
Beyond Heuristics: Learning to Classify
Vulnerabilities and Predict Exploits

Mehran Bozorgi, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker
Department of Computer Science and Engineering

University of California, San Diego
mehranbozorgi@google.com, {saul,savage,voelker}@cs.ucsd.edu

ABSTRACT
The security demands on modern system administration are enor-
mous and getting worse. Chief among these demands, adminis-
trators must monitor the continual ongoing disclosure of software
vulnerabilities that have the potential to compromise their systems
in some way. Such vulnerabilities include buffer overflow errors,
improperly validated inputs, and other unanticipated attack modal-
ities. In 2008, over 7,400 new vulnerabilities were disclosed—
well over 100 per week. While no enterprise is affected by all of
these disclosures, administrators commonly face many outstanding
vulnerabilities across the software systems they manage. Vulner-
abilities can be addressed by patches, reconfigurations, and other
workarounds; however, these actions may incur down-time or un-
foreseen side-effects. Thus, a key question for systems adminis-
trators is which vulnerabilities to prioritize. From publicly avail-
able databases that document past vulnerabilities, we show how to
train classifiers that predict whether and how soon a vulnerability is
likely to be exploited. As input, our classifiers operate on high di-
mensional feature vectors that we extract from the text fields, time
stamps, cross-references, and other entries in existing vulnerability
disclosure reports. Compared to current industry-standard heuris-
tics based on expert knowledge and static formulas, our classifiers
predict much more accurately whether and how soon individual
vulnerabilities are likely to be exploited.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection; I.5.1 [Pattern Recognition]: Models—Statis-
tical; I.5.2 [Pattern Recognition]: Design Methodology—Feature
evaluation and selection

General Terms
Algorithms, Security

Keywords
supervised learning, SVM, vulnerabilities, exploits

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-1/10/07 ...$10.00.

1. INTRODUCTION
Among the many requests made of researchers in computer se-

curity, few are as frequent or as urgent as the call for meaningful
security metrics. The requests are driven by a widespread need to
quantify security risks (“how likely is it that an attacker will thwart
my security measures?”) in a way that informs operational policy
choices. Unfortunately, the adversarial nature of security has re-
sisted traditional methods of quantifying risk and has even led some
to argue that such metrics are inherently unattainable [4]. Never-
theless, even absent a comprehensive solution to this conundrum,
there remains a need to evaluate the value of distinct operational
security choices. Thus, a range of ad hoc approaches have emerged
in individual domains where the needs are particularly acute. In
this paper we focus on one such domain — evaluating vulnerability
disclosures — and we show that it is possible to make meaningful
predictions using tools from data mining and machine learning.

Public vulnerability disclosure has long been a staple of the
software security industry, with many thousands of new software
vulnerabilities identified and publicized each year [11]. In turn,
these vulnerabilities are communicated, via a variety of channels,
to system administrators who must then determine if they have sus-
ceptible systems and decide what action to take if so. Unfortu-
nately, patching and other mitigations can incur significant man-
power overheads (even more so for mission critical services that
require quality assurance testing before deploying new software).
Since few organizations have the resources to address every vulner-
ability disclosure that might impact their enterprise, administrators
must prioritize their efforts, triaging the most critical vulnerabilities
to address first.

To inform these decisions, a variety of “vulnerability scoring”
frameworks have been designed to assess risk qualitatively (e.g.,
Microsoft’s critical, important, moderate, or low severity rating)
or quantitatively (e.g., US-CERT’s severity metric). Indeed, one
such framework — FIRST’s Common Vulnerability Scoring Sys-
tem (CVSS) [9] — appears to be emerging as the de facto standard
in the community. The use of CVSS is mandated in the Payment
Card Industry’s Data Security Standard (PCI-DSS), it is the rank-
ing used in NIST’s National Vulnerability Database (NVD), and its
use is recommended by a wide range of computer, networking and
software vendors (e.g., Cisco’s Risk Triage whitepaper [5]).

However, while these systems are carefully designed using ex-
pert knowledge, they are inherently ad hoc in nature. For example,
the CVSS (v2) overall “Base Score” is expressed in terms of Impact
(I) and Exploitability (E) components by:

BaseScore = (1.176) ∗

„

3I

5
+

2E

5
−

3

2

«

. (1)

By convention, this score is rounded to one decimal place, and it

is set to zero (regardless of the above formula) if I = 0. We note
further that the Impact and Exploitability components in eq. (1) are
themselves combinations of categorical magic numbers. (For ex-
ample, the Exploitability component depends on an Access Vector
score which takes the value 0.395 if the vulnerability requires local
access, 0.646 if the vulnerability requires adjacent network access,
and 1.0 if the vulnerability global network access). While we have
little doubt that these scoring metrics were carefully considered and
of great value when first developed, we suspect that any single fixed
equation, such as eq. (1), is unlikely to provide a robust and lasting
model of vulnerability severity.

To this end, our paper seeks to place this problem on a more sys-
tematic footing. Using tools from machine learning, we show how
to train classifiers that predict whether vulnerabilities are likely to
be exploited, and if so, how soon. Our results suggest that our
trained classifiers are likely to outperform current measures of ex-
ploitability. In particular, our classifier outputs correlate much bet-
ter with vulnerability outcomes than the “Exploitability" compo-
nent of the CVSS Base Score in eq. (1).

2. BACKGROUND
Software vulnerabilities are exploitable flaws in software sys-

tems that pose significant security risks. Production software in-
evitably ships with many such flaws, a subset of which are subse-
quently discovered and become known over time. When flaws are
discovered, vendors distribute patches and mitigations to their cus-
tomers, who ideally implement such measures before an exploit
is developed and targeted against them. This vulnerability life-
cycle (described in more detail by Arbaugh et al. [1]) has in turn
driven the creation of a complex ecosystem of players: vulnerabil-
ity researchers, software and security vendors, security information
providers and a range of networks, information sources and mar-
kets connecting them together (for a comprehensive analysis of the
vulnerability ecosystem see Frei et al. [10]).

