
1

2

9
The chapter covers general design principles using Actors and how to apply these
to Scala's standard library. The following topics will be covered:

Knowing the difference between react and receive
Using typed communication and sealed message protocols
Limiting failures to zones using Supervisors
Limiting starvation to zones using Schedulers

Actors are an abstraction on aynchronous processes. They communicate to the
external world by sending and receiving messages. An actor will process received
messages sequentially in the order they are received. An actor will only handle one
message at a time. This fact is critical, because it means that Actors can maintain
state without explicit locks. Actors can also be asynchronous or synchronous. Most
actors will not block a thread when waiting for messages, although this can be
done if desired. The default behavior for actors is to share threads amongst each
other when handling messages. This means a small set of threads could support a
large number of actors, given the right behavior.

In fact, actors are great state machines. They accept a limited number of input
messages and update their internal state. All communication is done through
messages and each actor is standalone.

Actors are not the magic concurrency pill that will solve all issues your system
is currently facing.

Actors are not paralleization factories. Actors process their messages in single
threaded fashion. They work best when work is conceptually split and each actor

Actors.

9.1 Know when to use Actors

3

can handle a portion of the work. If the application needs to farm many similar
tasks out for processing, this requires a large pool of actors to see any concurrency
benefits.

Actors and I/O should interleaved carefully. Asynchronous I/O and actors are a
naturally pairing, as they execution models for these are very similar. Using an
actor to perform blocking I/O is asking for trouble. That actor can starve other
actors during this processing. This can be mitigated, as will be discussed in section
9.4.

While many problems can be successfully modelled in Actors, some will be
more successful. The architecture of a system designed to use actors will also
change fundamentally. Rather than relying on classic Model-View-Controller and
client-based paralllelism, an Actors system parallelizes pieces of the architecture
and performs all communication asynchronously.

Let's look at a cannonical eample of a good system design using actors. This
example uses a lot of the tools found in the old Message Passing Interface (MPI)
specification used in supercomputing. MPI is worth a look, as it holds a lot of
concepts that have naturally translated into Actor-based systems.

Let's design a classic search program. This program has a set of documents that
live in some kind of search index. Queries are accepted from users and the index is
searched. Documents are scored and the highest scored documents are returned to
the users. To optimise the query time, a Scatter Gather approach is used.

The Scatter Gather approach involves two phases of the query: Scatter and
Gather.

9.1.1 An example

4

Figure 9.1 Scatter Phase

The first phase, Scatter, is when the query is farmed out to a set of sub nodes.
Classically, these sub nodes are divided topically and store documents about their
topic. These nodes are responsible for finding relevant documents for the query
and returning the results.

5

Figure 9.2 Gather Phase

The second phase, Gather, is when all the topic nodes respond to the main node
with their results. These are then pruned and returned for the entire query.

Let's start by creating a SearchQuery message that can be sent amongs the
actors.

case class SearchQuery(query : String, maxResults : Int)

The class has two paramters. The first is the actual query andSearchQuery

the second is the maximum number of results that should be returned. Let's
implement one of the topic nodes to handle this message.

trait SearchNode extends Actor {
 type ScoredDocument = (Double, String)
 val index : HashMap[String, Seq[ScoredDocument]] = ...
 override def act = Actor.loop {
 react {
 case SearchQuery(query, maxResults) =>
 reply index.get(query).getOrElse(Seq()).take(maxResults)
 }
 }
}

6

The Search node defines the type Scored Document to be a tuple of a double
score and a string document. The index is defined as a HashMap of query string to
scored documents. The index is implemented such that it pulls in a different set of
values for each SearchNode created. The full implementation of the index is
included in the source code for the book.

The act method on contains its core behavior. When it receivesSearchNode

a message, it looks for results in its index. It replies to the senderSearchQuery

of the SearchQuery all of these results truncated so that only aremaxResults

returned.

NOTE react vs. receive
The SearchNode actor uses the method for acceptingreact

messages. The actors library also supports a method.receive

These methods differ in that will defer the execution of thereact

actor until there is a message available. The method willreceive

block the current thread until a message is available. Unlesss
absolutely necessary, should be avoided to improve thereceive

paralleism in the system.

