
Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada

Contents
CPU bandwidth control for CFS 11

P. Turner, B. B. Rao, N. Rao

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

CPU bandwidth control for CFS

Paul Turner
Google

pjt@google.com

Bharata B Rao
IBM India Software Labs, Bangalore
bharata@linux.vnet.ibm.com

Nikhil Rao
Google

ncrao@google.com

Abstract

Over the past few years there has been an increasing
focus on the development of features which deliver re-
source management within the Linux kernel. The ad-
dition of the fair group scheduler has enabled the pro-
visioning of proportional CPU time through the spec-
ification of group weights. As the scheduler is inher-
ently work-conserving in nature, a task or a group may
consume excess CPU share in an otherwise idle system.
There are many scenarios where this unbounded CPU
share may lead to unacceptable utilization or latency
variation. CPU bandwidth control approaches this prob-
lem by allowing an explicit upper bound for allowable
CPU bandwidth to be defined in addition to the lower
bound already provided by shares.

There are many enterprise scenarios where this func-
tionality is useful. In particular are the cases of pay-
per-use environments, and user facing services where
provisioning is latency bounded.

In this paper we detail the motivations behind this fea-
ture, the challenges involved in incorporating into CFS
(Completely Fair Scheduler), and the future develop-
ment road map.

1 CPU as a manageable resource

Before considering the aspect of bandwidth provision-
ing let us first review some of the basic existing con-
cepts currently arbitrating entity management within the
scheduler.

There are two major scheduling classes within the Linux
CPU scheduler, SCHED_RT and SCHED_NORMAL.
When runnable, entities from the former, the real-time
scheduling class, will always be elected to run over
those from the normal scheduling class.

Prior to v2.6.24, the scheduler had no notion of any en-
tity larger than that of single task1. The available man-
agement APIs reflected this and the primary control of
bandwidth available was nice(2).

In v2.6.24, the completely fair scheduler (CFS)
was merged, replacing the existing SCHED_NORMAL
scheduling class. This new design delivered weight
based scheduling of CPU bandwidth, enabling arbitrary
partitioning. This allowed support for group scheduling
to be added, managed using cgroups through the CPU
controller sub-system.

This support allows for the flexible creation of schedul-
ing groups, allowing the fraction of CPU resources re-
ceived by a group of tasks to be arbitrated as a whole.
The addition of this support has been a major step in
scheduler development, enabling Linux to align more
closely with enterprise requirements for managing this
resouce.

The hierarchies supported by this model are flexible, and
groups may be nested within groups. Each group en-
tity’s bandwidth is provisioned using a corresponding
shares attribute which defines its weight. Similarly,
the nice(2) API was subsumed to control the weight
of an individual task entity.

Figure 1 shows the hierarchical groups that might be
created in a typical university server to differentiate
CPU bandwidth between users such as professors, stu-
dents, and different departments.

One way to think about shares is that it provides lower-
bound provisioning. When CPU bandwidth is scheduled
at capacity, all runnable entities will receive bandwidth
in accordance with the ratio of their share weight. It’s
key to observe here that not all entities may be runnable

1Recall that under Linux any kernel-backed thread is consid-
ered individual task entity, there is no typical notion of a process
in scheduling context.

• 11 •

12 • CPU bandwidth control for CFS

Figure 1: An example hierarchy applicable to a univer-
sity server.

in this situation; this means that CPU bandwidth is com-
paratively available in abundance and the entities that
are running will be able to consume bandwidth at a
higher rate than their weight would permit were more
entities runnable.

It should be noted that the concept of proportional shares
is different from a guarantee. Assigning share to a group
doesn’t guarantee that it will get a particular amount of
CPU. It only means that the available CPU bandwidth
will be divided as per the shares. Hence depending on
the number of groups present, the actual amount of CPU
time obtained by groups can vary. 2

For example: If there were 3 groups with 1024 shares
each, then each would receive 1024

1024+1024+1024 = 33.3%
of the CPU when all were runnable3. If a 4th group
on the same level were to become active with a share
of 2048, then the other groups would now receive only
20% of available bandwidth. The CPU bandwidth avail-
able to a group (by weight) is always relative.

2Also recall: These ratios are only relative to the time avai lable
to SCHED_NORMAL. Time spent in SCHED_RT execution is inde-
pendent of this mo del.