2.1 Public Vulnerability Disclosures
At the end of this process, vulnerabilities are documented and

disclosed to the public. These reports not only list various dis-
crete attributes of each vulnerability (e.g., software affected, date
disclosed), they also describe (in plain text) how each vulnerabil-
ity works, why it presents a threat, and how it can be mitigated.
This information is disclosed to the public via multiple sources, in-
cluding moderated forums (e.g., Bugtraq [21]), individual vendors
(e.g., Microsoft [14], commercial aggregators (e.g., Secunia [20]),
and open source databases (e.g., OSVDB [17]). Vulnerabilities are
also quickly assigned a unique identifier — both local to individual
information providers/repositories and global across multiple vul-
nerability databases using MITRE’s Common Vulnerabilities and
Exposures (CVE) service [6].

The precise timing of vulnerability disclosures depends consid-
erably on how they were found and the policy of the organizations
involved. Some vulnerabilities are disclosed immediately upon dis-
covery while others may be kept private for significant periods of
time to allow vendors to develop and test appropriate patches and
mitigations. Still other vulnerabilities are exploited before or at the
same time as public disclosure (so-called 0-day exploits). Vulner-
ability discovery and disclosure policy has generated a great deal
of both controversy and research [2, 3, 18, 16]. A number of stud-
ies have also examined the probability that vulnerabilities are able
to be patched [15, 19]. By contrast, our work focuses on predict-
ing if a vulnerability is likely to be exploited shortly (thus meriting
immediate attention from system administrators).

2.2 Rating Vulnerabilities
To aid system administrators, vulnerability disclosures typically

include a qualitative or quantitative assessment of each vulnera-
bility’s severity. The overall severity score depends on both im-
pact (how significant are the consequences of exploitation) and ex-
ploitability (how difficult is the vulnerability to exploit). Severity
scores are derived primarily from expert knowledge and/or commu-
nal input. For example, US-CERT generates a quantitative sever-
ity score ranging from 0 to 180, calculated directly from answers
to a range of qualitative questions (e.g., “Is information about the
vulnerability widely available or known?” and “What are the pre-
conditions required to exploit the vulnerability?”) [7]. Microsoft’s
Security Bulletin documents vulnerability severity using a quali-
tative scheme (critical, important, moderate, or low) as do Secu-
nia’s reports (extremely critical, highly critical, moderately criti-
cal, less critical, or not critical). More recently, a group of vendors
and researchers came together, under the sponsorship of the Fo-
rum of Incident Response and Security Teams (FIRST), to create
a new severity metric, the Common Vulnerability Scoring System
(CVSS). Now in its second iteration, CVSS defines several inde-
pendent metrics, but it is the “base metric” which is typically used
in third-party vulnerability databases. This score combines impact
and exploitability components according to a carefully designed
formula [9].

Unfortunately, each of these systems measures different things
and weights them in different ways. We are unaware of any em-
pirical study evaluating the effectiveness of any of these metrics
or comparing them to one another. Thus, it is hard to make con-
crete statements about which approach is best, or why. Indeed, this
problem is inherently difficult since some aspects of “severity” are
either context dependent (e.g., a mission critical server being shut
down may be more “severe” than a print server) or may be inher-
ently difficult to quantify. However, the issue of exploitation is far
more clear cut — a vulnerability is either exploited or not and the
date upon which a working exploit becomes known is frequently
documented. Thus, in this paper we focus on the exploitability as-
pect of severity.

Given this scope, we argue that existing scoring systems are
probably too limited to offer strong predictive power. They in-
clude only a few factors in each vulnerability’s assessment—which
may not be the key distinguishing features and frequently depend
on the judgment of evaluators—and they combine these features in
the same way to produce a score for widely different sorts of vul-
nerabilities. For example, the current CVSS Exploitability score is
calculated as follows [13]:

Exploitability = 20 ∗ AV ∗ AC ∗ Authentication (2)

where AV stands for Access Vector and AC stands for
Access Complexity, and each of these variables are assigned
particular fixed values based on other qualitative or subjective eval-
uations. For example, AC is set to 0.35 if access complexity is
deemed to be “high”, 0.61 if “medium” and 0.71 if “low”. It is
not entirely clear how this formula or its constants were designed.
Moreover, it seems unlikely that this simple formula can model the
probability of exploitation across many different sorts of vulnera-
bilities.

3. VULNERABILITY DATA
In this study, we use two well-known, online sources of vulnera-

bility data, the Open Source Vulnerability Database (OSVDB) [17]
and the MITRE Common Vulnerabilities and Exposures (CVE)
database [6].

Figure 1: An example OSVDB vulnerability report.

Exploit Category # Vulnerabilities Label
Exploit Available 8,537 Positive
Exploit Rumored / Private 1,483 Positive
Exploit Unavailable 536 Negative
Exploit Unknown 3,209 Negative
No Category 999 Not Used
Total 14,764

Table 1: Categories of exploited vulnerabilities.

OSVDB is a large database containing reports on over 57,000
vulnerabilities. As an example, figure 1 shows the OSVDB report
for a vulnerability in a Web services library. These reports contain
a wealth of information about each vulnerability, indexed using a
unique OSVDB ID, including a detailed description, technical de-
tails, the software products affected, solutions (such as patches and
mitigations to prevent exploitation), and references to other sources
of information about the vulnerability. The reports also include
classification information, such as the type of attack required to
exploit the vulnerability, the origins from which an attack can be
launched, and the manner in which the vulnerability was disclosed.
Section 4.1 describes how we extract information from these re-
ports as features for classification and prediction.

