
Juggler: Virtual Networks for Fun and Profit
Anthony J. Nicholson, Scott Wolchok, and Brian D. Noble

Abstract—There are many situations in which an additional network interface—or two—can provide benefits to a mobile user.

Additional interfaces can support parallelism in network flows, improve handoff times, and provide sideband communication with

nearby peers. Unfortunately, such benefits are outweighed by the added costs of an additional physical interface. Instead, virtual

interfaces have been proposed as the solution, multiplexing a single physical interface across more than one communication endpoint.

However, the switching time of existing implementations is too high for some potential applications, and the benefits of this approach to

real applications are not yet clear. This paper directly addresses these two shortcomings. It describes a link-layer implementation of a

virtual 802.11 networking layer, called Juggler, that achieves switching times of approximately 3 ms, and less than 400 �s in certain

conditions. We demonstrate the performance of this implementation on three application scenarios. By devoting 10 percent of the duty

cycle to background tasks, Juggler can provide nearly instantaneous handoff between base stations or support a modest sideband

channel with peer nodes, without adversely affecting foreground throughput. Furthermore, when the client issues concurrent network

flows, Juggler is able to assign these flows across more than one AP, providing significant speedup when wired-side bandwidth from

the AP constrains end-to-end performance.

Index Terms—Wireless communication, mobile computing, virtual networks, Juggler.

Ç

1 INTRODUCTION

THERE is increasing recognition that wireless clients can
often benefit from additional radio interfaces. For

example, multiple interfaces can increase effective band-
width through provider diversity [22], alleviate spot losses
with spectrum diversity [18], and improve mobility
management through fast handoff [3]. Despite such
compelling advantages, devices with multiple interfaces
remain the exception rather than the rule.

VirtualWiFi seeks to provide these benefits with a single
radio [9]. It virtualizes a single wireless interface, multi-
plexing it across a number of different endpoints. While
promising, this work remains incomplete. Switching times,
even with chipsets supporting software MAC layers, are at
least 25 ms. This may still be too high for many potential
multiinterface applications. VirtualWiFi also made no
modifications to wireless device drivers, and consequently,
incurred unavoidable overhead as a result of delays and
device resets inherent in the third-party driver code.
Furthermore, VirtualWiFi’s API can be cumbersome, ex-
posing the multiplexed interfaces at the application layer.
This forces the application to explicitly manage networks
that come and go, complicating applications whether they
can benefit from this functionality or not.

In this paper, we present Juggler, a refinement of
VirtualWiFi’s virtual network scheme. Juggler is a virtual
networking stack implemented at the link layer, with
support from the device driver. It provides switching times
of approximately 3 ms, and less than 400 �s when switching

between endpoints on the same channel. Juggler provides a
single network interface to applications that desire such
simplicity, but provides a mechanism for applications to
manage connectivity explicitly if they can benefit from
doing so.

We present the design and implementation of Juggler,
with a prototype built in the Linux 2.6 kernel. Juggler is
able to multiplex across infrastructure base stations, ad hoc
peers, and a passive beacon-listening mode with minimal
delay. Juggler is implemented as a stand-alone kernel
module, together with a user-level daemon, jugglerd.
The latter manages the configuration of multiple endpoints
and the transmission schedule across them, making
experimentation easy.

The bulk of the paper evaluates this prototype across a
variety of benchmarks, exploring the benefits and draw-
backs of virtual interfaces in wireless networks for three
different scenarios. The first, AP handoff, demonstrates that
by devoting only 10 percent of the wireless duty cycle to AP
scanning, a client can switch APs within tens of milli-
seconds of detecting lost connectivity. Importantly, this
10 percent duty cycle loss reduces foreground transfer
throughput by only a few percent.

The second scenario explores the degree to which various
applications can exploit data striping and bandwidth
aggregation. We evaluate three applications—a multi-
threaded file transfer, a streaming video application, and a
peer-to-peer file sharing client. Typically, these applications
benefit most when the bandwidth on the wireless side of the
AP is significantly higher than the backend, wired side. For
example, the file sharing client obtains benefit through data
striping up to backend bandwidths of 2.4 Mbps—a typical
rate for private broadband access.

The final scenario demonstrates Juggler’s ability to
support a small side channel for ad hoc connections to nearby
peers without interrupting primary flows to the infrastruc-
ture APs. The TCP throughput offered by this scheme is

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 1, JANUARY 2010 31

. A.J. Nicholson is with Google, Inc., 20 W. Kinzie St., Chicago, IL 60610.
E-mail: ajnicholson@gmail.com.

. S. Wolchok and B.D. Noble are with the Software Systems Laboratory,
University of Michigan, 2260 Hayward Street, Ann Arbor, MI 48109-
2121. E-mail: swolchok@umich.edu, bnoble@umich.edu.

Manuscript received 12 Apr. 2008; revised 7 Feb. 2009; accepted 27 Apr.
2009; published online 14 May 2009.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2008-04-0138.
Digital Object Identifier no. 10.1109/TMC.2009.97.

1536-1233/10/$26.00 � 2010 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS



relatively low, due primarily to packet losses induced by the
short ad hoc duty cycle. Because Juggler is communicating
with an ad hoc peer, it cannot leverage the power save mode
buffering feature as if the other party was a standard access
point. As a result, packets from the ad hoc peer to the test
laptop will often be dropped during the time that Juggler is
tuned to the other frequency. Nevertheless, the achieved rate
of 320 Kbps for a 10 percent share of a 4 Mbps connection is
reasonable for many opportunistic applications.

2 BACKGROUND

Juggler’s design is based on VirtualWiFi [9]. This system
maintains a set of virtual networks that are each active on
the WiFi radio in turn. When a virtual network is not active,
any outbound packets are buffered for delivery the next
time the network is activated. Switching from one AP or ad
hoc network to the next involves updating such wireless
parameters as the SSID, BSSID (station MAC address), and
radio frequency on the wireless card.

Most WiFi cards perform part of the IEEE 802.11
protocol in firmware rather than in a software device
driver. The problem is that this does not support a scenario
where it would be advantageous to change the radio
frequency or SSID every 100 ms. The firmware of such
legacy cards often performs a card reset when changing
certain wireless parameters.

VirtualWiFi reduced switching time from three or four
seconds to 170 ms by suppressing the media connect/
disconnect messages that wireless cards generate when
these parameters are changed. Otherwise, these notifica-
tions cause upper layers of the networking stack to believe
that the network interface is briefly disabled, and no data
can flow for several seconds.

They further reduced switching time to 25 ms when
Native WiFi cards were used. These are cards that perform
the MAC layer in software, not on the card itself. The
software device driver can therefore perform only those
operations that are necessary, and omit any wasteful
firmware resets. The Native WiFi cards used in the
evaluation of VirtualWiFi still performed the 802.11 associa-
tion procedure automatically—in firmware—whenever the
network was rotated.

Juggler uses wireless cards that rely on a software MAC
layer. This lets us suppress the association process to further
optimize switching. When Juggler first communicates with
an AP, it must perform the slow 802.11 association
sequence. Subsequently, Juggler only associates to an AP
again if it receives an explicit 802.11 deauthentication
message. This may occur if Juggler is associated with a
given AP but rarely sends any data through that virtual
network, since access points periodically deauthenticate
“inactive” clients.

Another problem when connecting to multiple networks
simultaneously is that packets destined for our device may
arrive at an AP while the WiFi radio is communicating with
a different AP or ad hoc peer. Because the first AP does not
know this, it will transmit data but the client’s radio will not
detect the packets because it is tuned to a different channel.