3Since group entities are containers, for a group entity to be
runnable it must have an active child entity, the leaves of this tree
must thusly all be task entities.

2 Motivation for bandwidth control

As discussed above, the scheduler is work conserving
by nature; when idle cycles are available in the system,
it is because there were no runnable entities available
(on that cpu) to consume them. While for many use-
cases, efficient use of idle CPU cycles like this might be
considered optimal, there are two key side effects that
must be considered:

1. The actual amount of CPU time available to a
group is highly variable as it is dependent on the
presence and execution patterns of other groups,
a machine can the not be predictably partitioned
without intimately understanding the behaviors of
all co-scheduled applications.

2. The maximum amount of CPU time available to a
group is not predictable. While this is closely re-
lated to the first point, the distinction is worth not-
ing as this directly affects capacity planning.

While not of concern to most desktop users, these are
key requirements in certain enterprise scenarios. Band-
width control aims to address this by allowing upper
limits on group bandwidths to be set. This allows both
capacity and the maximal effect on other groups to be
predicted.

This feature is already available for the real-time group
scheduler (SCHED_RT). The first attempt to add this
functionality to CFS (SCHED_NORMAL) was posted in
June 2009 by the RFC post [2] to the Linux Kernel
Mailing List (LKML). In the subsequent sections of this
paper, we discuss this initial approach and how it has
evolved into CFS Bandwidth Control below.

3 Example use cases

Bandwidth provisioning is commonly found useful in
the following scenarios:

• Pay-per-use:

In enterprise systems that cater to multiple
clients/customers, a customer pays for, and is pro-
visioned with a specific share of CPU resources. In
such systems, customers would object should they
receive less and its in the provider’s interest that

2009 Linux Symposium, DRAFT • 13

they not provided more. In this case CPU band-
width provisioning could be used directly to con-
strain the customers usage and provide soft band-
width to interval guarantees. Such pay-per-use sce-
narios are frequently seen in cloud systems where
service is priced by the required CPU capacity.

• Virtual Machines

For (integrated) Linux based hypervisers such as
KVM, bandwidth limits at the scheduler level may
be useful to control the CPU entitlements of hosted
VMs.

• Latency provisioning

The explicit provisioning of containers within the
machine allows for expectations to be set with
respect to latency and worst-case access to CPU
time. This becomes particularly important with
non-homogenous collections of latency sensitive
tasks where it is difficult to restrict co-scheduling.

• Guarantees

In addition to maximum CPU bandwidth, in many
situations applications may need CPU bandwidth
guarantees. Currently this is not directly supported
by the scheduler. In such cases, hard limits settings
of different groups may be derived to reach a mini-
mum (soft) guarantee for every group. An example
of how to obtain guarantees for groups by using
hard limit settings is provided in the OpenVZ wiki
[1].

4 Interfaces

As discussed above the cgroups interface has been lever-
aged for managing the CPU controller subsystem. Our
work extends these interfaces.

In case of SCHED_RT, bandwidth is specified using
two control parameters: the enforcement interval (cpu.
rt_period_us) and allowable consumption (cpu.
rt_runtime_us) within that interval. Accounting is
performed on a per-CPU basis. For example if there
were 8 CPUs in the system 4, the group would be al-
lowed to consume 8 times the cpu.rt_runtime_us
within an interval of cpu.rt_period_us. This is en-
abled by allowing unconsumed time to be transferred

4Assuming the root_domain has not been partitioned via
cpusets

from CPUs present in the root_domain span that
have unconsumed bandwidth available.

In our initial approach [3], the bandwidth specifica-
tion exposed for SCHED_NORMAL class was based on
this model. However for the reasons described in the
subsequent sections, we have now opted for global
specifcation of both enforcement interval (cpu.cfs_
period_us) and allowable bandwidth (cpu.cfs_
quota_us). By specifying this, the group as a whole
will be limited to cpu.cfs_quota_us units of CPU
time within the period of cpu.cfs_period_us.

Of note is that these limits are hierarchical, unlike
SCHED_RT we do not currently perform feasibility
evaluaion regarding the defined limits. If a child has
a more permissive bandwidth allowance than its parent,
it will be indirectly throttled when the parent’s quota is
exhausted.