The reports also provide temporal information for each vulner-
ability, such as the dates of discovery, disclosure, and first known
exploits. We augment this data with additional temporal informa-
tion provided by Frei et al. as described in their WEIS 2009 pa-
per [10]. As described below, we use this additional information to
create labeled training and test sets.

From the OSVDB database we extracted a large set of vulner-
abilities for classification and prediction. We used only vulnera-
bilities that were disclosed during the years 1991–2007, inclusive.
Vulnerabilities before 1991 represent a different era of software;
we excluded later vulnerabilities because, at the time we started the
project, they were recent and still in flux (e.g., many of them had
undetermined outcomes). We also excluded vulnerabilities that did
not have a description.

Table 1 shows the number of vulnerabilities we use in our exper-
iments and how we label them. It categorizes vulnerabilities using
their OSVDB “Exploit Classification” status. If a vulnerability has
an available, rumored, or private exploit, we label it as a “positive”
vulnerability, indicating that it has been exploited. Similarly, if a
vulnerability has no known exploits or exploits are unavailable, we
label it a “negative” vulnerability indicating that it is not exploited.
If a vulnerability report does not classify its exploit status, we ex-
clude it from consideration since we cannot determine the accuracy
of our predictions. Section 4.2 describes how we train a classifier
from these labeled examples of vulnerabilities.

We use the CVE database to augment the vulnerability reports
from the OSVDB database. Similar to OSVDB, CVE entries in-
clude summaries, references to related products and reports, infor-
mation about the type of vulnerability, time stamps, and severity
scores. In addition to providing more information that can be ex-
tracted as features for classification, for some vulnerabilities the
CVE entries also provides information missing in the OSVDB re-
ports. We integrate these records by cross-referencing their CVE
and OSVDB identifiers. Most OSVDB reports reference the cor-
responding CVE reports for the same vulnerability and conversely,
some CVE entries have corresponding OSVDB IDs as well.

Finally, we note that the quality of our results are inherently tied
to the quality of this disclosure data and in particular the quality
of the temporal labels (when a vulnerability was disclosed and ex-
ploited). This creates two potential classes of problems. In princi-
ple, there are adversarial training risks since bad vulnerability data
could influence what the classifier learns during training. However,
we believe this is a particularly unlikely scenario since vulnerabil-
ity databases are generated by large numbers of independent ac-
tors. It seems unlikely that an adversary would discover and dis-
close enough new vulnerabilities (in turn validated and accepted by
third parties) to influence the overall feature set used in training.
Similarly, while an adversary might try to “game" our predictions
(e.g., by only exploiting vulnerabilities which we had classified as
unlikely to be exploited), the risk seems low, and certainly such
a counterstrategy is no easier than it is under current vulnerability
scoring systems. A somewhat more likely limitation is systematic
bias. In particular, we note that large numbers of vulnerabilities in
the complete database have unknown exploitation status or dates,
which limits our ability to train on these records. In this work,
we assume that the remainder of disclosures (with known status
and dates) are representative and accurate. A selection bias would
emerge if the omitted records were systematically different than
complete records; however, we do not believe such a bias exists.

4. MACHINE LEARNING FOR
VULNERABILITY CLASSIFICATION

We aim to improve on existing approaches by casting vulnera-
bility classification as a problem in machine learning. In a nut-
shell, our goal is to replace small-scale heuristics by large-scale
statistics. This section describes our statistical model for vulnera-
bility classification. The model is estimated from a large database
of vulnerabilities that have been labeled as “exploited" or “not ex-
ploited". Section 4.1 describes how we extract information from
this database and distill it into feature vectors for classification, and
section 4.2 describes how we classify these feature vectors using
support vector machines [22]. The training and test sets of fea-
ture vectors in our experiments are available at http://www.
sysnet.ucsd.edu/projects/exploit-learn/.

Feature Family Count Database Source
Summary (B) 14883 CVE
Full Product Name (B) 13040 OSV - Obj. Correls.
Description (B) 11573 OSV - Vulnerabilities
Title (B) 9812 OSV - Vulnerabilities
Short Description (B) 9761 OSV - Vulnerabilities
Manual Notes (B) 6576 OSV - Vulnerabilities
Product Versions (B) 5388 OSV - Obj. Versions
Related Products (B) 5057 CVE
Product Names (B) 3661 OSV - Obj. Products
Tech. Description (B) 3479 OSV - Vulnerabilities
Solution (B) 3474 OSV - Vulnerabilities
Product Vendors (B) 2500 OSV - Obj. Vendors
Authors (B) 2368 OSV - Credits
Keywords (B) 1556 OSV - Online
References (B) 267 CVE
Classifications (B) 69 CVE
External Refs (B) 31 OSV - Ext. Refs.
OSVDB Dates (I) 15 OSV - Vulnerabilities
Attack Type (B) 11 OSV - Classifications
Category (B) 9 OSV - Classifications
Location (B) 8 OSV - Classifications
Solution Category (B) 8 OSV - Classifications
Disclosure Type (B) 8 OSV - Classifications
CVE Dates (I) 6 CVE
Impact (B) 4 OSV - Classifications
Scores (I) 3 CVE
Effect on Products (B) 3 OSV - Aff. Types
Other (I) 8 OSV & CVE
Total 93578

Table 2: Extracted features from the vulnerability data. (B)
denotes binary and (I) denotes integer features.