VirtualWiFi uses the 802.11 power saving mode (PSM) to
coerce APs into buffering downstream packets intended for

the client while the client is communicating with another
AP or peer. In standard PSM operation, a client is connected
to one base station but periodically deactivates its WiFi
interface to conserve power. Before turning off the WiFi
radio, the client sends a null IEEE 802.11 frame to the base
station, with a PSM mode bit set. At a fixed frequency, the
client reactivates its radio and listens passively for the AP’s
beacon frame. One field of the beacon—a Traffic Indicator
Map (TIM)—indicates which of the many clients connected
to the AP have buffered packets waiting for them. Clients
are uniquely identified by an association ID (AID) pre-
viously received as part of the 802.11 association process.

If the client finds it has no buffered packets waiting, it
deactivates its radio until the next timeout. But if data are
pending, the client transmits a special PSPOLL frame to the
access point. The AP then transmits the first buffered packet
to the client. Each packet received by the client has a bit in
the 802.11 header indicating if there are yet more packets
buffered on the AP. The client continues to transmit
PSPOLL packets until all buffered data have been retrieved.

Downstream packet buffering was described in the
original VirtualWiFi paper, and subsequently implemented
in follow-up work [1]. We have also implemented this
technique in our Juggler prototype.

3 JUGGLER

Fig. 1 illustrates a standard network stack, modified to
include Juggler. Rather than force all applications to
explicitly bind their data flows to specific access points
[9], [30], we present a single, unchanging network interface
to upper layers of the stack. This pseudodevice imperso-
nates a wired Ethernet interface with a static, private IP

32 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 1, JANUARY 2010

Fig. 1. Juggler network stack. One unchanging network interface is
visible to upper layers of the network stack and to applications. Juggler
maintains connection parameters (SSID, channel, DHCP configuration)
for each virtual network with which it is associated, assigns sockets to
virtual networks, buffers packets destined for inactive networks, and
performs network address translation (NAT) between internal and
external IP addresses.



address and a synthetic Ethernet MAC address to distin-
guish it from the device’s “real” network interfaces. All data
flows are bound to this network interface and IP address.

Our system consists of two main parts. The first is an in-
kernel component that sits between the network and link
layers of the OS networking stack. The second is an
application-level, privileged process that handles access
point discovery and configuration.

Juggler can connect to 802.11 ad hoc networks as well as
infrastructure access points. We use the general term virtual
network in the remainder of this paper to refer to the
configuration for either an infrastructure AP or an ad hoc
group. For every configured virtual network, Juggler tracks
the following state:

. Network type (infrastructure or ad hoc);

. SSID;

. MAC address (BSSID);

. Frequency (channel number);

. IP address, default gateway, netmask, DNS server(s);

. An outbound packet queue;

. An ARP cache; and

. Radio duty cycle fraction that the network is active.

Tracking AP MAC address is critical in order to
distinguish between different access points that share the
same SSID (as is common in enterprise or campus
deployments). Data flows are distributed among virtual
networks at the granularity of the socket abstraction. A
process can therefore “stripe” data across many virtual
networks by creating multiple sockets with appropriate
options, but all data belonging to one socket are transmitted
via the same virtual network. We made this design decision
to preserve the semantic definition of a socket endpoint as
an (IP address, port) pair.

Juggler is not designed to handle flow failover when
moving from one wireless network to another. Existing
solutions such as Mobile IP [21] and/or TCP Migrate [28]
should be employed atop Juggler for this purpose.

3.1 Assigning Flows to Networks

Juggler was designed with flexibility and ease of use as
primary concerns. Applications need not specify which
virtual network should handle a given data flow, but they
are provided with a simple interface to do so if desired.
After creating a socket, applications may set a new socket
option with the MAC address of a preferred network.
This is analogous to using the SO_BINDTODEVICE socket
option to bind a socket to an interface when multiple
NICs are available.

When Juggler receives data for a previously unseen
socket from the network layer, it assigns the socket to a
virtual network. If a preferred network’s MAC address was
previously set via the new socket option, the socket is
assigned to that virtual network. Otherwise, Juggler simply
assigns it to whichever network is currently active on the
WiFi radio.

Thus, a data flow created without specifying an AP
preference is pseudorandomly assigned to one of the active
virtual networks. Our ongoing work examines how Juggler
can handle this matchmaking in a more intuitive fashion. We
intend to add a socket option so applications can specify the

general properties of a data flow (e.g., background bulk
transfer and interactive session). Juggler will then match
these needs with the connection quality of different virtual
networks. We envision leveraging our prior work [20], which
tracked user mobility and network availability to predict the
quality and properties of access points users will encounter.

In the future, mobile devices may increasingly make use
of services provided by other endpoints within an AP’s
private network—for example, an access point that doubles
as a streaming media server. This is not a problem if all the
wireless access points to which Juggler is connected have
been configured to assign IP addresses from different
private subnets. If subnets overlap, however, unmodified
applications may have their flows go to an unintended
destination. Consider the case where Juggler is connected to
two APs that both assign client IP addresses in the
192.168.0.x subnet. The destination address 192.168.0.5
would be ambiguous in this situation. Juggler does not
currently handle this usage case unless applications utilize
the socket override option.

3.2 Sending and Receiving Packets

As illustrated in Fig. 1, upper layers of the network stack see
only one network device. This pseudodevice emulates a
wired Ethernet interface, with an IP address in the private
address range. All sockets are bound to this interface and IP
address when they are created.

It is critical that Juggler maintain a unique ARP cache for
each virtual network, bypassing the system-wide ARP
cache completely. IP address namespaces of different
virtual networks may collide because access points com-
monly use NAT to share a wired link and assign IP
addresses from private blocks. If Juggler relied on the
system-wide ARP cache instead, this cache would need to
be flushed constantly because, for example, different hosts
connected to different APs might be assigned the address
192.168.1.1 but have different MAC addresses.

A consequence of this NAT/reverse NAT architecture is
that a security protocol such as IPsec would break unless
explicit support were built into the Juggler layer of the
networking stack. For example, Juggler could perform a
man-in-the-middle “attack” during the initial key negotia-
tion, in order to be able to rewrite the IP layer headers on
the fly for subsequent data packets.

This pseudodevice is implemented by the kernel compo-
nent of Juggler. All outbound data flows therefore pass
through Juggler before reaching the WiFi device driver.
Handling an outbound data packet is a four-stage process:

First, determine the owning virtual network. If this is the
first time data has been seen on this socket, assign the flow
to a virtual network.

Second, construct the Ethernet header. If the destination
IP address falls inside the subnet, as determined by the
virtual network’s assigned IP address and netmask, then
get the destination MAC address from the network’s ARP
cache. Otherwise, use the MAC address of the default
gateway. Juggler may not find the MAC address it needs in
the virtual network’s ARP cache. In that case, Juggler
enqueues the outbound data packet, constructs an ARP
request for that IP address, and broadcasts the request
when the virtual network is next active on the WiFi radio.

NICHOLSON ET AL.: JUGGLER: VIRTUAL NETWORKS FOR FUN AND PROFIT 33



Once the device owning that IP address responds with its
MAC address, Juggler adds the mapping to the virtual
network’s ARP cache, and continues with the transmission
of the original packet.

Third, perform network address translation. Because all
sockets are bound to the internal pseudodevice, packets
received from the network layer will have their IP source
address set to the internal IP address. The different virtual
networks have different external IP addresses, however,
that were either assigned to them by a DHCP server
running on an access point, or statically configured. Juggler
therefore rewrites the IP and transport-layer headers as
needed to reflect the real source IP address.

Fourth, forward for transmission. If the virtual network
that owns this socket is currently active on the WiFi radio,
Juggler immediately transmits the packet. This is done
through the same function call interface that the network
layer would use to contact the device driver if Juggler were
not installed. If the virtual network that owns the socket is
not active, the packet is enqueued.

Receiving data packets is easier than sending. Juggler
simply performs NAT to translate the destination IP
address in the packet to that of the internal pseudodevice
and forwards the packet up to the network layer.