Now let's implement the HeadNode actor that's responsible for scattering
queries and gathering results.

trait HeadNode extends Actor {
 val nodes : Seq[SearchNode] = ...
 override def act = Actor.loop {
 react {
 case s @ SearchQuery(query, maxResults) =>
 val futureResults = nodes map (n => n !! s)
 def combineResults(current : Seq[(Double, String)],
 next : Seq[(Double, String)]) =
 (current ++ next).view.sortBy(_._1).take(maxDocs).force
 reply futureResults.foldLeft(Seq[ScoredDocument]()) {
 (current, next) =>
 combineResults(current,
 next().asInstanceOf[Seq[ScoredDocument])
 }
 }
 }
}

The HeadNode actor is a bit more complicated. It defines a member containing
all the SearchNodes that it can scatter to. It then defines its core behavior in the act
method. The HeadNode wait for SearchQuery messages. When it receives one, it
sends it to all the SearcNode children awaiting a future result. The !! method on

7

actors will send a message and expect a reply at some future time. This reply is
called a . The can block until the reply is received by callyFuture headNode

the method on the . This is exactly what it does in teh foldLeftapply Future

over these futures. The is aggregating the future result with theHeadNode next

current query results result to produce the final result list. This final result list is
sent to the original query sender using the reply method.

The system now has a Scatter/Gather search tree for optimal searching.
However, there is still a lot to be desired. For example, the casting of the result
type in the HeadNode actor is less than ideal in a statically-typed language like
Scala. Also, the HeadNode blocks for an entire SearchQuery. This means that
amount of parallelism in the system could be expanded so that slow-running
queries don't starve faster queries. Finally, the search tree has no failure handling
currently. In the event of a bad index or query string, the whole system will crash.

Using actors, these downsides can be improved. Let's start with fixing the
type-safety issues.

One of the biggest dangers in the Scala standard actors library is to give actors
references to each other. This can lead to accidentally calling a method defined on
another actor instead of sending a message to that actor. While that may seem
innocuous to some, this behavior can break an actors system, especially if locking
is used. Actors are optimised by minimizing locking to a few minor locations, such
as when scheduling and working with a message buffer. Introducing more locking
can easily lead to deadlocks and heartache.

Another disadvantage to passing direct references of actors is that of
transparency. That is, the location of an actors is 'tied in' to another actor. This
locks them in place where they are. The actors can no longer migrate to other
locations, either in memory or on the network. This severly limits the ability of a
system to handle failure. This will be discussed in detail in section 9.3.

Another downside to sending actors directly, in the scala standard library, is
that actors are untyped. This means that all the handy type system utilities one
could leverage are thrown out the window when using raw actors. Specifically, the
ability of the compiler to find exhausing pattern matches using sealed traits.

9.2 Use typed, transparent references

8

NOTE Using sealed traits for message APIs
It's a 'best practice' in Scala to define message APIs for actors
within a sealed trait hierarchy. This has the benefit of defining every
message that an actor can handle and keeping them in a central
location for easy lookup. With a bit of machinery, the compiler can
be coerced to warn when an actor does not handle its complete
messaging API.

The Scala standard library provides two mechanisms for enforcing type safety
and decoupling references from directly using an actor. They are the

 and traits.InputChannel OutputChannel

The trait is used to send messages to actors. This is theOutputChannel

interface that should be passed to other actors. This interface looks as follows:

trait OutputChannel[-Msg] {
 def !(msg: Msg @unique): Unit
 def send(msg: Msg @unique, replyTo: OutputChannel[Any]): Unit
 def forward(msg: Msg @unique): Unit
 def receiver: Actor
}

The trait is templatized by the type of Messages that can beOutputChannel

sent to it. It supports sending messages vai three methods: , and .! send forward

The method sends a message to an actor and does not expect a reply. The send!

method will send a message to an actor and also attaches an outputchannel that the
actor can respond to. The forward method is used to send a message to another
actor such that the original reply channel is preserved.