4.1 Feature extraction
Our database of vulnerabilities contains a wealth of informa-

tion, both factual and textual, about their histories and distinguish-
ing characteristics. For each vulnerability, we extract a high-
dimensional (d = 93578) feature vector of binary and integer-
valued features. Though many of these features will ultimately turn
out to be irrelevant or redundant for classification, the goal of our
feature extraction is to distill as much information as possible for
subsequent statistical analysis.

Much of our information about vulnerabilities is contained in
text fields. We derive binary features using a bag-of-words repre-
sentation for each text field [12]. Essentially, these features record
whether or not particular tokens (e.g., “buffer", “heap", “DNS") ap-
pear in specific text fields (e.g., “title", “solution", “product name")
associated with each vulnerability.

Table 2 shows the breakdown of features that we extract for each
vulnerability in our database. Each row in the table indicates the
number of features derived from a particular type of information.
Most of the features are generated from bag-of-words representa-
tions of text fields. However, integer-valued features also encode
useful information, such as the date when a vulnerability was first
disclosed, the length of text describing its symptoms, or the ranking
of its severity according to other popular heuristics.

4.2 Large margin classification
We build classifiers by training linear support vector machines

(SVMs) [22] on the feature vectors described in the previous sec-

tion. (As preprocessing, however, the non-binary features are nor-
malized to lie between zero and one so that they do not overshadow
the binary features.) Linear SVMs are trained by computing the
maximum margin hyperplane that separates the positive and nega-
tive examples in feature space. The decision rule mapping feature
vectors x ∈ <d to labels y ∈ {−1, +1} is given by:

y = sign(w · x + b), (3)

where w ∈ <d is the normal (weight) vector to the separating
hyperplane and b is the distance of the separating hyperplane from
the origin.

Linear SVMs are particularly appropriate for our application to
vulnerability classification because we have many more input fea-
tures (d) than training examples (n). In particular, for the experi-
ments in section 5, the ratio of features to examples is never less
than 10-to-1. In this regime of small sample size (n � d), there
are many hyperplane decision boundaries that can perfectly sepa-
rate all n examples {(xi, yi)}

n
i=1 in our training sets. Linear SVMs

compute the hyperplane that (roughly speaking) maximizes the dis-
tance of the most borderline training examples to the linear decision
boundary. This hyperplane is not only uniquely specified, but a
large body of work in statistical learning theory also shows that it
generalizes better to new data, yielding lower expected error rates
when used to classify previously unseen examples [22]. Many soft-
ware packages are available for fitting models of this form; for the
results in this paper, we used the LIBLINEAR implementation of
SVMs [8].

5. EVALUATION
In this section we present our experimental results using SVMs

for vulnerability classification. We consider several different sce-
narios. We first evaluate the prediction accuracy in an offline exper-
iment, representing a best-case scenario where we consider the data
set of vulnerabilities as a single, static snapshot; we also examine
the features that have the most prominent role in making predic-
tions. We then evaluate the prediction accuracy of our model in an
online experiment emulating a real-world deployment: we dynam-
ically update the classifier and make predictions over time as new
vulnerabilities appear. We also use SVMs to predict if vulnerabil-
ities will be exploited within a particular time frame. Finally, we
compare the results from SVMs to current heuristic approaches to
vulnerability classification.

5.1 Methodology
As discussed in Section 3, we use the OSVDB and CVE

databases as our data set of vulnerability examples. In addition
to providing the features we use for learning and classification,
they also provide the ground truth for evaluating the accuracy of
our classifiers. In general, we label those vulnerabilities that have
exploits as positive examples and vulnerabilities that do not have
exploits as negative examples. Table 1 shows a breakdown of the
vulnerabilities based on these labels.

Note that there are more positive examples (10,020) than nega-
tive examples (3,745), i.e., more vulnerabilities with exploits than
those without. When conducting balanced experiments, which re-
move any such bias in the data used for classification, we randomly
choose the same number of examples from both sets multiple times
and average the results. When conducting unbalanced experiments,
an unavoidable aspect of practical deployments, we explicitly quan-
tify and report the bias in the input data. Finally, a subset of the
vulnerabilities do not have exploit information; we do not use these
examples in our experiments because, without true labels, we can-
not evaluate the accuracy of classification.

Training Testing
Positive Examples (|P |) 1600 2000

Negative Examples (|N |) 1500 1874
Total Examples 3100 3874

True Negatives 100% 92.2%
True Positives 100% 87.5%

False Negatives 0% 7.79%
False Positives 0% 12.5%

Total Accuracy 100% 89.8%

Table 3: Prediction accuracy in the offline experiment.

5.2 Offline Exploit Prediction
In our first experiment, we evaluate how well SVMs classify vul-

nerabilities in an offline setting. For this experiment, we use a bal-
anced data set of roughly 4000 positive and negative examples—
that is, divided almost evenly between vulnerabilities with and
without exploits. We train SVMs on 40% of these examples (as
training data) and evaluate them on 50% of these examples (as test
data). We use the remaining 10% of examples as a development
set to choose tuning parameters for the SVMs. We report averaged
results from ten-fold cross validation: that is, we learn ten different
classifiers, randomly choosing which examples fall into the train-
ing, test, and development sets, then average the results across all
runs.

Table 3 shows the results. Here, true positives are positive ex-
amples correctly classified as vulnerabilities that will be exploited;
true negatives are negative examples correctly classified as vulner-
abilities with no known exploits; false positives are positive exam-
ples incorrectly classified as vulnerabilities that will be exploited,
but were not; and false negatives are negative examples that were
incorrectly classified as vulnerabilities that have no known exploits,
but in fact do. The overall accuracy is nearly 90%, demonstrating
the viability of statistical methods for vulnerability classification.