3.3 Switching between Virtual Networks

Each active virtual network is allotted an adjustable fraction
of the radio’s duty cycle. Virtual networks are active in a
round-robin fashion, each for their configured time. After
activating a given virtual network, Juggler sets a kernel
timer to be invoked again once the new network’s timeslice
has expired. Thus, Juggler need not run at a constant
frequency, but only when needed to switch to the next
virtual network.

Switching the WiFi radio from one AP or ad hoc network
to the next is a multistage process. First, we coerce the
current access point into buffering packets destined for the
client while the radio is communicating with another
virtual network. This is done by transmitting a null IEEE
802.11 frame with the PSM bit set, indicating that the client
is entering the PSM mode.

Next, Juggler updates the radio’s wireless parameters via
the device driver. If the next virtual network is not on the
same channel as the previous one, the radio frequency must
be modified. Juggler updates the SSID and MAC address to
that of the new AP or ad hoc group, and updates the mode
(infrastructure or ad hoc) and/or encryption parameters if
these have changed.

If this is the first time the virtual network has been
activated—because it was just added—or if Juggler has
recently received a deauthentication message from the
access point, Juggler must force the WiFi device driver to
perform the entire association process in order to obtain an
association ID.

Juggler then transmits a power-save poll (PSPOLL)
frame to the new AP. This indicates that the client has
returned from its (fake) power-save mode. If the AP has any
enqueued packets destined for the client, it transmits the
first one. Juggler continues sending PSPOLL until all
enqueued packets have been received. Finally, Juggler

transmits any outbound packets that were enqueued for
this virtual network when it was previously inactive.

In addition to infrastructure APs and ad hoc networks,
Juggler recognizes a third, special type of network: a
scanning slot. When this virtual network comes up in the
rotation, Juggler simply sets the link status of the WiFi card
to unlinked (to passively listen for beacons) and changes the
frequency of the WiFi radio. Each time the scanning slot is
scheduled, Juggler listens on a different frequency so that
the entire channel space is eventually searched. In our
current implementation, Juggler rotates among the three
nonoverlapping channels 1, 6, and 11. In the current design,
this is strictly passive scanning (no active probes are sent).
This was a design decision to conserve battery life, because
listening for packets or beacons consumes far less energy
than actively transmitting a packet.

3.4 User-Level Daemon

A user-level process, jugglerd, is responsible for general
configuration of the Juggler kernel module. The two
communicate via the /proc filesystem in Linux. To add a
virtual network to the rotation, jugglerd sends the kernel
module the SSID and MAC address and channel number of
the network, along with the mode (infrastructure, ad hoc, or
scanning slot).

When the kernel module receives the request, it creates a
virtual network structure (containing the outbound packet
queue, ARP queue, etc.) and adds the new network to the end
of the round-robin rotation. The new network is assigned the
default timeslice duration—100 ms. If the new network is an
infrastructure AP, Juggler will perform the slow 802.11
association the first time the network is activated. Optionally,
jugglerd can include an IP configuration (address,
netmask, default gateway, and DNS server) all at once with
the network add request, or update those values at a later
time. No data flows will be assigned to a virtual network until
its network layer parameters have been configured. To delete
a virtual network, jugglerd simply writes the network’s
MAC address to another /proc file. If the network is
currently active, Juggler preemptively switches to the next
network before deleting the network’s state.

To adjust the relative timeslices of active virtual net-
works, jugglerd writes network MAC addresses, and a
relative weight for each, to the kernel. These weights are
interpreted as multiples of the current default switching
timeout. For example, consider the case where two APs are
active and the default switching timeout is 100 ms. To give
AP1 90 percent of the radio duty cycle and AP2 10 percent,
jugglerd would give AP1 a weight of 9 and AP2 a weight
of 1. Because the default timeout was 100 ms, AP1 would
then be active for 900 ms, followed by 100 ms of AP2, then
900 ms of AP1. The default switching timeout is also
configurable at runtime, allowing jugglerd to assign a
radio schedule of desired granularity.

3.5 Implementation Details

The vast majority of the Juggler kernel code is a stand-
alone kernel module. A small patch to the Linux 2.6.22.14
kernel was required to automatically bind all sockets to
the pseudodevice created by Juggler in order to capture
all outbound flows, and to allow Juggler to perform

34 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 1, JANUARY 2010



inbound NAT processing before packets are delivered to
the network layer.

We used WiFi cards with the Realtek 8185 chipset for
development and testing. This chipset performs all MAC-
layer functions in software, letting us optimize the repeated
switching process. We used the open-source rtl-wifi

driver, which leverages the common Linux ieee80211

software MAC layer. The vast majority of our implementa-
tion is chipset-agnostic, however. Indeed, Juggler has since
been ported to the Broadcom chipset with minimal effort.

We reduced the rtl-wifi driver’s overly-cautious
delay imposed whenever writing a value to the card over
the PCI bus. For example, changing the radio frequency
requires six sequential writes to the card. By default, the
driver waits 5 ms between each write to allow the PCI bus
to stabilize. We were able to reduce this delay to 500 �s,
letting Juggler switch the radio frequency in 6� 500 �s ¼
3 ms rather than 30 ms.

4 EXPERIMENTAL SETUP

Before evaluating Juggler, we must consider what sort of
usage environment we intend to model. Previous evalua-
tions of virtual link layers focused primarily on commu-
nicating with peers over ad hoc, point-to-point links [4], [9],
[11]. Throughput in such situations is limited by the 802.11
link speed (e.g., 10 or 54 Mbps) and interference on the
wireless channel.

We are focused on mobile devices that primarily commu-
nicate with remote Internet destinations, by means of access
points where wireless bandwidth outstrips that of the AP’s
back-end connection. This is certainly the case for DSL lines or
cable modems, typical for residential settings, coffee houses,
and other opportunistic public connectivity. This assumption
may be invalid on corporate or academic campuses where
APs connect directly to Gigabit Ethernet networks.

Fig. 2 illustrates the test setup in our laboratory. The test
laptop at left represents a mobile client with one WiFi
network card. We configured two Linksys WRT54G 802.11g
access points on disjoint channels (1 and 11) and different
subnets (192.168.0.x and 192.168.1.x). A second laptop was
also present to act as an ad hoc peer for certain experiments.
The remote server at the far right represents an arbitrary

Internet end host with which the mobile client wishes to
communicate. This machine was configured with a static IP
address of 192.168.2.5, outside either AP’s subnet.

As illustrated in Fig. 2, the APs and the ad hoc peer were
all connected with the remote server by gateways. The
gateways used IP forwarding and NAT to forward packets
from each access point’s subnet to the subnet (192.168.2.x)
of the remote server. To evaluate the effect of different back-
haul bandwidths from APs to remote Internet hosts, we
installed NIST Net [8] on all gateway machines. NIST Net
configures a Linux host to act as a router, delaying or
dropping packets to shape flows to a desired bandwidth or
emulate a given loss rate.

We sought to minimize interference between the APs
and wireless clients by distributing them throughout our
laboratory. The laboratory environment was not electro-
magnetically shielded, however, introducing the possibility
of interference from elsewhere in the building. For the case
where two cards were used in one laptop, one card was the
built-in WiFi card in the laptop and the other was a
PCMCIA card. This minimized interference between the
two cards as much as possible, because the internal WiFi’s
antenna was located high on the lid of the laptop, not next
to the PCMCIA slot.

5 MICROBENCHMARKS

Juggler works by interposing between the network and link
layers of the operating system’s protocol stack. To quantify
the overhead this introduces, we instrumented Juggler to
measure the overhead imposed for 1) switching from one
virtual network to the next and 2) performing network
address translation (NAT) on ingress and egress data packets.

