
Scalable Thread Scheduling and Global Power
Management for Heterogeneous Many-Core Architectures

Jonathan A. Winter
Google Inc.

Mountain View, CA

jawinter@google.com

David H. Albonesi
Computer Systems Laboratory
Cornell University, Ithaca, NY

albonesi@csl.cornell.edu

Christine A. Shoemaker
CEE, Applied Math, & ORIE

Cornell University, Ithaca, NY

cas12@cornell.edu

ABSTRACT
Future many-core microprocessors are likely to be heterogeneous,
by design or due to variability and defects. The latter type of
heterogeneity is especially challenging due to its unpredictability.
To minimize the performance and power impact of these
hardware imperfections, the runtime thread scheduler and global
power manager must be nimble enough to handle such random
heterogeneity. With hundreds of cores expected on a single die in
the future, these algorithms must provide high power-performance
efficiency, yet remain scalable with low runtime overhead.

This paper presents a range of scheduling and power management
algorithms and performs a detailed evaluation of their
effectiveness and scalability on heterogeneous many-core
architectures with up to 256 cores. We also conduct a limit study
on the potential benefits of coordinating scheduling and power
management and demonstrate that coordination yields little
benefit. We highlight the scalability limitations of previously
proposed thread scheduling algorithms that were designed for
small-scale chip multiprocessors and propose a Hierarchical
Hungarian Scheduling Algorithm that dramatically reduces the
scheduling overhead without loss of accuracy. Finally, we show
that the high computational requirements of prior global power
management algorithms based on linear programming make them
infeasible for many-core chips, and that an algorithm that we call
Steepest Drop achieves orders of magnitude lower execution time
without sacrificing power-performance efficiency.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures; C.4
[Performance of Systems] – design studies, fault tolerance,
modeling techniques; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems
– sequencing and scheduling.

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability, Experimentation, Theory.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

Keywords
Many-Core Architectures, Heterogeneous Chip Multiprocessors,
Thread Scheduling, Global Power Management, Process
Variations, Hard Errors, Scalability, Computational Complexity.

1. INTRODUCTION
As the semiconductor industry continues to deliver exponentially
increasing transistor density over time, tens and eventually
hundreds of cores are expected on a single chip [14]. These
“many-core” processors will likely be heterogeneous, either by
design or due to variability and intrinsic and extrinsic defects [4].
The latter form of heterogeneity is particularly challenging, as it
means that chips with homogeneously designed cores may not
only differ in their core-to-core characteristics (frequency,
leakage, and hardware functionality) out of the manufacturing
line, but aging defects may cause them to further change over the
lifetime of the product. The ability to adjust per-core frequencies
to account for variability and to deconfigure portions of the core
pipeline in the face of defects [1,6,24,27,28,30] will allow these
chips to remain operational. However, the challenge lies in
keeping these randomly heterogeneous processors efficient in
terms of maintaining acceptable levels of performance in the eyes
of the user and staying within the power budget.

Figure 1 illustrates an example of an eight core processor where
different pipeline components have suffered from faults and have
been deconfigured (represented by ‘X’s). In addition, due to
variations, each core may have different frequency and leakage
characteristics. Runtime schedulers that ignore this heterogeneity
may incur large performance losses [34], and similarly oblivious
global power managers may yield unacceptably high power
dissipation [12]. Thus, while these chips may remain operational,
they may no longer function at a level that is acceptable to the
user.

Figure 1: An illustrative example of an eight-core randomly

heterogeneous microprocessor.

Recent work has begun to address the challenge of mitigating
power-performance efficiency losses in the face of hard errors and

variability in small-scale chip multiprocessors (CMPs). For
example, Bower et al. [5] and our previous work [34] motivate the
need for intelligent thread scheduling policies for randomly
heterogeneous processors. Both efforts demonstrate that
scheduling algorithms that are oblivious to heterogeneity may
yield unacceptably high performance losses. The latter effort also
proposes new scheduling algorithms that largely mitigate the
power-performance impact of hard errors and variability in small-
scale CMPs. Teodorescu and Torrellas [32] is the only work to
our knowledge to consider both scheduling and power
management in CMPs suffering from process variations. They
conduct a design exploration, propose a number of schedulers to
satisfy different objectives, and develop a linear programming
solution for power management. Herbert and Marculescu [12]
also study global power management (but not scheduling) for
variability-affected CMPs and develop dynamic voltage and
frequency scaling (DVFS) algorithms that are aware of both the
frequency and the leakage heterogeneity.