5.3 Feature Inspection
The offline classification results show that the vulnerability re-

ports contain useful features for predicting whether a vulnerability
will be exploited. We now examine which features play a promi-
nent role in these predictions. In the linear SVMs that we use, the
decision rule in eq. (3) multiplies each feature by a positive or neg-
ative weight. Recall that all features are normalized to lie between
zero and one before the weights are learned. Thus the magnitudes
of these weights reflect the relative contribution of each feature to
the decision rule.

Tables 4 and 5 show the top 10 features with the highest positive
and negative normalized weights, respectively, from the experiment
in Section 5.2. Positively weighted features suggest to the classifier
that the vulnerability has an exploit; negatively weighted features
suggest to the classifier that the vulnerability does not. The first
column lists the feature family (Table 2) and the second column
the specific feature in the family. For example, the feature “Refer-
ences: BUGTRAQ ID” in the first row of Table 4 corresponds to
the token “BUGTRAQ ID” appearing in the “References” feature
family of a vulnerability report. The third column lists the num-
ber of vulnerabilities Nj in which feature j appears in the training
data. For example, the feature “References: BUGTRAQ ID” oc-
curs in 2,045 of the 3,100 vulnerabilities in the training set. The
fourth column lists the normalized weight of the feature. The nor-
malized weight w̃j = wj(Nj/N) is the raw weight wj learned by
the classifier multiplied by the ratio of the number of vulnerabili-
ties Nj whose jth feature is non-zero divided by the total number

Feature Family Feature Nj Weight
References BUGTRAQ ID 2045 0.3674

Modified Date − (Time Difference) 3096 0.1860
Create Date

Authors (Number of Tokens) 1858 0.1461
Class. Types LOCATION 2509 0.1373

References (Number of Tokens) 3054 0.1292
Title (Number of Tokens) 3085 0.1229

CVE Summary ALLOWS 1983 0.1146
Notes (Number of Tokens) 925 0.0971

Modified Date − (Time Difference) 3098 0.0902
Disclosure Date

References SECUNIA ADV. ID 2107 0.0840

Table 4: Top 10 features with the highest positive normalized
weights, and the number of vulnerabilities Nj in which they
appear in the training set. Features prefixed with “CVE” are
derived from CVE entries, otherwise they come from OSVDB
reports.

of vulnerabilities in the training set (N = 3100). By sorting the
normalized weights, we reveal the features with the largest overall
effect across all vulnerabilities (as opposed to the largest effect on
a possibly miniscule number of vulnerabilities).

The features in Table 4 are those that suggest most strongly to the
classifier that a vulnerability will be exploited. Many of them cor-
respond to the number of tokens in particular feature families, such
as the “Authors”, “Title”, and “Notes” sections of the vulnerabil-
ity reports. These weights suggest that vulnerabilities with exploits
generally have longer reports in the vulnerability databases than
those without exploits; when looking at the vulnerability reports
manually, we find that this situation is indeed the case. Other top
features are references to other security databases, suggesting that
vulnerabilities with exploits are often tracked by multiple sources.
Finally, we note that there are many features with positive weights
beyond those in Table 4. The top 100 features span nearly all of the
feature families listed in Table 2; in other words, there are useful
features in all parts of the vulnerability reports.

The features in Table 5 are those that suggest most strongly to the
classifier that a vulnerability will not be exploited. Among these
features, we observe two trends. First, we see that multiple fea-
tures measuring the passage of time have strongly negative weights.
Thus it appears that vulnerabilities with “dusty" reports are less
likely to be exploited. Second, we see that vulnerabilities whose
product-related fields are undefined (“Full Product Name”, “Prod-
ucts”, “Vendors”) also appear less likely to be exploited. Presum-
ably, such “incomplete” reports indicate vulnerabilities that have
not received much attention from the community (nor from attack-
ers).

5.4 Online Exploit Prediction
The offline experiment in Section 5.2 showed the potential for

learning to classify vulnerabilities that were randomly divided into
training, test, and development sets. In a real-world deployment,
however, system administrators would train the classifier on known
vulnerabilities to make predictions about new ones. Moreover, as
time goes, the knowledge that vulnerabilities have or have not been
exploited can be used to create new training examples. We can
then extend the training set with these new vulnerabilities and learn
a new classifier based on the most up-to-date information. This
process can continue indefinitely as time progresses.

Feature Family Feature Nj Weight
Today − (Time Difference) 3097 -0.9432

Last Modified Date
CVE Today − (Time Difference) 3045 -0.1478
Generate Date

Class. Types ATTACK TYPE 3052 -0.1439
CVE Mod. Date − (Time Difference) 3044 -0.1412

Generate Date
Classifications ATTACK TYPE 2158 -0.08260

INPUT MANIP
References RELATED 1486 -0.07923

OSVDB ID
Create Date − (Time Difference) 3098 -0.06584

Disclosure Date
Description CODE 872 -0.05499

CVE References VUPEN 994 -0.04956
Full Product Name (Not Defined) 2322 -0.04770

Products (Not Defined) 2322 -0.04770
Vendors (Not Defined) 2322 -0.04770

Table 5: Top 10 features (including ties) with the lowest nega-
tive normalized weights, and the number of vulnerabilities Nj

in which they appear in the training set. Features prefixed with
“CVE” are derived from CVE entries, otherwise they come
from OSVDB reports.