The minimum resolution of a standard kernel timer
depends on the frequency with which the scheduler timer
fires (4 ms for the Linux 2.6 kernel). This is clearly too
coarse-grained when we want to time operations that occur
in microsecond timeframes. Instead, we use an x86
assembly language instruction rdtsc that allowed us to
estimate the number of CPU cycles that elapsed in the
interim. To ensure reliable results, prior to benchmarking
we disabled the second processor in the multicore CPU of
the test laptop, and disabled CPU frequency scaling so as to
ensure a constant conversion rate between CPU cycles and
time. The test machine contained an Intel Core 2 Duo CPU,
1.79 GHz per core. The wireless network interface was
based on the Realtek 8185 chipset.

We loaded Juggler, connected to two different APs on
different channels, and recorded the time required to switch
networks over 10,000 times. We next repeated the experi-
ment while connected to two APs that share the same
channel. As Fig. 3 shows, the time to switch the radio’s
frequency clearly dominates switching time.

NICHOLSON ET AL.: JUGGLER: VIRTUAL NETWORKS FOR FUN AND PROFIT 35

Fig. 2. Laboratory setup. A test laptop running Juggler can connect
wirelessly to one of two 802.11g access points, or to another laptop in
ad hoc mode. Three gateway routers use NIST Net to selectively throttle
the bandwidth between each AP and the remote server. This simulates
varied link quality between the test laptop and an Internet destination.

Fig. 3. Juggler: CPU overhead benchmarks.



This switching overhead of just over 3 ms allows very
fine-grained multiplexing of virtual networks. For example,
if the AP duty cycle were set at 100 ms, only 3.3 percent of
each usage period would be lost to overhead. VirtualWiFi’s
best-stated switching time was 25 ms, resulting in 25 percent
overhead for the same 100 ms duty cycle. Users and
applications must be mindful of this 3 ms overhead when
tuning the switching frequency. While it is theoretically
possible to configure Juggler to switch between networks
every 4 ms, doing so would waste over 75 percent of the
radio duty cycle to the unavoidable switching overhead.

We also examined the overhead incurred when proces-
sing inbound or outbound data packets. The most heavy-
weight operation required is rewriting network-layer
headers to perform NAT to and from the internal IP
address of the pseudonetwork device. The results in Fig. 3
have been left in units of cycles due to their extremely small
size. The overhead required is clearly minimal. Note that
this does not account for packet queuing delay in situations
where an outbound packet is destined for a virtual network
that is currently inactive. We were merely interested here in
the CPU overhead imposed by the presence of Juggler in
the critical path of the network stack.

6 APPLICATION SCENARIOS

The primary contribution of this paper is the exploration of
several realistic usage scenarios where multitasking one
wireless interface is beneficial. We apply Juggler to three
application domains: 1) soft handoff between WiFi APs,
2) data striping and bandwidth aggregation, and 3) mesh
and ad hoc connectivity.

We use NIST Net as described above to simulate
different network conditions on the link between a wireless
AP and the Internet core. During real usage, the bandwidth
and latency a mobile device experiences depends on many
factors, including interference or wireless link speed, load
on the AP, quality of the AP’s wired link to its ISP, and core
and/or edge network congestion.

Residential broadband providers promise fairly high
data rates. In the United States, for example, SBC advertises
DSL links of 384-768 Kbps upstream and 768-6,144 Kbps
down, while Comcast claims the same upstream bandwidth
and 4,096-8,192 Kbps downstream over a cable modem.
Verizon’s FiOS fiber optic service is even faster—of the
order of 10 or 20 Mbps. These are theoretical maximum
rates, however, from the client to the service provider’s
edge network, not through the network core. As our prior
work showed, in real public deployments, the bandwidth
achievable by an application-level TCP flow is far lower—
typically several hundred kilobits per second [19]. Inde-
pendent measurements of broadband connectivity quality
support these results [15].

For all figures in the remainder of this section, error bars
represent � the standard error of the mean (�=

ffiffiffi

n
p

).

6.1 Soft Handoff

Handoff between WiFi APs is far from seamless. The IEEE
802.11 protocol requires that a time-consuming association
and authentication process be completed before a client can
communicate with an access point. One must also consider

the time required to discover the next access point (by
scanning for its beacon). Mhatre and Papagiannaki [17]
showed that this fail-over time results in handoff delays of
the order of 1-2 seconds.

Furthermore, our prior work [19] showed that the final
part of the process—obtaining a DHCP configuration—
takes several seconds under ideal conditions, and tens of
seconds at worst. Emerging security protocols, such as
WPA-PSK and IEEE 802.1x, add even further overhead to
connection establishment. Migrating to a new AP therefore
requires a significant data flow interruption. This overhead
can be reduced by either requiring two physical radios or
modifying AP firmware [10], [24]. Once associated to a new
AP, however, the client must still configure IP-layer settings
through DHCP before any useful data can flow.

Ideally, WiFi handoff would be as seamless as mobile
phone handoff. Such fluid transfers would be possible if,
before the current AP becomes unusable, the device
1) knew which AP it will use next, 2) had already
completed association, and 3) had already received a
DHCP configuration.

In this section, we explore using Juggler to do just this.
We assign 90 percent of the radio’s duty cycle to the current
“primary” AP. This is the highest quality access point
detected at the mobile device’s current location. The
remaining 10 percent of radio cycles are devoted to
scanning for new access points and maintaining association
with one or more secondary APs.

While the device is using the primary AP to transfer
data, Juggler scans for new APs in the background,
preemptively associates with them, and obtains DHCP
leases. The user-level Juggler daemon probes the applica-
tion-visible quality of newly-discovered APs using techni-
ques adapted from our prior work [19]. Low-quality APs
are dropped, and high-quality ones are assigned a small
portion of the 10 percent background slice in order to
maintain association. When the primary AP later becomes
unusable or its signal fades, Juggler promotes the best
secondary AP to be the new primary.

First, we wanted to ensure that reducing the primary
AP’s radio slice from 100 percent (without Juggler) to
90 percent would not adversely impact foreground data
traffic. We used a simple TCP client and server to transfer
data from the test laptop, through one AP, to a remote
server representing an Internet host. As illustrated in Fig. 2,
the gateway machines between each AP and the remote
server allowed us to simulate a range of bandwidths. Fig. 4
plots TCP throughput as a function of AP bandwidth
between the client and a remote Internet server. For each
bandwidth value, we show two data series: 100 percent
(entire radio devoted to one AP) and 90 percent (radio split
between the AP at 90 percent and background scanning at
10 percent). The results show that reserving 10 percent of
the WiFi radio’s duty cycle for background tasks has a
negligible impact on foreground data throughput.

We next sought to quantify how quickly Juggler can
discover and configure new access points. We configured
the client to be connected to a primary AP with 90 percent
duty cycle, and assigned 10 percent to background
scanning. We then powered up a new access point on a

36 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 1, JANUARY 2010



different channel from the primary AP, and measured the
time between the new AP beginning to broadcast its beacon
and the client completing the 802.11 association process.
Table 1 shows that, on average, Juggler discovered and
associated with the new AP within one second of its
introduction to the environment. The second row of Table 1
is the time required for the client to obtain a DHCP
configuration from the new access point, after the associa-
tion process is completed. This takes, on average, just under
two seconds due to the connectionless nature of DHCP
(atop UDP) and the fact that the background discovery
operations are limited to only 10 percent of the radio cycles.
For static roaming situations, even this modest overhead
would not be required.

Finally, we examined how quickly Juggler could perform
soft handoff from one AP to the next. A simple user-level
process transferred data bidirectionally over TCP with the
remote server as fast as possible over the current primary
AP at 90 percent timeslice. The secondary AP was already
configured and associated at a 5 percent timeslice, with
scanning and discovery allocated the last 5 percent. We then
deactivated the link of the primary AP. The user-level
process detected this failure through the standard TCP
socket timeouts (SO_SNDTIMEO,SO_RCVTIMEO). We set
these timeouts to one second for this evaluation. After
detecting a socket timeout, the user-level process requested
that Juggler fail over to the secondary AP, and then
resumed the data transfer. Clearly, faster and more
sophisticated techniques for detecting a network disruption
exist than simply relying on a socket timeout. We wanted to
test a worst-case scenario, however, of how much benefit
Juggler could bring to this problem without requiring any
further modification to the system.