The receiver method on returns the raw Actor used by theOutputChannel

OutputChannel. This method should be avoided.
Notice the methods that does *not* have: !! and !? method.OutputChannel

In the scala standard library, !! and !? are used to send messages and expect a reply
in the current scope. This is done through the creation of an anonymous actor
which can receive the response. This anonymous actor is used as the replyTo
argument for a send call. The !? method blocks the current thread until a response
is received. The method create a object. The Future object stores the!! Future

result when it occurs. Any attempt to retreive the result blocks the current thread
until the result is available. do provide a method. This attaches aFutures map

function that can be run on the value in the future when it is available without
blocking the current thread.

9

In general, using !! and !? is discouraged. The potential for deadlocking a
thread is great. When used lightly, or with caution they can be very helpful. It's
important to understand the size/scope of the project and the type of problem being
solved. If the problem is too complex to ensure !! and !? behave appropriately, then
it is best to avoid their use altogether.

Let's modify the Scatter Gather example to communicate using
OutputChannels.

The scatter gather example requires two changes to promote lightweight typesafe
references: Removing the direct Actor references in HeadNode and change the
query responses to go through a collection channel. The first change is simple.

/** The head node for the scatter/gather algorithm. */
trait HeadNode extends Actor {
 val nodes : Seq[OutputChannel[SearchNodeMessage]]
 override def act : Unit = {
 ...
 }
}

The nodes member of the HeadNode actor is changed to be a
. This change ensures thatSeq[OutputChannel[SearchNodeMessage]]

the HeadNode will only ever send messages to SearchNodeMessage

s. The SearchNodeMessage type is a new sealed trait that willSearchNode

contain all messages that can be send to SearchNodes.
The second change is a bit more involved. Rather than directly responding to

the sender of the , let's allow an output channel to be passed alongSearchQuery

with the that can receive results.SearchQuery

sealed trait SearchNodeMessage
case class SearchQuery(query : String,
 maxDocs : Int,
 gatherer : OutputChannel[QueryResponse])
 extends SearchNodeMessage

The message now has three parameters: The query, theSearchQuery

maximum number of results and the output channel that will recieve the query
results. The SearchQuery messaage now extends form the SearcNodeMessage. The
new SearchNodeMessage trait is sealed, ensuring that all messages that can be sent
to the SearcNode are defined in the same file. Let's update the SearchNodes to
handle the updated SearchQuery message.

9.2.1 Scatter Gather with OutputChannel

10

trait SearchNode extends Actor {
 lazy val index : HashMap[String, Seq[(Double, String)]] = ...

 override def act = Actor.loop {
 react {
 case SearchQuery(q, maxDocs, requester) =>
 val result = for {
 results <- index.get(q).toList
 resultList <- results
 } yield resultList
 requester ! QueryResponse(result.take(maxDocs))
 }
 }
}

The trait is the same as before except for the last line in the reactSearchNode

call. Instead of calling reply with the , the sendsQueryResponse SearchNode

the response to the requestor parameter of the query.
This new behavior means that the head node cannot just send the same

 message to the s. Let's rework the communicationSearchQuery SearchNode

of the system.

Figure 9.3 Modified Scatter Gather search

11

The new design has a Gatherer actor. This actor is responsible for receiving all
results from SearchNodes and aggregating them before sending back to the front
end. The Gatherer could be implemented in many ways. One advanced
implementation could use prediction to stream results to the front end as they are
returned, attempting to ensure high priority results get sent immediately. For now,
let's implement the Gatherer node such that it aggregates all results first and then
sends them to the front end.

// An actor which receives distributed results and aggregates/responds to the original query.
trait GathererNode extends Actor {
 val maxDocs : Int
 val maxResponses : Int
 val client : OutputChannel[QueryResponse]
 ..
}

The GathererNode is defined as an Actor. It has three members. The maxDocs
member is the maximum number of documents to return from a query. The
maxResponses member is the maximum number of nodes that can respond before
sending resutls for a query. The client member is the OutputChannel where results
should be sent. The GathererNode should be tolerant of errors or timeouts in the
search tree. To do this, it should wait a maximum of one second for each response
before returning the query results. Let's implement the act method for the
GathererNode.