In our next experiment we emulate this online scenario using the
time-stamp information in our vulnerability databases:

1. Initialize a baseline classifier — Consider all vulnerabilities
{V }t

0 reported between time 0 and time t that have known out-
comes (exploited or not) represented with labels {L}t

0 . We build a
baseline classifier Ct based upon these vulnerability examples and
labels {V, L}t

0.
2. Predict exploited vulnerabilities that appear in the next time

interval — Suppose new vulnerabilities {V }t+T
t+1 arrive after a dura-

tion of T time elapses. We can use Ct to predict the labels {L′}t+T
t+1

for these examples.
3. Update with known vulnerability outcomes — Once we know

whether or not vulnerabilities are exploited, we know the true labels
{L}t+T

t+1 of the vulnerabilities. With their true labels, we can now
include these vulnerabilities {V }t+T

t+1 in the training set {V, L}t+T
t

and rebuild a new classifier Ct+T .
4. Calculate error — We also calculate the cumulative error of

the classifier Ct. For each time interval of duration T , we count the
number of predicted labels {L′} that differ from their true labels
{L} in that interval, and sum all of the counts across all intervals.
We then divide the sum by the total number of vulnerabilities seen
up until that time. Calculating the cumulative error shows the sta-
bility of the classifier over time.

Figure 2 shows the results of this experiment. We train a classi-
fier starting at January 2005 and initialize it with all prior vulner-
abilities appearing before 2005. We then emulate the appearance
of vulnerabilities and online reclassification and prediction through
December 2007 (the end of our data set). We evaluate two update
intervals T , once a week (Figure 2a) and once a month (Figure 2b).
We show three curves for the total classification error as well as the
false positive and negative rates over time.

These results show that, after initial fluctuations, the classifier
stabilizes and improves its accuracy with more examples over time.
At the end the classifier has an overall error rate of 14%, a false neg-
ative rate of 9% and a false positive rate of 5%. Further, classifi-
cation accuracy is relatively insensitive to the update period: when

W1 05 W26 05 W1 06 W26 06 W1 07 W26 07 W1 08
0

3

6

9

12

15

18

21

24

Weeks

P
er

ce
nt

ag
e

Overall Error (%)
False Negative (%)
False Positive (%)

(a) Weekly Training

Jan 05 Jul 05 Jan 06 Jul 06 Jan 07 Jul 07 Jan 08
0

3

6

9

12

15

18

21

24

Months

P
er

ce
nt

ag
e

 Overall Error %
False Negative %
False Positive %

(b) Monthly Training

Figure 2: Cumulative error, false negative, and false positive
percentages for predicting whether vulnerabilities will be ex-
ploited in an online, deployed setting. We evaluate two time in-
tervals for updating the classifier, every (a) week and (b) month.

the classifier stabilizes, the weekly and monthly results differ very
little. These results demonstrate the viability of deploying a clas-
sifier in an online setting to predict whether vulnerabilities will be
exploited.

5.5 Predicting Time to Exploit
Next we use SVMs to predict other metrics that help assess

the severity of vulnerabilities. In practice, in addition to know-
ing whether a vulnerability will be exploited, it is also useful to
know how soon it will be exploited. (Even if all vulnerabilities
will eventually be exploited, it is valuable to know when.) With
this knowledge, software vendors can prioritize the patches they
release; system administrators can similarly prioritize the installa-
tion of these patches.

In general, there are three kinds of time-dependent exploits:
positive-day exploits where an exploit is reported after the vulnera-
bility is disclosed; 0-day exploits where an exploit is reported at the
same time that the vulnerability is disclosed; and negative-day ex-
ploits where the exploit precedes the vulnerability disclosure date
(e.g., an attacker exploits a vulnerability before the software ven-
dor realizes the existence and nature of the vulnerability). Ideally,
for each vulnerability, we would like know the probability distribu-
tion over days when it will be exploited. Such a distribution cannot

t (days) |P | |N | Bias SVM
2 1,404 2,632 65.21% 78.01%
7 1,960 2,076 51.44% 75.78%

14 2,330 1,706 57.73% 77.06%
30 2,733 1,303 67.71% 79.82%

Table 6: Predicting whether vulnerabilities will be exploited
within t days.

be modeled by SVMs, which are designed for binary classification.
However, we can use SVMs to make similarly relevant predictions.

Next we use SVMs to predict whether or not a vulnerability will
be exploited within some time t, where t is the difference between
the exploit and disclosure dates of the vulnerability. To train such
SVMs, we use the same examples as before, merely altering the
labels to reflect whether a vulnerability has been exploited within
some time frame (as opposed to whether it has been exploited at
all). The set of “positive” examples P contains all vulnerabilities
with positive-day exploits that are exploited within time t. The set
of “negative” examples N contains vulnerabilities with positive-
day exploits that are not exploited within time t. (Those that have 0-
day or negative-day exploits need no prediction since their reports
arrive with the vulnerability already exploited.) We then evaluate a
range of time frames for t, from two days to one month.

For this experiment, we used an additional source of information
with more accurate dates of vulnerability events. (Unfortunately,
the OSVDB database has mixed-quality date information.) From
his recent work developing a detailed empirical model of the vul-
nerability discovery, disclosure, and patch process [10], Stefan Frei
generously shared the date information on vulnerabilities with CVE
identifiers from his carefully collected data sets. We incorporated
his data on discovery, exploit, and disclosure dates for the vulnera-
bilities contained in our data sets (Table 1).

To evaluate the accuracy of predicting time-to-exploit for vulner-
abilities, we perform both offline and online experiments similar to
those in Sections 5.2 and 5.4. In the offline experiment we train and
test classifiers on the entire data set, and in the online experiment
we retrain the classifiers and make predictions on vulnerabilities
over time.

Table 6 shows the results of the offline experiment. As in Sec-
tion 5.2, we partition the examples into training and testing sets
and report averaged results from cross-validation with ten differ-
ent random partitions. For each experiment in the table, we show
the predicted time frame t, the number of positive |P | and neg-
ative |N | examples, the accuracy max(|P |, |N |)/(|P | + |N |) of
the default classifier that always predict the dominant label, and the
accuracy from SVMs. The predictions from SVMs are 75–80% ac-
curate across the different time frames; note that these results are
significantly better than the raw bias induced from the imbalance of
positive and negative training examples. Considering that we have
not tuned the classifier, features, or thresholds to optimize the ac-
curacy for this scenario, we believe that these results demonstrate
the viability of predicting time-to-exploit from statistical analyses
of vulnerability disclosure reports.