As Table 1 shows, the total time the data transfer lapsed
is just slightly longer than the socket timeout value—on
average, 8 ms longer. This is roughly the time required for
one round-trip between the client and server in our
laboratory, to establish a new TCP connection. It is clear
that if the link failure of the primary AP could be detected
more quickly, then the response would be even faster. There

is a tension, however, between the sensitivity of this
detection and the false positive rate. Even this gap of one
second is usable, however, for such real-time applications
as Internet telephony and video streaming.

6.2 Data Striping and Bandwidth Aggregation

Outside of corporate and campus settings, bandwidth to
Internet hosts via a wireless AP is rarely constrained by the
802.11 link rate [19]. Rather, it is limited by the quality of the
AP’s back-end link (e.g., DSL and cable modem), congestion
on the AP, or interference. A wireless radio that transmits at
10 or 54 Mbps can often push bits into the network faster
than the AP can forward them.

Striping is a well-known technique for improving
throughput by breaking one logical flow into multiple
chunks, which are then transmitted in parallel over different
paths. Prior work has shown its effectiveness when multiple
network interfaces are present [22], [23], [25], [26]. In this
section, we explore how well Juggler lets applications and
users enjoy the benefits of striping while avoiding the costs
of multiple network interfaces. We first quantified how the
throughput improvement gained by striping is affected by
the bandwidth available through each access point. Next,
we simulated the behavior of a video streaming client that
had been modified to fetch video frames over multiple APs.
Finally, we modified a BitTorrent client to stripe data torrent
downloads across multiple access points.

6.2.1 Throughput Improvement

Recall the laboratory setup shown in Fig. 2. We used a TCP
client on the test laptop to repeatedly download a 10 MB file
from the remote server. For the baseline case, the client used
one AP to transfer the entire file over one TCP connection.
For the second case, we used two WiFi cards, each
associated with a different access point, and created two
sockets that were each bound to a different interface. The
multithreaded server then sent each half of the file in
parallel over the two sockets. The third case was the same,
but using Juggler to associate simultaneously with both
APs, each with 50 percent duty cycle, switching between
APs every 100 ms.

The remote server represents an arbitrary Internet
destination. By using the gateways lying between each AP
and the remote server to throttle bidirectional bandwidth, we
explored a range of application-level bandwidths between
the client and server, from 25 up to 2,000 KB/s. We repeated

NICHOLSON ET AL.: JUGGLER: VIRTUAL NETWORKS FOR FUN AND PROFIT 37

TABLE 1
Soft Handoff: Discovery and Fail-Over

Association is the time from when the new AP began broadcasting
beacons until Juggler finished associating with it. DHCP is the time
to obtain a network configuration via DHCP. Failover time is the time
from when the primary link was deactivated to when the remote
server received the next packet in the data flow (over the new AP).
Socket timeout is the time required to detect failure of the primary
AP. Twenty trials.

Fig. 4. Soft handoff: throughput of primary AP. Ninety percent of the
duty cycle is devoted to a “primary” AP that handles all data flows, while
10 percent is used to discover new APs and maintain association with
the backup AP(s). The reduction in primary bandwidth is small despite
the loss of 10 percent of the radio duty cycle.



each case for the range of AP bandwidths. The bandwidths
for each AP were always equal and changed together.

Fig. 5 shows the time required to download the 10 MB
file from the remote server, as a function of AP wired
bandwidth. The results have been split into two graphs to
provide more detail on performance in high-bandwidth
situations. When the wired bandwidth between the APs
and the remote server is relatively low, striping the file over
two APs using Juggler results in nearly identical perfor-
mance to using two physical cards—roughly twice as fast as
when using only one access point. These performance gains
hold until wired bandwidth exceeds 700 KB/s. This is far
higher than typical residential broadband upstream data
rates and comparable to ideal downstream quality.

To determine the cause of the degradation past this
point, we used iptables to record TCP sequence numbers
for all flows generated during the test runs. The sequence
numbers were recorded at the server, for outbound flows
(because the client was downloading from the server). Fig. 6
presents the results for selected values of wired AP
bandwidth. Regressions in sequence number—downward
“jags” in a graph—represent packet retransmissions. Across
the board, using two physical cards, results in relatively few
retransmissions. But as AP wired bandwidth increases, one
can see an increase in the number of retransmissions for
flows striped by Juggler.

Just as crucial to overall throughput are the relative
slopes of the lines in each graph. A steeper slope
corresponds to more data being stuffed into a given packet,
because the 10 MB file transfer is completed using a smaller
number of packets. The difference between these slopes for
the “2 cards” and “juggler” cases is an artifact of TCP
window size. It is clear that when striping over two cards,
TCP ramps up the window size more quickly than for the
Juggler case—a direct result of retransmissions. This
window size effect is more pronounced for higher band-
width cases, and explains why Juggler’s performance
degrades at those levels.

One possible cause of this behavior is Juggler’s use of
access points to buffer inbound packets while clients are
tuned to a different AP. As bandwidth increases, more

bytes are be transmitted from the server to the client while
the client’s radio is servicing a different AP. The IEEE 802.11
standard does not impose any required buffer size—indeed,
APs are free to drop data as they see fit. We speculate this
may be the cause of the increase in retransmissions for high-
bandwidth situations.

Furthermore, one can see from Fig. 5 that even when two
physical cards are used, one cannot double the throughput
of the one AP case at high levels of wired AP bandwidth.
We attribute this to the inherent overhead in TCP
connection establishment, and artifacts of our laboratory
setup (e.g., network interference).

6.2.2 Streaming Video

Unlike simple bulk downloading, streaming video is
concerned with when specific parts of the video are down-
loaded. Earlier blocks have high priority, because users can
watch the beginning of the video while later content is still
being transferred. We modeled a simple video player that
uses an earliest deadline first policy. The TCP streaming
client creates one thread per available AP and each thread
downloads the earliest unfetched block. For example, if there
were two threads downloading at the same rate, this has the
effect of assigning one thread all the even-numbered blocks
and the other all the odd-numbered blocks. However, if the
APs have any asymmetry in available bandwidth, this
scheme may not minimize the finish time of each block. To
compensate for any asymmetry in the available bandwidth
at each AP, each thread tracks which block it previously
downloaded and subtracts the next block number to down-
load from the number of the previously downloaded block
to obtain a “delta.” In the symmetric case, each delta should
be two—the current thread just downloaded one block, and
in that time, the other thread downloaded one block. If delta
is greater than two, the thread’s AP must be slower than the
other thread’s AP, so we download the block, that is, delta
blocks after the earliest unfetched block to compensate.

Streaming video clients typically buffer data to compen-
sate for transient fluctuations in available bandwidth. If the
buffer is emptied during playback, clients stop playing
video until the buffer is again filled. However, buffering

38 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 1, JANUARY 2010

Fig. 5. Data striping: throughput improvement. A 10 MB file downloaded from a remote server. Baseline: associated with one AP, one TCP
socket. Juggler: 2 APs: Juggler associated with two APs, 50 percent duty cycle for each AP, two TCP sockets each downloading half of the file over
a different AP. 2 cards: 2 APs: two WiFi cards, associated with different APs, to stripe the download. Mean over five runs. (a) 25 through 500 KB/s.
(b) 500 through 2,000 KB/s.



and displaying video to the user do not affect the optimal
assignment of blocks to APs, so we simply simulated the
network behavior of the client, recorded the finish times of
each block, and postfacto calculated the time spent buffering.
This calculation derives a deadline for each block from the
video bitrate and block size, taking into account the fact that
the buffer is filled before the video begins playing. If a block
misses its deadline, video playback stops, and the time to
refill the buffer is added to the total buffering time.