Additionally, there is the global control: /proc/sys/
kernel/sched_cfs_bandwidth_slice_us

This sysctl interface manages how many units are trans-
ferred from the global pool each time a local pool re-
quires additional quota. The current default is 10ms.
The details of this transfer process are discussed in later
sections.

5 Existing Approaches

5.1 CFS hard limits

This was the first approach [3] at implementing band-
width controls for CFS and was modelled on the exist-
ing bandwidth control scheme in use by the real-time
scheduling class. The mechanism employed here is
quite direct. Each group entity (specifically cfs_rq
here) is provisioned locally with cfs_runtime_us
units of time. CPUs are then allowed to borrow from
one another within a given root_domain. This
means that the externally visible bandwidth of the group
is effectively the weight of the root_domain CPU
mask multiplied by cfs_runtime_us (per cfs_
period_us). When a CFS group consumes all its
runtime and when there is nothing left to borrow from
the other CPUs, the group is then throttled. At the end
of the enforcement interval, the bandwidth gets replen-
ished and the throttled group becomes eligible to run
once again.

14 • CPU bandwidth control for CFS

A typical time line for a process that runs as part of a
bandwidth controlled group under CFS Hard Limits ap-
pears as shown in Figure 2.

Time

Start BW refresh BW refresh

2ms1ms 3ms

Running Throttled Running

Runtime consumed
Sleep

Wakeup

Running

4ms 5ms 6ms 7ms 8ms

Runtime
consumed

Throttled Running

cfs_runtime_us = 2ms
cfs_period_us = 4ms
Bandwidth = 2/4 = 0.5

Figure 2: Progress of a task in bandwidth controlled
group

Figure 3 shows the same situation with borrowing of
quota from other cpus.

Time

Start BW refresh

2ms1ms 3ms

Running Throttled Running

4ms

Runtime consumed,
Borrow

Runtime fully consumed,
nothing left to borrow

cfs_runtime_us = 2ms
cfs_period_us = 4ms
Bandwidth = 2/4 = 0.5

Figure 3: Progress of a task in bandwidth controlled
group with runtime borrowing

The strategy for time-redistribution is to visit all neigh-
bor CPUs and transfer 1

n of their remaining run-time,
where n is the weight of the root_domain span. There
is an implicit assumption made within this scheme that
we will be able to converge quickly above to cfs_
period_us while borrowing. This is indeed true for
the real-time class as, by default, SCHED_RT is provi-
sioned with 95% of total system time, allowing an in-
dividual CPU to reach to rt_period_us with only a
single partial iteration of borrowing in the default con-
figuration. This can also be expected to hold more gen-
erally as the nature of entities requiring this scheduling
class is to be well-provisioned.

In the more general case, where the reservation may
represent only a small-to-medium fraction of system re-
sources, this convergence breaks down. Each iteration
is able to maximally consume n−1

n additional time, at
the expense of taking every rq->lock. Moreover, as
most cpus will not be allowed to reach the upper bound

of the period we will have an extremely long tail of re-
distribution.

5.2 Hybrid global pool:

The primary scalability issue with the local pool ap-
proach is that there there is a many-to-many relationship
in the computation and storage of remaining quota. This
is acceptable provided either the existence of a strong
convergence condition or ’small’ SMP systems.

Tracking quota globally is also not a solution that scales
with machine size due to the large contention the global
store then experiences. One of the advantages of the lo-
cal quota model above is that, when within quota, con-
sumption is very efficient since it can potentially be ac-
counted locklessly and involves no ’remote’ queries.

Our design for the distribution of quota is a hybrid
model which attempts to combine both local and global
quota tracking. To each task_group a new cfs_
bandwidth structure has been added. This tracks
(globally) the allocated and consumed quota within a
period. However, consumption does not occur against
this pool directly; as in the local pool approach above
there is a local, per cfs_rq, store of granted and con-
sumed quota. This quota is acquired from the global
pool in a (user configurable) batch sizer. When there is
no quota available to re-provision a running cfs_rq,
it is locally throttled until the next quota refresh. Band-
width refresh is a periodic operation that occurs once
per quota period within which all throttled run-queues
are unthrottled and the global bandwidth pool is replen-
ished.