Figure 3 shows the results for the online version of the experi-
ment. In the online version, we emulate a real-world deployment
where we dynamically update the classifier and make predictions
over time as new vulnerabilities appear. We show the results for
predicting whether a vulnerability will be exploited within t = 2
days, the most severe positive-day case. (Other time frames, not
shown, yielded similar results.) The classifier fluctuates initially,
then stabilizes after training on a sufficient number of examples.
The long-term trend shows a decrease in the false negative and

W1 05 W26 05 W1 06 W26 06 W1 07 W26 07 W1 08
0

5

10

15

20

25

30

Weeks

P
er

ce
nt

ag
e

Overall Error (%)
False Negative (%)
False Positive (%)

(a) Weekly Training

Jan 05 Jul 05 Jan 06 Jul 06 Jan 07 Jul 07 Jan 08
0

5

10

15

20

25

30

Months

P
er

ce
nt

ag
e

Overall Error (%)
False Negative (%)
False Positive (%)

(b) Monthly Training

Figure 3: Cumulative error, false negative, and false positive
percentages for predicting time to exploit in an online, deployed
setting. We evaluate two time intervals for updating the classi-
fier, every (a) week and (b) month.

cumulative error rates while the false positive error rate remains
flat. For a simple linear classifier, the overall results are extremely
promising: at the end of training, the classifier has an overall cumu-
lative error rate of 15%. Finally, in terms of errors, there are many
more false negatives (13%) than false positives (2%).

5.6 Exploitability Metrics
Finally, we consider the issue of scoring metrics for vulnerabili-

ties. Specifically, we compare two metrics for assessing how likely
a reported vulnerability is likely to be exploited: one based on prior
(expert) knowledge and handcrafted formulas, the other based on
statistical methods and data mining.

As discussed in Section 2.2, the Common Vulnerabilities Scor-
ing System (CVSS) defines a metric for scoring the “Exploitability”
of a vulnerability; see eq. 2. We use this CVSS score as a repre-
sentative formula-based metric. To be fair, the CVSS specification
does not state how to interpret the “Exploitability” score; its in-
tended purpose may not have been to represent the likelihood that a
vulnerability is exploited. However, given its name and the factors
that determine the score — e.g., difficulty and complexity of pro-
grammatically accessing the vulnerability in an exploit attempt —
it seems reasonable to expect that the score correlates with exploit
likelihood.

Our data-driven approach to vulnerability classification suggests
an alternative scoring method. Recall that the decision rule in

0 0.2 0.4 0.6 0.8 1

exploited vulnerabilities

0 0.2 0.4 0.6 0.8 1
CVSS score

non−exploited vulnerabilities

(a) CVSS

−3 −2 −1 0 1 2 3 4

exploited vulnerabilities

−3 −2 −1 0 1 2 3 4
classifier score

non−exploited vulnerabilities

(b) Classifier

Figure 4: Histograms of exploitability scores computed on the vulnerabilities in our data set: (a) computed using the CVSS “Ex-
ploitability” formula (Eq. 2) with values normalized to 1; (b) computed using the classifier score (w·x + b).

eq. (3) computes the signed distance to the maximum margin hy-
perplane separating positive and negative examples. The signed
distance (w · x + b) serves as a natural score for the exploitability
of a vulnerability: the sign predicts whether it will be exploited, and
for positively labeled examples, the magnitude indicates its sever-
ity.

We compare the effectiveness of these scoring methods by illus-
trating the distributions of their scores computed on the vulnerabil-
ities in our data set. Visually, these distributions tell a compelling
story.

Figure 4(a) shows histograms of CVSS “Exploitability” scores
for exploited vulnerabilities (top) and vulnerabilities without ex-
ploits (bottom); we have normalized the scores to a maximum of 1.
Note that CVSS automatically assigns a normalized score of 1 to all
newly discovered vulnerabilities as a precautionary step. Vulnera-
bilities with that default score dominate the distribution, though, so
we have removed them from the histogram to more clearly show the
distribution of values computed by the CVSS formula. Figure 4(a)
suggests that the CVSS exploitability scores on known vulnerabil-
ities do not consistently reflect what happens in practice. Many
vulnerabilities without exploits have high CVSS scores, and many
vulnerabilities with exploits have low CVSS scores. As a result, no
threshold CVSS score can differentiate well between the exploited
and non-exploited vulnerabilities.

Figure 4(b) shows histograms of the classifier scores (i.e., the
signed distances w·x + b) for the same vulnerabilities. The verti-
cal dashed line indicates the default threshold of zero used to pre-
dict whether a vulnerability should be labeled as “exploited” or not:
values above the threshold are predicted as “exploited”, and values
below the threshold as “not exploited”. As suggested by the re-
sults in Section 5.2, the histograms show that the classifier separates
these distributions well: few exploited vulnerabilities have scores
below the threshold (the false negatives), and few non-exploited
vulnerabilities have scores above the threshold (the false positives).
We note that preceding experiments included the CVSS score as a
feature since it is available when a vulnerability is reported. How-
ever, we found that excluding the CVSS score as a feature did not
noticeably change any of the results.

Overall, our results suggest that the security community should
consider statistical models in addition, or as an alternative to cur-

rent scoring practices. Such models have many compelling fea-
tures. First, with little tuning, standard models such as SVMs can
provide metrics that correlate well with exploit behavior. Second,
the models can dynamically adapt over time to incorporate new
features and data sets. Third, such models can be flexibly adapted
to yield a variety of predictions—for example, whether a vulnera-
bility will be exploited, or in what time frame it will be exploited.
Fourth, the models provide real-valued scores that practitioners can
use to prioritize vulnerabilities. Finally, these models can integrate
the results from other scoring systems simply by incorporating the
metrics defined by other systems as additional features used for
classification.