For this experiment, the simulated video client repeat-
edly streamed a 10 MB video—encoded at a bitrate of
400 Kbps—from the remote server. This filesize and
encoding rate corresponds to 204.8 seconds of simulated
video. The client block size was 16 KB. For the first baseline
case, the client used one AP exclusively with only 25 KB/s
bandwidth to the server available to transfer blocks. As a
second baseline, we repeated the baseline, but increased the
available bandwidth to 50 KB/s. For the striping cases, the
client used Juggler to associate simultaneously with both
APs, for various combinations of AP bandwidth.

Fig. 7 shows the results. Note that the video encoding rate
of 400 Kbps is equivalent to 50 KB/s. For the first case, where
the available bandwidth is only half the video bitrate, the
total playback gap is nearly 300 s. This is not merely a case of
a long upfront buffering time. We calculated the average size
of playback gaps and the period in between gaps—during

which time the video is playing. For one AP at 25 KB/s, the

average gap size (6.091 seconds) is larger than the average

intergap period (4.931 s). This results in a poor user

experience, with the video constantly starting and stopping.

NICHOLSON ET AL.: JUGGLER: VIRTUAL NETWORKS FOR FUN AND PROFIT 39

Fig. 7. Data striping: streaming video. Total playback gap per run,

times in seconds. Video length was 204.8 s (10 MB encoded at

400 Kbps). Series labels refer to bandwidth available through the AP(s)

over which the video was streamed. For instance, 25 + 50 means the

client was connected to two APs at once, one of which had 25 KB/s of

bandwidth, the other 50 KB/s.

Fig. 6. TCP sequence numbers. “Packet Number” starts at zero for each TCP flow (a discrete test run from Fig. 5). “Sequence Number” is the

sequence number in the TCP header for a given packet in the flow. (a) 100 KB/s. (b) 500 KB/s. (c) 1,000 KB/s. (d) 1,500 KB/s.



When the single AP bandwidth is increased to 50 KB/s,
we see small glitches here and there but, overall, the video
player is able to stream the video with one-tenth the wait
time. The third case attempts to aggregate two 25 KB/s
links into a logical 50 KB/s stream. This lowered wait time
by a factor of four over the single AP, 25 KB/s case, though
the buffering time was still three times that of using one AP
at 50 KB/s. This is a result of TCP slow start, because each
of the separate 25 KB/s links cannot ramp up as quickly as
the one 50 KB/s link that never has to buffer packets. Using
one 25 KB/s AP and one 50 KB/s AP, however, nearly
eliminates all wait time. Finally, streaming over two APs,
each offering 50 KB/s bandwidth, avoids wait time
completely for 95 percent of the test runs.

6.2.3 BitTorrent

BitTorrent is a popular peer-to-peer file transfer protocol. A
given file is broken into equal-sized chunks, and clients
fetch a file by downloading a unique subset of chunks from
different peers that are seeding the same file. We modified
KTorrent 2.4, a popular open-source BitTorrent client, to
evaluate the usefulness of striping a torrent download
across multiple APs.

This case closely resembles the striping results in
Section 6.2.1. Because KTorrent opens one socket per peer
and uses wrapper libraries to hide the socket interface, data
is striped by assigning peers to each AP evenly. As stated in
Section 3.1, obviating the need for developers to bind flows
to APs explicitly is future work. The torrent was a 10 MB
file seeded on a 2.8 GHz Pentium 4 and a 550 MHz Pentium
III Xeon. The client used on both seed machines was the
official BitTorrent client version 3.4.2. The Pentium 4 seed
also ran the tracker for the torrent.

For the baseline case, we used KTorrent to download the
10 MB torrent over a single AP. For the second case, we
modified KTorrent to stripe the data at peer granularity, as
described above, and used Juggler to associate with two
APs simultaneously at 100 ms switching granularity with
50 percent duty cycle each.

Fig. 8 shows the results. As before, when bandwidth
between the client and remote peer is poor, Juggler
downloads the file over 1.75 times faster than when using

a single access point. However, BitTorrent performance
degrades faster than the simple striping client’s perfor-
mance as the available bandwidth increases. While per-
forming the evaluation, we noticed that the application-
level BitTorrent protocol takes longer than standard TCP to
accelerate to using the full available bandwidth. We believe
this overhead is due to artifacts in how the BitTorrent
application-level protocol is affected by Juggler’s buffering.
We attribute the performance gap between these results and
the results in Section 6.2.1 to this protocol overhead.

6.3 Mesh and Ad Hoc Connectivity

The original motivation of VirtualWiFi was to let clients
connect simultaneously to an infrastructure AP and to peers
in ad hoc mode [9]. Such a side channel is clearly useful for
communicating with the user’s personal area network
(PAN) [2], participating in mesh networks [12], or exploit-
ing physical proximity for security [5].

Juggler’s switching optimizations allow for a much finer-
grained trade-off between foreground and background
traffic than in prior work that has leveraged VirtualWiFi
(such as WiFiProfiler [11]). We allocated 90 percent of the
radio’s duty cycle to an infrastructure AP representing the
device’s connection to the Internet. With the remaining
10 percent duty cycle, Juggler connected to another test
laptop in ad hoc mode on a nonoverlapping channel to that
of the infrastructure AP. For the experiment, the WiFi radio
rotated between the infrastructure AP for 450 ms and the ad
hoc peer for 50 ms.

Both laptops had 802.11g cards and communicated on a
well-known SSID, with static IP address assignment. Due to
interference and link conditions, however, in real situations,
two ad hoc peers may not be able to communicate at the full
54 Mbps bitrate. We therefore configured the peer laptop as
an IP forwarding gateway, connected via its wired Ethernet
link to the second NIST Net gateway, which was connected,
in turn, to the remote server. This let us throttle bandwidth
between the ad hoc peers in the same fashion as we have for
infrastructure APs throughout our evaluation, in order to
give a more realistic picture of data throughput.

We ran two instances of a simple TCP server on the
remote server. The first instance handled connections from
the test laptop via the infrastructure AP, passing through
the first NIST Net delay router. The second instance
handled connections from the test laptop to the peer laptop
in ad hoc mode, passing through the second NIST Net
router. A TCP client on the test laptop used two threads to
download data as fast as possible over both links. We then
ran a baseline case, where the test laptop was only
connected via the infrastructure AP with 100 percent of
the radio duty cycle.

Fig. 9 shows negligible throughput difference between
using the entire radio capacity and reserving 10 percent for
a side channel, even for high values of AP bandwidth. As
expected, the throughput of the 10 percent ad hoc channel is
modest—roughly 40 KB/s for a TCP flow when total AP
bandwidth is 500 KB/s. This is due to problems with TCP
timeouts because the radio is tuned away from the ad hoc
channel for such long periods.

Note that we have throttled the ad hoc bandwidth in
order to present a pessimistic estimate of the bandwidth

40 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 1, JANUARY 2010

Fig. 8. Data striping: BitTorrent. Torrent download time. For both
cases, blocks were downloaded from both seed servers. 10 MB data file.



available via that channel. Nonetheless, this side-channel is
usable for low-priority background communication be-
tween local peers, while foreground throughput is reduced
by at most a few percent.

7 RELATED WORK

7.1 Interface Multiplexing

VirtualWiFi [9] was the first system to multiplex a single
wireless interface across multiple connection points, expos-
ing each of those points as a separate interface to the
application layer. While the switching time between
interfaces was significant, the authors suggest several
mechanisms to minimize that cost.