TimeRunning Throttled Running

cfs_rq_quota_us = 20ms
cfs_rq_period_us = 40ms
sched_cfs_bandwidth_slice_us = 10ms

10ms 20ms 30ms 40ms

Start by
borrowing
a slice of
10ms from
global pool

Runtime
consumed.
Borrow
another slice
of 10ms from
global
pool

Running

Entire
quota
consumed.
Nothing left
to borrow

BW refresh
Global quota
replenished

Figure 4: progress of a task in bandwidth controlled
group with global quota

2009 Linux Symposium, DRAFT • 15

6 Design

CFS bandwidth control implements the above discussed
hybrid approach to bandwidth accounting. The global
quota is distributed in ’slices’ to local per-CPU caches,
where it is then consumed. The local accounting for
these quota slices closely resembles the SCHED_RT
case, however, the many-to-many CPU interactions on
refresh and expiration are avoided. The batching of
quota distribution also allows for linear convergence to
quota within a provisioned period.

A summary of specific key changes is provided below.

6.1 Data-structures

struct cfs_bandwidth:

This is the top-level group representation of
bandwidth, encapsulated within the corresponding
task_group structure. The remaining quota
within each period, as well as the total runtime
assigned per period, and quota period length are
managed here.

struct cfs_rq:

This is the per-group runqueue of all runnable en-
tities present in SCHED_NORMAL group. Each
group has one such representative runqueue on ev-
ery CPU. The entities within a group are arranged
in a time-ordered RB tree. Time ordering is done
by vruntime or virutal runtime, which is a rough
indication of the amount of CPU time obtained
by an entity. We have annotated this structure
with the new variables quota_assigned and
quota_used, which track the total bandwidth al-
located from the global pool to this runqueue and
the amount consumed respectively.

6.2 Bandwidth distribution and constraint

update_curr():

This function is periodically called from scheduler
ticks as well as during other scheduler events like
enqueue and dequeue to update the amount of time
the currently running entity has received. Time
since the last invocation is charged against the en-
tity. The weight-normalized vruntime which forms
the basis for fair-share scheduling is also updated
here.

The accounting here is extended to call the new
function account_cfs_rq_quota. This en-
sures that quota accounting will occur at the same
instance at which execution time is charged.

account_cfs_rq_quota():

This function forms the basis for quota distribution
and tracking. The rough control flow is as shown
in Figure 5:

Is this a bandwidth limited group ?
local_quota_assigned != RUNTIME_INF ?

account_cfs_rq_quota(cfs_rq, delta)
ENTER

local_quota_used += delta

local_quota_used < local_quota_assigned ?

Borrow runtime from global pool
borrowed = tg_request_cfs_quota()

Borrow from global pool successful ?
borrowed != 0 ?

local_quota_assigned += borrowed Throttle cfs_rq and resched task

EXIT

NO

YES

YES

NO

YES

NO

Figure 5: Control flow diagram for ac-
count_cfs_rq_quota()

Entity throttling

A throttled cfs_rq is one that has run out of local
bandwidth (specifically, local_quota_used≥

16 • CPU bandwidth control for CFS

local_quota_assigned). By extension this
means there was no global bandwidth availble to
’top-up’ or refresh the pool. At this point the entity
is no longer schedulable in the current quota period
as it has reached its bandwidth limit. 5

Such a cfs_rq is considered throttled. This
state is tracked explicitly using the equiva-
lently named attribute. Issuing a throttle opera-
tion (throttle_cfs_rq()) will dequeue the
sched_entity from its parent cfs_rq and set
the above throttled flag. Note that for an entity to
cross this threshold it must be running, and thus,
be the current entity. This means that the dequeue
operation on the throttled entity will just update the
accounting since the currently running entity is al-
ready dequeued form RB tree as per CFS design.

We must however, ensure that it is not able to re-
enter the tree due to either a put operaton, or thread
wake-up. The first case is handled naturally as the
decision to return an entity to the RB tree is based
off the entity->on_rq flag, which has been
unset as a consequence of accounting during de-
queue. The task wakeup case is handled directly
by ceasing to enqueue past a throttled entity within
enqueue_task_fair().

When the lone throttled entity of a parent is de-
queued, the parent entity will suddenly become
non-runnable, since it no longer has any runnable
child entities. Even though the parent is not throt-
tled, it need not remain on the RB tree. The natural
solution to this is to continue dequeuing past the
throttled entity until we reach an entity with load
weight remaining. This is analogus to the ancestor
dequeue that may occur when a nested task sleeps.