def act = {
 def combineResults(current : Seq[(Double, String)], next : Seq[(Double, String)]) =
 (current ++ next).view.sortBy(_._1).take(maxDocs).force

 def bundleResult(curCount : Int, current : Seq[(Double, String)]) : Unit =
 if (curCount < maxResponses) {
 receiveWithin(1000L) {
 case QueryResponse(results) =>
 bundleResult(curCount+1, combineResults(current, results))
 case TIMEOUT =>
 bundleResult(maxResponses, current)
 }
 } else {
 client ! QueryResponse(current)
 }
 bundleResult(0, Seq())
}

The act method defines the core behavior of this actor. The combineResults
helper method is used to take two sets of query results and aggregate them such
that the highest scored results remain. This method also limits the number of

12

results returned to be the same as the maxDocs member variable.
The bundleResult method is the core behavior of this actor. The curCount

parameter is the number of responses seen so far. The current parameter is the
aggregate of all collected query results from all nodes. The bundleResult method
first checks to see if the number of responses is less than the maximum expected
results. If so, then it calls to wait for another response. The receiveWithin

 method will wait for a given time for messages before sendingreceiveWithin

the special message. If another query result isscala.actors.TIMEOUT

received, the method combines the result with the previous set of results and
recursively calls itself with bumped values. In the event receiving the message
times out, the bundleResult method calls itself with the number of responses set to
the maximum value. In the event the number of responses is at or above the
maximum, the current query results are sent to the client.

Finally, the act method is implemented by calling the bundleResult method
with an intial count of zero and an empty of results.Seq

The GathererNode stops trying to receive messages after the query results have
been sent. This effectively 'ends' the life of the actor and allows the node to
become garabage collected. The scala standard library actors library implements its
own garbage collection routine that will have to remove references to the
GathererNode before the JVM garabage collection can recover memory.

The last piece of implementation required is to adapt the HeadNode to use the
GathererNode instead of collecting all the results in futures.

trait HeadNode extends Actor {

 val nodes : Seq[OutputChannel[SearchNodeMessage]]

 override def act : Unit = {
 this.react {
 case SearchQuery(q, max, responder) =>
 val gatherer = new GathererNode {
 val maxDocs = max
 val maxResponses = nodes.size
 val client = responder
 }
 gatherer.start
 for (node <- nodes) {
 node ! SearchQuery(q, max, gatherer)
 }
 act
 }
 }
 override def toString = "HeadNode with {\n" +
 "\t" + nodes.size + " search nodes\n" +

13

 nodes.mkString("\t", "\n\t", "\n}")
}

The HeadNode has been changed so that when it receives a SearchQuery it
constructs a new GathererNode. The gatherer is instantiated using the parameters
from the SearchQuery. The gatherer must also be started so that it can receive
messages. The last piece is to send a new SearchQuery message to all the
SearchNodes with the OutputChannel set to the gatherer.

Splitting the scatter and gather computations into different actors can help with
throughput in the whole system. The HeadNode actor only has to deal with
incoming messages and do any potential pre-processing of querys before scattering
them. The GathererNode can focus on receiving responses from the search tree. A
Gatherer node could even be implemented such that it stopped SearchNodes from
performing lookups if enough quality results were received. Most importantly, if
there is any kind of error gathering the results of one particular query it will not
adversly affect any other query in the system.

This is a key design issue with actors. Failures should be isolated as much as
possible. This can be done through the creation of failure zones.

Architecting and rationalizing distributed architecture can be difficult. Joe
Armstrong, the creator of Erlang, popularized the notion of actors and how to
handle failure. The recommended strategy for working with actors is to let them
fail and let another actor, called a supervisor handle that failure. The supervisor is
responsible for bringing the system it manages back into a working state.

Looking at supervisors and actors from a topological point of view, supervisors
create 'zones' of failure for the actors they manage. That is, the actors in a system
can be partitioned up by the supervisors such that if one section of the system goes
down, the supervisor has a chance to prevent the failure from reaching the rest of
the system. Each supervisor actor can itself have a supervisor actor, creating nested
zones of failure.

The error handling of supervisors is similar to exception handling. A supervisor
should handle any failure that it knows how to, and bubble up those it does not to
outer processes. If no supervisor is able to handle the error, then this would bring
down the entire system, so bubbling up errors should be done carefully!