Two contemporaneous projects have implemented these
mechanisms, but with very different interfaces—our own
work, and FatVAP [14]. Both modify wireless drivers to
allow fast channel switching, use an NAT/reverse NAT
architecture to multiplex different AP network endpoints,
and exploit the power save mode feature on APs for packet
buffering. The performance of AP switching and stream
multiplexing are similar, with FatVAP achieving through-
put gains closer to the theoretical ideal of multiple physical
radios, transmitting in parallel, than does Juggler.

Where Juggler and FatVAP differ is in the interface and
services they present to applications and users. FatVAP is
designed primarily to aggregate network bandwidth into
one logical pipe. Applications simply send and receive
packets as usual, and FatVAP handles the details of
multiplexing data flows across multiple APs.

In contrast, Juggler acts as a low-level service that higher
layers can make use of in various ways, in an attempt to
provide a separation of concerns. This allows several uses of
interface multiplexing beyond bandwidth aggregation, as
this paper has shown. Many of these were suggested by
Bahl et al. [3]. This work examined scenarios where
multiple physical network interfaces are useful to mobile
devices, such as handoff and link aggregation. This
discussion inspired several of our usage scenarios that
address similar issues while using only one radio.

7.2 Network Discovery and Handoff

Brik et al. [6] aim to hide 802.11 handoff latency by using a
second physical radio, which scans for new access points and
preassociates with them before the current connection
becomes unusable. This is quite similar to our evaluation
scenario in Section 6.1. Their implementation achieves zero
handoff latency, while our results show a data interruption of
8 ms. Juggler achieves this, however, by using only one radio
instead of requiring extra hardware on mobile devices where
power consumption and form-factor are primary concerns.

Mhatre and Papagiannaki [17] reduce 802.11 handoff
latency by continuously monitoring beacon strengths, and
maintaining histories of these trends. Their system then
triggers a handoff based both on current conditions and these
past histories, reducing handoff overhead by 50 percent. In
this paper, we similarly used Juggler preemptively with the
next access point before the current AP became unusable.
The only handoff latency we incur is the time required to
trigger the transition. We evaluated the simplistic situation
where the current AP suddenly becomes completely un-
available. Combining their sophisticated fail-over triggering
scheme with Juggler’s ability to associate with multiple APs
would reduce handoff latency to near zero.

SyncScan [24] coordinates AP beacon transmission in a
global fashion, based on AP channel number. Because
clients know precisely when the APs on a certain channel
will broadcast their beacon, AP discovery becomes a quick
process of hopping briefly through the channel space rather
than listening passively on a channel for hundreds of
milliseconds. SyncScan requires changes to both wireless
clients and AP firmware, however, hindering rapid adop-
tion. Juggler’s strategy for soft handoff, described in
Section 6.1 above, requires no such changes to access points.

Shin et al. maintain neighbor graphs—sequences of AP
handoffs [27]. Clients build graphs by direct observation and
through cooperative peer sharing. When an AP becomes
unusable, instead of scanning the entire channel space, the
client only searches those channels on which a successor AP
to the current AP has been seen in the neighbor graph.
Rather than incur the overhead to track such history, Juggler
scans for APs, associates, and obtains a DHCP configuration
before the current AP has even become unusable.

7.3 Data Striping and Aggregation

MAR is a stand-alone physical device that aggregates
many heterogeneous wireless links into one logical, high-
bandwidth pipe [26]. Its focus is on combining the capacity
of many physical radios, while Juggler connects to multiple
networks through only one radio.

Horde [23] is similar to MAR, but is a middleware layer
on the mobile client itself rather than a separate device.
Horde also lets applications dictate quality of service (QoS)
requirements for their flows. The authors subsequently
deployed a real-time video streaming application that
aggregates many low-bandwidth links to provide high
QoS while in motion, using a dynamic set of mobile phone
data networks [22].

PRISM [16] aggregates and shares wireless infrastructure
bandwidth among mobile nodes, by striping packets of one
TCP flow across disjoint links. Because this may result in out-
of-order delivery, their system reorders ACKs to preserve

NICHOLSON ET AL.: JUGGLER: VIRTUAL NETWORKS FOR FUN AND PROFIT 41

Fig. 9. Mesh connectivity: TCP throughput. “Baseline” is the
maximum TCP throughput when Juggler was not active. Juggler
connects simultaneously to an infrastructure AP (with 90 percent of
the radio) and a nearby device in ad hoc mode (with 10 percent of the
radio).



expected TCP semantics. Their results are intriguing for the
future development of Juggler, because some of our
throughput inefficiency is a result of these TCP side effects.

Our prior work studied the effect of parallel TCP flows
on total throughput and flow fairness [13]. Experimental
results showed that during periods of congestion, the
distribution of total bandwidth among all competing
parallel flows can be severely unbalanced.

7.4 Mesh Networks and Side Channels

Both Client Conduit [1] and WiFiProfiler [11] use VirtualWiFi
to let clients connect simultaneously to nearby nodes and to
an infrastructure AP. Nodes that have infrastructure con-
nectivity then help diagnose the problems suffered by their
peers who are disconnected from the network but can still
contact their neighbors in ad hoc mode. Our mesh con-
nectivity scenario in Section 6.3 provides a similar channel,
but at a more responsive switching resolution while impos-
ing a minimal penalty on the infrastructure connection.

Prior work has leveraged the properties of point-to-point
links, such as Bluetooth or WiFi in ad hoc mode, to aid in the
establishment of security relationships between users [5],
[7]. For example, exchanging public keys over the Internet
puts users at risk for a man-in-the-middle attack, while
communicating directly forces attackers to be physically
present. Juggler allows users to establish these sorts of
temporary, low-bandwidth side channels without adversely
impacting their primary infrastructure connection.

7.5 Robustness through Diversity

Multiradio Diversity (MRD) uses redundant wireless channels
to reduce packet losses and improve throughput [18]. Devices
receive different channels simultaneously over multiple
network interfaces, and transmit upstream in parallel to
multiple, coordinated access points to ensure faithful recep-
tion. A system like Juggler could be employed as an
interesting enhancement to MRD, leveraging the seamless
handoff application described in our evaluation section.

Vergetis et al. [29] evaluated the effectiveness of encoding
data with an erasure code and transmitting over multiple
paths as a form of forward error correction. Their results
found that multiple physical interfaces are not mandatory
for the scheme to be beneficial, if switching delays could be
reduced below 1 ms. An interesting extension of Juggler
would be to evaluate how well such an error-correcting
code scheme could be deployed atop the current imple-
mentation of Juggler, with its somewhat higher 3 ms
switching overhead.

8 CONCLUSION

Mobile devices with multiple network interfaces enable
many capabilities of value to users. Such benefits, however,
are negated by added cost in terms of physical form factor,
money, and energy consumption. Multiplexing one wire-
less radio across multiple virtual networks has been
proposed as a solution, but there are several drawbacks
to existing work in this area. Switching times may still be
too high for certain potential applications, and application-
level interfaces too cumbersome for software developers to
realize full benefit.

This paper presented Juggler, a link-layer implementa-
tion of an 802.11 virtual networking service. By leveraging
network cards that perform the MAC layer in software,
Juggler switches between wireless networks in just over
3 ms, or less than 400 �s if networks share the same wireless
channel. Rather than force applications to choose between a
fluctuating set of wireless networks, Juggler presents one
unchanging network interface to upper layers and either
automatically assigns data flows to one of the many active
virtual networks, or lets applications exert explicit control.

The primary contribution of this work was an evaluation
of our prototype’s performance in several realistic usage
scenarios. We show how mobile clients can enjoy nearly
instantaneous 802.11 handoff by reserving 10 percent of the
radio duty cycle for background AP discovery, while
minimally impacting foreground transfers. Juggler also
enhances data throughput when wireless bandwidth is
superior to that of an AP’s wired, backend connection, by
striping data across many networks. Finally, we show that
Juggler can maintain a low-bandwidth side channel,
suitable for intra-PAN or point-to-point communication,
without adversely impacting foreground connectivity.