The unthrottle case is symmetric, the entity is re-
enqueued and the throttled flag is cleared. Parent-
ing entities must then potentially be enqueued up
the tree hierarchy until we reach either the root,
or an ancestor undergoing its own throttling opera-
tions.

Quota Refresh

task_group quota is refreshed periodically us-
ing hrtimers by programming the hrtimer to
expire every cfs_period_us seconds. A

5Since bandwidth is defined on at the group level it should be
noted that an individual task entity will never be throttled, only its
parent.

struct hrtimer period_timer is embed-
ded in cfs_bandwidth structure for this pur-
pose. If there is a quota interval within which no
bandwidth is consumed then the timer will not be
re-programmed on expiration.

The refresh operation first refreshes the global
quota pool, stored in the cfs_bandwidth struc-
ture. We then iterate over the per-CPU cfs_rq
structures to determine whether any of them have
been throttled. In the case of a throttled cfs_rq,
we attempt to assign more bandwidth to it and –
if successful – unthrottle it. Unlike SCHED_RT
case, we could do this check for throttled cfs_rqs
speculatively to reduce the contention on rq->
lock. Future development here could involve re-
fresh timer consolidation to further reduce over-
head in the many cgroup case.

Locking Considerations

Since the locally assigned bandwidth is maintained
on the cfs_rq, we are able to nest tracking and
modification under the parent rq->lock. Since
this lock is already held for existing CFS account-
ing, this allows the local tracking of quota to be
performed with no additional locking.

Explicit locking is required to synchronize mod-
ification to the assigned or remaining bandwidth
available in the global pool. Such an operation
occurs when a local pool exceeds its (locally) as-
signed quota or through configuration change.

6.3 Challenges

• Slack time handling

One caveat of our chosen approach is that the time
locally assigned may have been allocated from the
global pool in a previous quota interval. This repre-
sents potential local over-commit when bandwidth
is expressed versus reservation. The maximum
outstanding over-subscription within a given set
of consecutive intervals is constant at num_cpus ·
batch_slice. It is of note that this holds true for
any number of consecutive observed interval since
the input rate of the system is bounded, the over-
commits occurs from remaining slack time that
may be left over from the interval immediately
prior to the first measured period. One potential
approach to mitigate this for environments where

2009 Linux Symposium, DRAFT • 17

harder limits are required is to use generation coun-
ters during the allocation and distribution of quota.

• Fairness issues
The waterfall distribution of quota from global to
local pools is also potentially accompanied by risks
involving the fairness of consumption. Consider
for example the case of a multi-CPU machine.
Since the allocation of quota is currently in batch
sized amounts it is possible for a multi-threaded
application to experience reduced parallelism. It
is also possible for quota to be ’stranded’ as load-
balancing leaves local quota unavailable for con-
sumption due to no runnable entities. The latter
can also potentially be addressed by a generational
model as it would then be possible to return quota
to the global pool on a voluntary sleep. However as
systems scale the former potentially becomes a real
problem. A short term mitigation strategy could be
to reduce the batch-sizing used for the propagation
of quota from global to local pools. Longer term
strategies for resolving this issue might include a
graduated scheme for batch slice sizing and sub-
dividing the global pool at the sched_domain
level to allow for finer granularity of control on dis-
tribution.

• Load-balancer interactions
CFS bandwidth control currently supports only a
very primitive model for load balancer interac-
tions. Throttled run-queues are excised from load-
balancing decisions; it turns out that it is hard to
improve this model without undesirable emergent
behaviors. At first inspection it may appear that mi-
grating threads from a locally throttled run-queue
to an unthrottled one would be a sensible decision.
This quickly breaks down when the case of insuffi-
cient quota is considered. Here the last run-queue
to have quota available will resemble that last seat
in the game ’musical chairs’, inadvertantly creat-
ing a ’herd’ of executing threads. Likewise, it does
not make sense to migrate a thread to a run-queue
that has already been throttled as it being runnable
indicates there is local quota still available.