While prior research has developed scheduling and power
management algorithms that provide good power-performance
efficiency for small-scale multi-core processors, the proposed
techniques may not be effective for many-core processors with
tens to hundreds of cores. Furthermore, many previously proposed
runtime algorithms employ brute-force approaches [15], require
sampling numerous configurations [34], or execute
computationally intensive algorithms such as linear programming
[32]. For multi-core processors with only a few cores, the
sampling requirements and decision overhead for running these
scheduling and power management algorithms may be reasonable,
especially if they are only employed at a coarse interval
granularity. However, the move to many-core architectures brings
the scalability of these prior algorithms into question, and calls for
a detailed investigation of their sampling and computational
requirements.

This paper provides a detailed analysis of both thread scheduling
and global power management for future many-core architectures.
In particular, this paper makes the following key contributions:

• The performance, power, sampling requirements, and
runtime overhead of a wide range of scheduling and power
management algorithms are studied on heterogeneous many-
core architectures with up to 256 processing cores.

• The computational complexities of thread scheduling and
global power management techniques are formally analyzed.

• An experimental assessment is conducted to determine if
coordination is needed between many-core scheduling and
power management algorithms.

• Highly scalable scheduling and power management
algorithms that achieve close to optimal performance are
developed for future many-core processors.

The rest of this paper proceeds as follows. The next section
discusses the problem of runtime management for randomly
heterogeneous many-core architectures. Section 3 discusses a
range of scheduling and power management algorithms, and
proposes more scalable approaches suitable for many-core
systems. Section 4 describes the evaluation methodology and
Section 5 presents the experimental results. Finally, related work
is described in Section 6 and conclusions presented in Section 7.

2. RUNTIME MANAGEMENT OF
RANDOMLY HETEROGENEOUS
MANY-CORE ARCHITECTURES
As the number of cores grows to hundreds on a single die,
ensuring power-performance efficiency becomes a complex
optimization problem for the runtime manager. This challenge is
further exacerbated by the random heterogeneity created by
manufacturing faults, wear-out, and process variations. Two
runtime managers are chiefly responsible for controlling the
operation of the applications running on a many-core processor:
the thread scheduler and the global power manager (GPM). Both
the scheduler and power manager operate over a quantum of time
which consists of two phases, a short sampling period and a
longer steady-state period. During the sampling period, the
performance and power statistics of the applications and
heterogeneous cores are assessed by running different scheduling
assignments (for the scheduler) or power settings (for the power
manager) over smaller intervals of time. The manager then
employs an algorithm to use these interval statistics to make a
decision – a scheduling assignment or DVFS settings – at the end
of the sampling period. This decision is maintained for the steady-
state period until the next quantum. Figure 2 describes this
process, assuming a 100ms quantum for thread scheduling and a
10ms quantum for power management, in line with prior work
[12,15,32,34].

Figure 2: The operation of the thread scheduler and GPM.

2.1 Scalability Issues
For the application scheduler and GPM to operate effectively, the
performance and power statistics taken during the sampling period
must be reflective of the true application behavior on the
processor cores. This requires the manager to have sufficient time
to take enough samples, each of reasonable length, to prevent
thread migration effects, thermal time constants, and other effects
of moving applications and changing power settings from
dominating the statistics. Furthermore, the runtime of the
algorithm used to make the decision must be short relative to the
quantum. Otherwise, the steady-state period will be consumed by
the algorithm’s execution and little time will be left to run in the
selected scheduling assignment or designated power settings. This
paper investigates how these dual issues of sufficient sampling
time and algorithm runtime are impacted by scaling to hundreds
of cores on a chip.

Regarding algorithm execution time, a fundamental method for
assessing algorithm scalability is to derive its computational
complexity. We analyze the computational complexity of each
scheduling and power management algorithm and then provide
experimental results corroborating these findings. Traditionally,
polynomial time algorithms were considered sufficiently scalable.
However, when the runtime manager is tasked with making
decisions tens or hundreds of times per second for architectures
with hundreds of cores, we show that even O(n3) and O(n4)
algorithms scale poorly, where n is the number of cores.