ACKNOWLEDGMENTS

This work was supported in part by the US National
Science Foundation (NSF) under award numbers CNS-
0509089 and CNS-0615086, and the Ford Motor Company.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect those of the NSF or Ford
Motor Company.

REFERENCES

[1] A. Adya, P. Bahl, R. Chandra, and L. Qiu, “Architecture and
Techniques for Diagnosing Faults in IEEE 802.11 Infrastructure
Networks,” Proc. ACM MobiCom, Sept. 2004.

[2] M. Anand and J. Flinn, “PAN-on-Demand: Building Self-
Organizing WPANs for Better Power Management,” Technical
Report CSE-TR-524-06, Univ. of Michigan, 2006.

[3] P. Bahl, A. Adya, J. Padhye, and A. Walman, “Reconsidering
Wireless Systems with Multiple Radios,” ACM SIGCOMM
Computer Comm. Rev., vol. 34, no. 5, pp. 39-46, Oct. 2004.

[4] P. Bahl, R. Chandra, and J. Dunagan, “SSCH: Slotted Seeded
Channel Hopping for Capacity Improvement in IEEE 802.11 Ad-
Hoc Wireless Networks,” Proc. ACM MobiCom, Sept. 2004.

[5] D. Balfanz, D. Smetters, P. Stewart, and H. Wong, “Talking to
Strangers: Authentication in Ad-Hoc Wireless Networks,” Proc.
Ninth Ann. Network and Distributed System Security Symp. (NDSS
’02), Feb. 2002.

[6] V. Brik, A. Mishra, and S. Banerjee, “Eliminating HandOff
Latencies in 802.11 WLANs Using Multiple Radios,” Proc. Fifth
ACM SIGCOMM Conf. Internet Measurement (IMC ’05), 2005.

[7] S. Capkun, J.-P. Hubaux, and L. Buttyan, “Mobility Helps Security
in Ad-Hoc Networks,” Proc. ACM MobiHoc, pp. 46-56, June 2003.

[8] M. Carson and D. Santay, “NIST Net—A Linux-Based Network
Emulation Tool,” ACM SIGCOMM Computer Comm. Rev., June
2003.

[9] R. Chandra, P. Bahl, and P. Bahl, “MultiNet: Connecting to
Multiple IEEE 802.11 Networks Using a Single Wireless Card,”
Proc. IEEE INFOCOM, pp. 882-893, Mar. 2004.

[10] R. Chandra, J. Padhye, L. Ravindranath, and A. Wolman, “Beacon-
Stuffing: Wi-Fi without Associations,” Proc. Eighth IEEE Workshop
Mobile Computing Systems and Applications (HotMobile), 2007.

[11] R. Chandra, V.N. Padmanabhan, and M. Zhang, “WifiProfiler:
Cooperative Diagnosis in Wireless LANs,” Proc. ACM MobiSys,
June 2006.

42 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 1, JANUARY 2010



[12] R. Draves, J. Padhye, and B. Zill, “Routing in Multi-Radio, Multi-
Hop Wireless Mesh Networks,” Proc. ACM MobiCom, pp. 114-128,
Sept. 2004.

[13] T.J. Hacker, B.D. Noble, and B. Athey, “Improving Throughput
and Maintaining Fairness Using Parallel TCP,” Proc. IEEE
INFOCOM, Mar. 2004.

[14] S. Kandula, K.C.-J. Lin, T. Badirkhanli, and D. Katabi, “FatVAP:
Aggregating AP Backhaul Capacity to Maximize Throughput,”
Proc. Fifth USENIX Symp. Networked Systems Design and Implemen-
tation (NSDI ’08), Apr. 2008.

[15] J.A. Kaplan, “Real World Testing: The Best ISPs in America,” PC
Magazine, May 2007.

[16] K.-H. Kim and K.G. Shin, “Improving TCP Performance Over
Wireless Networks with Collaborative Multi-Homed Mobile
Hosts,” Proc. ACM MobiSys, pp. 107-120, June 2005.

[17] V. Mhatre and K. Papagiannaki, “Using Smart Triggers for
Improved User Performance in 802.11 Wireless Networks,” Proc.
ACM MobiSys, June 2006.

[18] A. Miu, H. Balakrishnan, and C.E. Koksal, “Improving Loss
Resilience with Multi-Radio Diversity in Wireless Networks,”
Proc. ACM MobiCom, pp. 16-30, 2005.

[19] A.J. Nicholson, Y. Chawathe, M.Y. Chen, B.D. Noble, and D.
Wetherall, “Improved Access Point Selection,” Proc. ACM
MobiSys, pp. 233-245, June 2006.

[20] A.J. Nicholson and B.D. Noble, “Breadcrumbs: Forecasting Mobile
Connectivity,” Proc. ACM MobiCom, Sept. 2008.

[21] C.E. Perkins, “Mobile IP,” IEEE Comm. Magazine, vol. 35, no. 5,
May 1997.

[22] A. Qureshi, J. Carlisle, and J. Guttag, “Tavarua: Video Streaming
with WWAN Striping,” Proc. ACM Multimedia (MM ’06), pp. 327-
336, Oct. 2006.

[23] A. Qureshi and J. Guttag, “Horde: Separating Network Striping
Policy from Mechanism,” Proc. ACM MobiSys, pp. 121-134, June
2005.

[24] I. Ramani and S. Savage, “SyncScan: Practical Fast Handoff for
802.11 Infrastructure Networks,” Proc. IEEE INFOCOM, pp. 675-
684, Mar. 2005.

[25] P. Rodriguez and E.W. Biersack, “Dynamic Parallel Access to
Replicated Content in the Internet,” IEEE/ACM Trans. Networking,
vol. 10, no. 4, pp. 455-465, Aug. 2002.

[26] P. Rodriguez, R. Chakravorty, J. Chesterfield, I. Pratt, and S.
Banerjee, “MAR: A Commuter Router Infrastructure for the
Mobile Internet,” Proc. ACM MobiSys, pp. 217-230, June 2004.

[27] M. Shin, A. Mishra, and W.A. Arbaugh, “Improving the Latency
of 802.11 Hand-Offs Using Neighbor Graphs,” Proc. ACM
MobiSys, pp. 70-83, June 2004.

[28] A.C. Snoeren and H. Balakrishnan, “An End-to-End Approach to
Host Mobility,” Proc. ACM MobiCom, pp. 155-166, 2000.

[29] E. Vegetis, E. Pierce, M. Blanco, and R. Guerin, “Packet-Level
Diversity—from Theory to Practice: An 802.11-Based Experimen-
tal Investigation,” Proc. ACM MobiCom, pp. 62-73, Sept. 2006.

[30] X. Zhao, C. Castelluccia, and M. Baker, “Flexible Network Support
for Mobility,” Proc. ACM MobiCom, pp. 145-156, 1998.

Anthony J. Nicholson received the PhD degree
in computer science and engineering from the
University of Michigan in 2008. He is currently a
software engineer at Google in Chicago, Illinois.
His research interests include mobile and
pervasive computing and networking.

Scott Wolchok received the BSE degree in
computer science from the University of Michigan
in 2008. He is currently working toward the PhD
degree in the Electrical Engineering and Com-
puter Science Department at the University of
Michigan. His research focuses on security in
mobile and embedded systems.

Brian D. Noble received the PhD degree in
computer science from Carnegie Mellon Uni-
versity in 1998 and is a recipient of the US
National Science Foundation CAREER Award.
He is an associate professor in the Electrical
Engineering and Computer Science Department
at the University of Michigan. His research
centers on software supporting mobile devices
and distributed systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

NICHOLSON ET AL.: JUGGLER: VIRTUAL NETWORKS FOR FUN AND PROFIT 43