Supervisors can be simpler to write than exception handling code. With
exception handling, it's very difficult to know if a try-catch block contained any
state-changing code and whether or not it can be retired. With supervisors, if an

9.3 Limit failures to zones

14

actor is misbehaving, then it can restart the portion of the system that is dependent
on that actor. Each actor can be passed an initial 'good' state and continue
processing messages.

Notice the relationship between the supervisor of an actor and the creator of the
actor. If the supervisor needs to recreate an actor upon destruction, the supervisor
is also the ideal candidate to start the actor when the system initializes. This allows
all the initialization logic to live in the same location. Supervisors may also need to
act as 'proxy' to the subsytem they manage. In the event of failure, the supervisor
may need to buffer messages to a subsystem until after it has recovered and can
begin processing again.

Supervisors are created differently in the various Scala actors libraries. In the
core library, supervisors are created through the method. The Akka actorslink

library, designed for larger scale systems, provides many default supervisor
implementations and mechanisms of wiring actors and supervisors together. One
thing that is common across actors libraries is that supervisors are supported and
failure zones are encouraged.

Let's adapt the Scatter Gather example to include failure zones. The first failure
zone should cover the and actors. Upon failure, theHeadNode SearchNode

supervisor can reload a failing search node and wire it back into the head node. The
second failure zone should cover the FrontEnd actor and the supervisors of the first
failure zone. In the event of failure in this outer zone, the supervisor can restart any
failed inner zones and inform the front end of the new actors. Let's take a look at a
topological view of this failure handling:

9.3.1 Scatter Gather Failure zones

15

Figure 9.4 Failure zones for Scatter Gather example

Failure Zone 1 and 2 in the diagram show the Head Node and SearchNode
failure zones for two parallel search hierarchies. The supervisor for these zones is
responsible for restarting the entire tree, or a particular SearchNode, on failure.
Zones 1 and 2 are each encompassed in Zone 3. This Zone manages the search
front end. In the event of failure, it restarts the underlying search trees or the front
end as needed.

Let's start by defining the supervisor for the search nodes.

Listing 9.1 Supervisor for search nodes

trait SearchNodeSupervisor extends Actor {
 val numThreadsForSearchTree = 5

 private def createSearchTree(size : Int) = {
 val searchNodes = for(i <- 1 to size) yield {
 val tmp = new SearchNode {
 override val id = i
 }
 SearchNodeSupervisor.this link tmp
 tmp.start
 tmp
 }

Subtree
constructor

Supervise
sub-nodes

16

 val headNode = new HeadNode {
 val nodes = searchNodes
 override val scheduler = s
 }
 this link headNode
 headNode.start
 headNode
 }
 def act() : Unit = {
 trapExit = true
 def run(head : Actor) : Nothing = react {
 case Exit(deadActor, reason) =>
 run(createSearchTree(10))
 case x =>
 head ! x
 run(head)
 }
 run(createSearchTree(10))
 }
}

The SearchNodeSupervisor contains two methods, createSearchTree and act.
The createSearchTree is responsible for instantiating nodes of the search tree and
returning the top node. This method iterates over the desired size of tree and
creates the SearchNode class from the previous examples. Remember that each
SearchNode uses their assigned id to load a set indexed documents and make them
available for queries. Each search node created is linked to the supervisor. In the
scala standard library actors, linking is what creates a supervisor hierarchy.
Linking two actors means that if one fails, both are killed. It also allows one of
them to trap errors from the other. This is done from the call to trapExit = true in
the act method.

Catch errors on
linked actorsWait for messages
Restart on failure

17

NOTE Common linking pitfalls
The method has two restrictions that simplify it use.link

It must be called from inside a 'live' actor. That is from the act method or
one of the continuations passed to react.

It should be called on the supervisor with the other actor as the method
argument.

Because link alters the behavior of failure handling, it needs to lock
both actors it operates against. Because of this synchronization, it
is possible to deadlock when waiting for locks. Therefore ordering
the locking behavior can prevent this behavior. The link method
also requires, through runtime asserts, that it is called against the
current 'live' actor. That is, the actor must be actively running in its
scheduled thread. This means linking should not be done external
to the supervisor actor, but internal. This is why all the topological
code is pushed down into the supervisor and why it acts as a
natural proxy to the actors it manages.