While improving the actual mechanics of load bal-
ancing in these conditions may be a large technical
challenge, there may be an easier case to make for
improvement in the distribution of share weight.
Currently, when a run-queue is throttled its partic-
ipation in group share distribution is also halted.

This may result in undesirable rq weight fluctua-
tions. One avenue that has been considered in this
area is to continue allowing throttled entities to par-
ticipate in weight calculations for re-distribution.
This will allow entities to re-wake with their cor-
rect weight and prevent large swings in distribu-
tion. For this to work effectively however some
stronger guarantees that quota will expire relatively
concurrently are desired to avoid skews.

7 Results

This section describes the experiments we have under-
taken to validate CFS bandwidth control. We describe
our test setup and the benchmarks run. We then present
our results and discuss some limitations in the current
approach. Finally we explore the effects of changing
parameters like sched_slice and enforcement peri-
ods in the system.

We performed all our tests on a 16-core AMD ma-
chine with no restrictions to affinity. We ran our tests
with our patches based on top of the v2.6.34 kernel,
which as of writing this paper was the most recent
stable kernel release. Outside the default x86 Kcon-
fig, we enabled CONFIG_FAIR_GROUP_SCHED and
CONFIG_CFS_BANDWIDTH_CONTROL. We config-
ured our test machine with the following cgroup config-
uration for all experiments.

Container Shares Notes
system 1024 Contains system tasks

such as sshd, measure-
ment tasks, etc.

protag 65536 Benchmark runs in this
container. The protag
container is large enough
to mitigate system inter-
ference.

We monitored system utilization in a monitoring thread
that was part of the system container. This thread woke
up once a second and read /proc/stat for busy us-
age and idle time for all CPUs in the system. We used
busy time measured as a fraction of the total system time
as a metric to measure the effectiveness of CPU band-
width control.

Two simple benchmarks were used to validate the band-
width control mechanism - while-1 soakers and sys-
bench. Both these benchmarks are multi-threaded ap-
plications and can completely saturate the machine in

18 • CPU bandwidth control for CFS

the absence of bandwidth control. We would also like to
note that system daemon/thread interference was mini-
mal and can be ignored for the purposes of this discus-
sion.

When the runtime allocated to a cgroup is the same as its
period, it can be expected to receive one CPU’s worth of
wall time. When the runtime is twice the period it gets
about two CPUs worth, and so on. The same bandwidth
limits were explicitly attained using the cpuset sub-
system and CPU affinities as a control group. It should
be noted that due to the lack of affinity and that time
was observed on all runnable CPUs in the first case there
is nothing special about the integral CPU case for CFS
Bandwidth Control, it merely enables the use of cpusets
as an OPT control parameter.

Each benchmark was run with three different bandwidth
enforcement periods - 100ms, 250ms, and 500ms. In
each set of runs, we allocated an integer core worth of
runtime to the protag cgroup ranging from 1 core worth
upto the full 16 cores worth of runtime. We compare
these results with the baseline measurement for the re-
spective benchmark.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

%
 o

f s
ys

te
m

 ti
m

e

#cpus

cpu bandwidth (period = 100 ms)lat-soaker-p100000

affinity-user
cfsbandwidth-user

Figure 6: while-1 soakers, CFS Bandwidth Control,
100ms

Figures 6, 7 and 8 show the comparision of CPU times
obtained by while-1 soakers when run with affinities and
when run with bandwidth control. We see that the aver-
age deviation from the baseline benchmark is very small
in each of these cases. We also notice that the average
deviation from baseline decreases as the enforcement
period increases.

Figures 9, 10 and 11 show the results for sysbench. The
benchmark was to run the CPU sysbench test with 16

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

%
 o

f s
ys

te
m

 ti
m

e

#cpus

cpu bandwidth (period = 250 ms)lat-soaker-p250000

affinity-user
cfsbandwidth-user

Figure 7: while-1 soakers CFS Bandwidth Control,
250ms

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

%
 o

f s
ys

te
m

 ti
m

e

#cpus

cpu bandwidth (period = 500 ms)lat-soaker-p500000

affinity-user
cfsbandwidth-user

Figure 8: while-1 soakers, CFS Bandwidth Control,
500ms

worker threads. Each thread computed all prime num-
bers lesser than 100000. Again, we see that the devia-
tion from the baseline benchmark is very small in most
cases and improves as the enforcement period increases.

