorithm, to show that the application of this
algorithm is indeed necessary to realize the performance
gains. The base run used for comparision in all our ex-
periments is the default -O2 run using static profiles, i.e.,
without FDO.

We are currently tuning our heuristics to use samples
collected from inlined routines. The C++ benchmark
252 .eon shows a very high performance gain of ap-
proximately 18% using instrumented FDO, as compared
to a relatively low performance gain of 6% using sam-
ple profile based FDO. We are currently looking into this
issue. Since this is work in progress, we have omitted
the C++ benchmark 252 .eon from our experimental
results.

The option —-fprofile—use enables feedback-
directed optimizations which use both value and
edge profile data. Specifically, the following op-
tions are enabled: -fbranch-probabilities,
—fvpt, —funroll-loops, —fpeel-loops, and
—ftracer. Of the above, - fvpt applies to using the
value profile data, and the remaining options apply to
using the edge profile data.

In Table 2, we compare the performance
runs using the default edge profile options
—fbranch-probabilities, -—-funroll-loops,
-fpeel-loops, and —ftracer enabled. The
columns are labeled as follows:

e I: -O2 run with instrumentation-based FDO.

e S/O0/N: -O2 run with sampling-based FDO and
without applying the minimum-cost maximal flow
algorithm. Profile data collected from -O0 binaries.

Benchmark [1] S/OO/N | S/O0 | S/02 |
164.gzip 336 [-475] 266 | 1.62
175.vpr 5.28 264 | 491 | 6.04
176.gcc 6.41 128 | 1.68 | 3.12
181.mcf 045 0.00 | 3.84 | 3.16
186.crafty 2.98 0.94 | 493 | 3.06
197 .parser 1.21 -1.09 | 048 | 0.85
253.perlbmk | -0.81 | -2.27 | -0.73 | -0.16
254.gap 299 | 472 | L16 | 250
255.vortex | 227 | -227 | 1.88 | 1.10
256.bzip2 5.97 310 | 138 | 023
300.twolf 222 338 | 552 | 1.89
[Average | 294 -034] 252 [213 |

Table 2: Performance gains with default edge profile op-
tions enabled

e S/00: -O2 run with sampling-based FDO. Profile
data collected from -OO0 binaries.

e S/0O2: -O2 run with sampling-based FDO. Profile
data collected from -O2 binaries.

Instrumentation-based FDO runs show an average gain
of 2.94%, whereas sampling-based FDO runs using:

e -OO0 binaries show an average gain of 2.52% (ap-
proximately 86% of the instrumented FDO gain)

e -O2 binaries show an average gain of 2.13% (ap-
proximately 72% of the instrumented FDO gain)

When only the initial edge weights estimated from
the static profile heuristics and the basic block sam-
ple counts are used, without the application of the
minimum-cost maximal flow algorithm, the average per-
formance gain degrades to -0.35%. We can therefore
conclude that the minimum-cost maximal-flow algo-
rithm is necessary to achieve performance gains with
sample profile-based FDO.

We also compare the performance gains when only the
option —fbranch-probabilities is enabled for
the FDO runs as shown in Table 3. The columns are
labeled similarly as for Table 2.

For FDO using instrumented profiles, en-
abling the default edge profile specific options
—fbranch-probabilities, -—-funroll-loops,
—fpeel-loops, and —ftracer result in a higher
average performance gain. However, 181 .mcf,

100 e Feedback-Directed Optimizations in GCC with Estimated Edge Profiles from Hardware Event Sampling __

[Benchmark | 1 [S/OO/N [S/O0 [S/02 |
164.gzip 208 [-0.12 [127] 1.16
175.vpr 5.28 201 | 428 | 579
176.gcc 592 | -0.16 | 3.28 | 3.44
181.mcf 1.81 0.11 | 395 | 203

186.crafty 5.95 374 | 544 | 5.10

197 .parser -0.85 0.24 | 0.60 | 0.60
253.perlbmk | 5.85 -4.31 122 | 219
254.gap -2.02 -0.58 | -0.96 | -1.83
255.vortex 3.14 320 | 212 | 2.04
256.bzip2 241 356 | 0.57 1.49
300.twolf -3.71 -1.24 1.81 5.02
[Average | 235 0.60 [214 [2.46 |
Table 3: Performance gains with only option

—fbranch-probabilities enabled

186.crafty, 253.perlbmk and 255.vortex
show better performance gains when only the op-
tion -fbranch-probabilities 1is enabled.
FDO with sample profiles collected using -O2 bina-
ries show an average gain of 2.46% when only the
—-fbranch-probabilities option is enabled, as
compared to a slightly lower gain of 2.13% when all
the edge profile specific options are enabled. These
results seem to indicate that sample profiles are not very
effective for the loop-specific optimizations enabled
by the -funroll-loops and -fpeel-loops
options. We are currently investigating this further.