The second method is the standard library actor's act method. This defines the
core behavior of the Supervisor actor. The first line here is the trapExit = true,
which allows this actor to catch errors from others. The next line is a helper
function called run. The run function accepts one parameter, the current head actor.
The run function calls react, which will block waiting for messages. The first
message it handles is the special Exit message. An Exit message is passed if one of
the linked actors fails. Notice that values that come with an Exit message:
deadActor and reason. The deadActor link allows the supervisor to attempt to pull
any partial state from the deadActor if needed, or remove it from any control
structures as needed. Note that the deadActor is already gone and will not be
scheduled anymore at the time of receiving this message.

For the SearchNodeSupervisor, when handling errors the entire search tree is
reconstructed and passed back into the run method. This may not be ideal in a real
life situation because reconstructing the entire tree could be expensive or the tree
might be sprawled over several machines. In that case, the SearchNodeSupervisor
could just restart the failed node and notify the search tree of the replacement.

If any other message is encountered by the SearchNodeSupervisor it is
forwarded to the current HeadNode. This means that the supervisor itself can block
incoming messages when restarting the system. When the main node crashes, the

18

Supervisor receives the Exit message and stops processing messages while it fixes
the system. After restoring things, it will again pull messages from its queue and
delegate them down to the search tree.

The supervisor for the Scatter Gatther search system demonstrates very simply
ways to handle the issues of failure in an actors system. When designing an actors
based system and outlining failure zones, the following list helps make decisions
appropriate for that module:

These three decisions are crucial in defining robust concurrent actor systems.
The first point is the most important. Creating a fail safe zone implies insuring that
if that zone were to crash and restart it should not affect external zones. The scala

9.3.2 General Failure Handling Practices

Table 9.1 Actor Design Decisionsm

Decision Scatter Gather Example Other Options

Providing transparent
way to restart failed
components

Forward messages through the
supervisor. If supervisor fails, restart
outer failure zone.

Update nameserivce with
references to actors.

Directly communicate new
location to connected
components.

Granularity of failure
zones

The entire search tree fails and
restarts.

Single Search node inner
failure zone with Search Tree
outer failure zone.

Recovery of failed
actor state

Actor data is statically pulled from
disk. Does not change during its
lifetime.

Periodic snapshoting to
persistent store

Pulling 'live' state from dead
actor and 'sanitizing'

Persisting state after every
handled message

19

actors library makes it very easy to loose transparency for actors. This can be done
by passing the reference to a specific actor rather than a proxy or namespace
reference.

The second decision can affect the messaging API for actors. If a subsystem
needs to tolerate failure of one of its actors, then the other actors need to be
updated to communicate with the replacement actor. Again, transparent actor
references can be a boon here. For the scala standard library, using the supervisors
as proxies to sub-components is the simplest way to provide transparency. This
means that for fine-grained failure zones, many supervisors must be created,
possibly one per actor.

The third decision is one not discussed in the example, that of state recovery.
Most real life actors maintain some form of state during their lifetimes. This state
may or may not need to be reconstructed for the system to continue functioning.
Although not directly supported in the Scala standard library, one way to ensure
state sticks around would be to periodically snapshot the actor by dumping its state
to a persistent store. This could then be recovered later.

A second method of keeeping state would be to pull the last known state from a
dead actor and 'sanitizing' it for the reconstructed actor. This method is risky as the
state of a previous actor is not in a consistent state and the sanitization process may
not be able to recover. The sanitization process could also be very hard to reason
through and write. This mechanism is not recommended.

Another mechanism for handling state is to persist the state after every message
an actor receives. While not directly supported by the scala standard library, this
could easily be added through a subclass of actor.

NOTE Akka Transactors
The Akka actors library provides many ways to synchronize the
state of live actors, one of which is Transactors. Transactors are
actors whose message handling functions are executed within a
transactional context and whose state is persisted after every
message.