7.1 Overhead

CFS bandwidth control adds a minimal overhead to the
enqueue/dequeue fast paths. We used tbench to mea-
sure overhead on these paths as it exercises these paths
very frequently (450K times a second). We used on
a vanilla 2.6.34 kernel with affinity masks as the base-
line. The tabular data below shows the overhead with
enforcement period at 100ms.

As described earlier, quota is distributed in batch_
slice amounts of runtime. This is set to 10ms by

2009 Linux Symposium, DRAFT • 19

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16

el
ap

se
d

tim
e

(s
)

#cpus

cpu bandwidth (period = 100 ms)sysbench-p100000

affinity-elapsed
cfsbandwidth-elapsed

Figure 9: sysbench bandwidth control, 100ms

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16

el
ap

se
d

tim
e

(s
)

#cpus

cpu bandwidth (period = 250 ms)sysbench-p250000

affinity-elapsed
cfsbandwidth-elapsed

Figure 10: sysbench bandwidth control, 250ms

default in our current system, but we expose this as a
tunable that can be set at runtime via a procfs tunable.
While decreasing this value increases the frequency at
which CPUs request for quota from the global pool, we
did not notice any measurable impact on performance.

8 Conclusions and Futures

CFS Bandwidth Control is a light-weight and flexibile
mechanism for bandwidth control and specification. We

cputime baseline bandwidth control
1 219.022 213.415
8 1668.12 1653.7
16 2451.82 2421.36

Table 1: Overhead of CFS bandwidth control, tbench 10
procs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16

el
ap

se
d

tim
e

(s
)

#cpus

cpu bandwidth (period = 500 ms)sysbench-p500000

affinity-elapsed
cfsbandwidth-elapsed

Figure 11: sysbench bandwidth control, 500ms

are currently in the process of attempting to collect test-
data on a wider variety of both proprietary and open-
source workloads and hope to publish this data as it be-
comes available.

Our patchset is in a stable state and we encourage
any customers interested in this requirement to evalu-
ate whether it meets their needs and provide feedback.
The current posting is version 2, available at [4].

We are currently pursuing peer review with the hopes
of merging this feature into the mainline scheduler tree.
Looking forwards we are attempting to deliver improve-
ments such as generational quota to mitigate potential
slack time issues and improve fairness. For simplicity’s
sake given the review process however, formal consid-
eration of this should be post-poned until the original
approach reaches maturation within the community.

9 Acknowledgements

We would like to thank Ken Chen, Dhaval Giani, Bal-
bir Singh and Srivatsa Vaddagiri for discussion related
to the development of this work. Much credit is also
due to the original bandwidth mechanisms present in
SCHED_RT as they have both inspired and formed the
basis for much of this work. We would also like to thank
Google and IBM for funding this development.

10 Legal Statements

c© International Business Machines Corporation 2010.
Permission to redistribute in accordance with Linux

20 • CPU bandwidth control for CFS

Symposium submission guidelines is granted; all other
rights reserved.

This work represents the view of the authors and does
not necessarily represent the view of IBM.

IBM, IBM logo, ibm.com, andWebSphere, are trade-
marks of International Business Machines Corporation
in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

References in this publication to IBM products or ser-
vices do not imply that IBM intends to make them avail-
able in all countries in which IBM operates.

INTERNATIONAL BUSINESS MACHINES CORPO-
RATION PROVIDES THIS PUBLICATION âĂIJAS
ISâĂİ WITHOUT WARRANTY OF ANY KIND, EI-
THER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied war-
ranties in certain transactions, therefore, this statement
may not apply to you. This information could include
technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these
changes will be incorporated in new editions of the pub-
lication. IBM may make improvements and/or changes
in the product(s) and/or the program(s) described in this
publication at any time with

References

[1] Guarantees in OpenVZ. http://wiki.
openvz.org/Containers/Guarantees_
for_resources.

[2] Bharata B Rao. CFS hard limits - v0, June 2009.
http://lkml.org/lkml/2009/6/4/24.

[3] Bharata B Rao. CFS hard limits - v5, January 2010.
http://lkml.org/lkml/2010/1/5/44.

[4] Paul Turner. CFS bandwidth control - v2, April
2010. http://lkml.org/lkml/2010/4/
28/88.