7 Current Status and Future Work

Our initial experiments show that edge profiles con-
structed from INST_RETIRED event samples can be
used to achieve the performance gains of traditional
FDO with instrumented edge profiles, while overcoming
the shortcomings of the traditional FDO usage model.
We have identified several problem areas, especially in
the shortcomings of the source position/debug informa-
tion support in GCC that is currently being addressed.
Specifically, work is in progress to enhance the debug
information and minimum line table information to sup-
port better handling of source lines that span multiple
basic blocks, inlined routines, and MACROS by the ba-
sic block sample annotation heuristics.

We also plan to apply the edge profile estimation heuris-
tics described in this paper to existing problems in
GCC due to inconsistent basic block and edge fre-
quency counts obtained in some cases with traditional

instrumentation-based FDO. For example, when pro-
filing multi-threaded applications, the basic block and
edge frequency counts obtained via instrumentation are
under-counted in some cases due to the loss of some
of the counter increments when multiple threads incre-
ment the same counter without using synchronization
primitives. The minimum-cost maximal flow algorithm
implemented can be used to effectively fix the inconsis-
tent basic block and edge frequency counts for the above
scenario.

One main drawback of our sampling-based FDO
method is that it does not support value profiling which
is supported by the instrumentation-based FDO method.
Our experiments indicate that a large percentage of the
performance gains obtained by value profiling is due to
their use in memset/memcpy inlining. These perfor-
mance gains can still be achieved with edge profiling
alone, without the use of value profiling, by tuning the
inlining heuristics and methods.

The INST_RETIRED samples can be used for proce-
dure re-ordering optimizations—for example, by the
Whole Program Optimizer (WHOPR) project [5]. In
the future, we would like to extend the sample profile
datafile format to support sampling of other hardware
events, such as data and instruction cache misses to be
used in data layout and procedure re-ordering optimiza-
tions and branch mispredict event samples to be used in
if-conversion optimizations.

8 Acknowledgments

We would like to thank Roy Levin for his help and
support in promptly and enthusiastically answering our
questions on the algorithm described in [9], Seongbae
Park for his help in analysis of GCC source correlation
issues, and the reviewers for their valuable feedback.

References

[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat,
M. Henzinger, S. Leung, D. Sites,
M. Vandevoorde, C. Waldspurger, and W. Weihl.
Continuous profiling: Where have all the cycles
gone, 1997.

[2] Thomas Ball and James R. Larus. Optimally
profiling and tracing programs. ACM
Transactions on Programming Languages and
Systems, 16(4):1319-1360, July 1994.

[3] Thomas Ball and James R. Larus. Efficient path
profiling. In International Symposium on
Microarchitecture, pages 46-57, 1996.

[4] Richard Bellman. On a routing problem. In
Quarterly of Applied Mathematics, 16(1), pages
87-90, 1958.

[5] Preston Briggs, Doug Evans, Brian Grant, Robert
Hundt, William Maddox, Diego Novillo,
Seongbae Park, David Sehr, lan Taylor, and Ollie
Wild. Whopr - fast and scalable whole program
optimizations in gcc, 2008.

[6] L. R. Ford and D. R. Fulkerson. Maximal flow
through a network. In Canadian Journal of
Mathematics 8, pages 399-404, 1956.

[7] Andrew V. Goldberg and Robert E. Tarjan.
Finding minimum-cost circulations by canceling
negative cycles. J. ACM, 36(4):873-886, 1989.

[8] Intel. Ia-32 Intel Architecture Software
Developer’s Manual, Volume 3: System
Programming. Intel Press, 2007.

[9] Roy Levin, Ilan Newman, and Gadi Haber.
Complementing missing and inaccurate profiling
using a minimum cost circulation algorithm. In
HiPEAC, pages 291-304, 2008.

[10] Oprofile.
http://oprofile.sourceforge.net.

[11] Perfmon2.
http://perfmon2.sourceforge.net.

[12] R. L. Probert. Optimal insertion of software
probes in well-delimited programs. IEEE Trans.
Softw. Eng., 8(1):34-42, 1982.

[13] Vinodha Ramasamy, Dehao Chen, Wenguang
Chen, and Robert Hundt. Feedback-directed
optimizations with estimated edge profiles from
hardware event sampling. In Open64 Workshop at
CGO, 2008.

[14] Catherine Xiaolan Zhang, Zheng Wang,
Nicholas C. Gloy, J. Bradley Chen, and
Michael D. Smith. System support for automated
profiling and optimization. In Symposium on
Operating Systems Principles, pages 15-26, 1997.

2008 GCC Developers’ Summit e 101

102 e Feedback-Directed Optimizations in GCC with Estimated Edge Profiles from Hardware Event Sampling __