There's one item not on this list and that is threading strategies. Because actors
share threads, an actor that is failing to handle its incoming messages could ruin
the performance of other actors that share the same threading resources. The
solution to this is to split actors into scheduling zones, similar to splitting them into
failure zones.

20

One type of failure that a supervisor cannot handle well is thread starvation of
actors. If one actor is receiving a lot of messages and spending a lot of CPU time
processing them, it can starve other actors. The actor schedulers also don't have
any notion of priority. There may be a high-priority actor in the system that must
respond as quickly as possible. This actor could get bogged down by lower priority
actors stealing all the resources.

Schedulers are the solution to this problem. A scheduler is the component
responsible for 'sharing' actors amongst threads. The scheduler selects the next
actor to run and assigns it to a particular thread. In the Scala actors library, a
scheduler implements the IScheduler interface.

There are also a variety of scheduling mechanisms available for the standard
library actors. Here's a table of a few key schedulers:

The is the default scheduler for scala actors. This isForkJoinScheduler

done through a nifty work-stealing algorithm where every thread has its own
scheduler. Tasks created in a thread are added to its own scheduler. If a thread runs
out of tasks, it steals work from another thread's scheduler. This provides great
performance for a lot of situations. The Scatter Gather example is perfect fit for

9.4 Limit overload using Scheduler Zones

Table 9.2 Schedulersm

Scheduler Purpose

ForkJoinScheduler Parallelization optimized for tasks that are split up,
parallelized and recovered. In other words, things that are
forked for processing then joined together.

ResizableThreadPoolScheduler Starts up a persistent thread pool for actors. If load is
increased, it will automatically create new threads up to an
environment-specified limit.

ExecutorScheduler Uses a to schedule actors.java.util.concurrent.Executor

This allows actors to use any of the standard java thread
pools. This is the recommended way to assign fixed size
thread pool.

21

fork join. Queries are distributed to each SearchNode for executions and results are
aggregated to create the final query results. The work-stealing pulls and dsitributes
the 'forked' work for a query. If the system is bogged down, it could degrade to
performing similarly to a single threaded query engine. While generally efficient,
the ForkJoinScheduler is not optimal in situtations where task sizes are largely
variable.

The constructs a pool of threadsResizableThreadPoolScheduler

which share the processing of message for a set of Actors. Scheduling is done on a
first come, first serve basis. If the work load starts to grow beyond what the current
thread pool can handle, the scheduler will increase the available threads in the pool
up until a maximum pool size. This can help a system handle a large increase in
messaging throughput and back-off resources during downtime.

The is a scheduler which defers scheduling actors to aExecutorScheduler

 service. There are many implementations of java.util.Executor

 in the java standard library as well as some commonjava.util.Executor

alternatives. One of these, from my own codebases, was an whichExecutor

would schedule tasks on the AWT rendering thread. Using this scheduler for an
actor guarantees that it handles messages within a GUI context. This allowed the
creation of GUIs where actors could be used to respond to backend events and
update UI state.

Each of these schedulers may be appropriate to one or more components in a
system. Not only that, some components scheduling may need to be completely
isolated from other components. This is why Scheduling Zones are important.

Scheduling Zones are groupings of actors that share the same scheduler. Just as
failure zones isolate failure recovery, so do scheduling zones isolate starvation and
contention of subsystems. Not only that, scheduling zones can optimise the
scheduler to the component.

Let's take a look at what a scheduling zone design might be for the Scatter
Gather example:

9.4.1 Scheduling Zones

22

Figure 9.5 Scatter Gather Scheduling Zones

The Scatter Gather search service can be split into four scheduling zones:
Search Tree 1, Search Tree 2, Front End and Supervisor

The first scheduling zone handles all actors in a search tree. The
ForkJoinScheduler is optimized for the same behavior as the scatter gather
algorithm, so it makes an ideal choice of scheduler for this zone. The replicated
Searc tree uses its own ForkJoinScheduler to isolate failures and load between the
two trees.

The Front End scheduling zone uses a customized scheduler which ties its
execution to an asynchronous HTTP server. That is, the handling of messages is
done on the same thread as input is taken and the results are streamed back into the
appropriate socket using one of the front-end threads. These actors could also use
there own thread pool. This would be ideal if the HTTP server accepting incoming
connections used a thread pool of the same size.