6. CONCLUSION
Ranking vulnerabilities is a critical task for software companies.

With thousands of vulnerabilities in hand and limited resources to
fix them, it is important to prioritize any operational actions. Cur-
rent methods, while easy to calculate, rely on static combinations
of a small number of human-mediated qualitative variables that
seem unlikely to capture the full complexity that drives vulnera-
bility exploitation. In this paper we have described a complemen-
tary approach for vulnerability assessment using tools from data
mining and machine learning. By considering a far broader range
of features and relying on contemporary empirical data rather than
“gut instinct” to determine their importance, we demonstrate that
this approach can classify vulnerabilities significantly better than
at least one currently (and widely) used system for severity scor-
ing.

In general, we believe that machine learning is well-suited to
many such security assessment tasks and offers considerable flexi-
bility for consolidating disparate data sources so long as desirable
security outcomes can be identified. For example, while this paper
has focused specifically on exploitability, it would be straightfor-
ward for software vendors to use our approach in triaging discov-
ered vulnerabilities to determine how to prioritize the development
and deployment of patches. Finally, one limitation with existing
vulnerability scoring approaches is they are generally “one size fits
all”; they do not provide an easy mechanism for incorporating envi-
ronment or context-specific information (aside from manually ad-

justing the ad hoc magic numbers in the formulas). In contrast, our
data-driven approach provides a consistent way to integrate many
local data sources, such as vulnerability scanners, IDS logs and in-
cident ticketing systems, to specialize vulnerability assessment to a
particular organization.

For many years, security assessment activities have been more
art than science. While we concede that the “holy grail” security
metric remains elusive, we see no reason to ignore the power of
well-founded statistical methods that can improve the state of the
practice.

Acknowledgments
We gratefully acknowledge the assistance of Stefan Frei, who gen-
erously shared his carefully collected data on vulnerability event
dates [10].

7. REFERENCES
[1] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows of

vulnerability: A case study analysis. Computer,
33(12):52–59, 2000.

[2] A. Arora, A. Nandkumar, and R. Telang. Does information
security attack frequency increase with vulnerability
disclosure? an empirical analysis. Information Systems
Frontiers, 8(5), 2006.

[3] A. Arora, R. Telang, and H. Xu. Optimal policy for software
vulnerability disclosure. In Workshop on Economics and
Information Security (WEIS’04), 2004.

[4] S. M. Bellovin. On the Brittleness of Software and the
Infeasibility of Security Metrics. IEEE Security and Privacy,
4(4), July 2006.

[5] Cisco. Risk Assessment: Risk Triage for Security
Vulnerability Announcements. Cisco Whitepaper, Accessed
September, 2009. http://www.cisco.com/web/about/security/
intelligence/vulnerability-risk%-triage.html.

[6] CVE Editorial Board. Common Vulnerabilities and
Exposures: The Standard for Information Security
Vulnerability Names. http://cve.mitre.org/.

[7] C. Dougherty. Vulnerability metric, Updated on July 24,
2008. https://www.securecoding.cert.org/confluence/display/
seccode/Vulnerabil%ity+Metric.

[8] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin. LIBLINEAR – A Library for Large Linear
Classification. http://www.csie.ntu.edu.tw/∼cjlin/liblinear/.

[9] Forum of Incident Response and Security Teams (FIRST).
Common Vulnerabilities Scoring System (CVSS).
http://www.first.org/cvss/.

[10] S. Frei, D. Schatzmann, B. Plattner, and B. Trammel.
Modeling the Security Ecosystem — The Dynamics of
(In)Security. In Proc. of the Workshop on the Economics of
Information Security (WEIS), June 2009.

[11] IBM. IBM Internet Security Systems X-Force 2008 Trend
and Risk Report. White paper, Jan. 2009.
http://www-935.ibm.com/services/us/iss/xforce/trendreports/
xforce-2008-%annual-report.pdf.

[12] D. Lewis. Naive (Bayes) at Forty: The Independence
Assumption in Information Retrieval. In Proceedings of
ECML-98, the 10th European Conference on Machine
Learning, pages 4–15, 1998.

[13] P. Mell, K. Scarfone, and S. Romanosky. A complete guide
to the common vulnerability scoring system version 2.0,
June, 2007. http://www.first.org/cvss/cvss-guide.html.

[14] Microsoft TechNet Security Team. Microsoft Security
Bulletin.
http://www.microsoft.com/technet/security/current.aspx.

[15] D. Moore, C. Shannon, and k. claffy. Code-red: a case study
on the spread and victims of an internet worm. In
Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurment, pages 273–284, 2002.

[16] D. Nizovtsev and M. Thursby. Economic analysis of
incentives to disclose software vulnerabilities. In Proc. of the
Workshop on the Economics of Information Security, 2005.

[17] OSVDB. The Open Source Vulnerability Database.
http://osvdb.org/.

[18] A. Ozment. The likelihood of vulnerability rediscovery and
the social utility of vulnerability hunting. In Proc. of the
Workshop on the Economics of Information Security, 2005.

[19] E. Rescorla. Security holes... who cares? In Proc. of the 12th
conference on USENIX Security Symposium, 2003.

[20] Secunia Corporation. Secunia Advisories.
http://secunia.com.

[21] Symantec Corporation. Security Focus.
http://www.securityfocus.com.

[22] V. Vapnik. Statistical Learning Theory. John Wiley & Sons,
New York, NY, 1998.