The last scheduling zone, not shown, is the scheduling of erorr recovery. Out of
habit, I tend to place these on a separate scheduling routine so they don't interfer
with any other subcomponent. This isn't strictly necessary. Error recovery, when it
happens, is the highest priority task for a given subcomponent and should not steal

23

more important work from other threads. However, if more than one
subcomponent is sharing the same scheduling zone, then I prefer to keep recovery
work separate from 'core' work.

Let's add scheduling zones to the Scatter Gather search tree example. The only
changes required are in the constructor function defined on the supervisor. Let's
take a look:

private def createSearchTree(size : Int) = {
 val numProcessors =
 java.lang.Runtime.getRuntime.availableProcessors
 val s = new ForkJoinScheduler(
 initCoreSize = numProcessors,
 maxSize = numThreadsForSearchTree,
 daemon = false, fair = true)
 val searchNodes = for(i <- 1 to size) yield new SearchNode {
 override val id = i
 override val scheduler = s
 }
 searchNodes foreach this.link
 searchNodes.foreach(_.start)
 val headNode = new HeadNode {
 val nodes = searchNodes
 override val scheduler = s
 }
 this link headNode
 headNode.start
 headNode
 }

The original code has two new additons. The first is the creation of the
ForkJoinScheduler. This scheduler takes four arguments. The initCoreSize and
maxSize arguments are the minimum and maximum number of threads it should
store in its thread pool. The daemon argument specifies whether or not threads
should be constructed as daemons. This scheduler has the ability to shut itself
down if the actors within are no longer performing any work. The last argument is
whether or not the scheduler should attempt to enforce fairness in the work-stealing
algorithm.

The second additions are the overriden scheduler member of the SearchNode
and HeadNode actors. This override causes the actor to use the new scheduler for
all of its behavior. This can only be done at creation time, so the scheduling zones
must be known a-priori.

That's it, the actors are now operating within their own fork-join pool, isolated
from load in other actors.

24

Actors provide a simpler parallelization model than traditional locking and
threading. A well behaved actors system can be fault tolerant and resistant to total
system slowdown. Actors provide an excellent abstraction for designing high
performance servers, where throughput and uptime are of the utmost improtance.
For these systems, designing failure zones and failuring handling behaviors can
help keep a system running even in the event of critical failures. Splitting actors
into Scheduling zones can ensure that input overload to any one portion of the
system will not bring the rest of the system down. Finally, when designing with
actors, it is recommended to use the Akka library for large scale system.

The Akka library differs from the standard library in a few key areas:

Clients of an actor can never obtain a direct reference to that actor. This drastically
simplifies scaling an Akka system to multiple servers since there is no chance an actor
requires the direct reference to another.
Messages are handles in the order received. If the current message handling routine
cannot handle an input message, it is dropped (or hanlded by the unknown message
handler). This prevents out of memory errors due to message buffers filling up.
All core actors library code is designed to allow user code to handle failures without
causing more. For example, Akka goes to great lengths to avoid causing out of memory
exceptions within the core library. This allows user code, your code, to handle failures as
needed.
Akka provides most of the basic supervisor behaviors that can be used as building blocks
for complex supervision strategies.
Akka provides several means of persisting state "out of the box".

So, while the Scala actors library is an excellent resource for creating small to
medium size actors applications, the Akka library provides the features needed to
make a large-scale application.

Actors and Actor-related system design is a rich subject. This chapter lightly
covered a few of the key aspects to actor-related design. These should be enough to
create a fault-tolerant high-performant actors system.

Next, let's look into a topic of great interest: Java interoperability with Scala.

9.5 Conclussion

	Chapter 9: Actors.
	9.1 Know when to use Actors
	9.1.1 An example

	9.2 Use typed, transparent references
	9.2.1 Scatter Gather with OutputChannel

	9.3 Limit failures to zones
	9.3.1 Scatter Gather Failure zones
	9.3.2 General Failure Handling Practices

	9.4 Limit overload using Scheduler Zones
	9.4.1 Scheduling Zones

	9.5 Conclussion