In order to provide intuition for the importance of algorithm
complexity, Figure 3 shows a comparison of the growth in
runtime of algorithms of different complexity as the number of
cores on the chip is increased. In this abstraction, we assume that
the unit for measuring complexity is the number of processor
cycles required to compute the solution to the scheduling or power
management problem. It can be seen from this graph that
algorithms with factorial (O(n!)) or exponential (O(pn))
complexity rapidly become extremely time-consuming to run
even for a processor with sixteen cores, making them poor
candidates for future many-core architectures. Likewise, an O(n4)
algorithm takes over one billion cycles (250ms on a 4GHz
processor) at 256 cores, making it impossible to run at millisecond
granularities. Even an O(n3) algorithm requires tens of millions of
cycles to execute, bringing into question its feasibility.

Figure 3: The growth in the runtime of various algorithm

complexity classes.

2.2 Coordinating Thread Scheduling and
Global Power Management
Future randomly heterogeneous many-core processors will require
intelligent scheduling and power management algorithms that are
aware of hardware degradations in order to mitigate their
performance loss. A key question in terms of scalability is
whether a lack of coordination between the two algorithms
significantly degrades performance or whether they can produce
good results working independently. If no coordination is
necessary, then the overhead of runtime management is greatly
reduced because scheduling and power management can be
optimized separately, thereby avoiding the exploration of the
combined search space.

We hypothesize that scheduling and power management can in
fact be performed independently with little loss in efficiency and
validate this claim in Section 5.1. The key intuition regarding the
lack of interference comes from understanding how scheduling
and power management affect application performance. In
randomly heterogeneous many-core architectures, the runtime of
thread i on core j can be considered a function of four components
described in the following equation:

Runtime(i,j) = IPC(i,j) × Base_Freq ×
Variation_Freq_Scale_Fac(j) × DVFS_Freq_Scale_Fac(i,j)

The first component is instructions per cycle (IPC) which is a
function of the application’s instruction-level parallelism (ILP)
and its memory access patterns, as well as the degree to which
hard errors in the core affect the application’s performance on that

core. The base frequency of each core is the same since the
processor was designed as a homogeneous architecture. The third
component is a scaling factor that results from the impact of
process variations on the frequency due to reduced transistor
switching speeds. Together these three components dictate the
inherent performance capability of an application on a core. The
fourth component takes into account DVFS, which allows the core
to operate at a range of frequencies below the core’s maximum
inherent frequency established by the architecture and impacted
by variability. While changing frequency has some impact on IPC
due to off-chip memory access and other asynchronous activity,
for the most part, DVFS affects application runtime by altering
core frequency rather than influencing IPC.

If the DVFS levels for all the cores on the chip were held
constant, the application scheduler would optimize for the
inherent performance capability of the applications on the cores.
The resulting performance values would be modulated by the
global power manager seeking to meet a power target by adjusting
voltages and frequencies without impacting the benefit of the
scheduling assignment. Thus, scheduling and power management
tackle different elements of the application/core performance
equation. In order to fairly assess different scheduling options, our
application schedulers always sample applications at the same
voltage levels to make DVFS independent decisions. We set all
cores to the middle DVFS level to avoid exceeding the power
budget during the scheduler’s sampling period.

3. THREAD SCHEDULING AND GLOBAL
POWER MANAGEMENT ALGORITHMS
3.1 Overview
The tasks of determining the best assignment of applications to
cores and determining the optimal voltage/frequency settings in a
many-core processor are essentially large-scale optimization
problems. These optimization challenges can be approached from
a number of perspectives. In this paper, we make an effort to be
comprehensive and present a variety of algorithms for both
problems that cover the basic styles of optimization. First, we
discuss brute force approaches that find the optimal solution but
have major scalability limitations. Next, we examine greedy
approaches designed to be simple and fast to provide high levels
of scalability. We then develop heuristic techniques based on
well-known methods in combinatorial optimization. We also
study variants of linear programming, a classical and effective
approach for solving a wide range of optimization problems.
Finally, we consider hierarchical algorithms designed to cut down
the complexity of managing many-core processors, and hence
reduce the number of samples and the execution time. In addition
to evaluating the effectiveness of the solutions computed by the
algorithms, we also assess their sampling requirements and
computational complexity. Both of these components must scale
efficiently to ensure the algorithms’ feasibility in future many-
core architectures.

3.2 Thread Scheduling Algorithms
Heterogeneous many-core processors present a distinctly complex
scheduling problem. Asymmetry resulting from variations,
manufacturing defects, and wear-out is particularly challenging as
it cannot be anticipated at runtime, and it manifests itself in
myriad ways. The possible number of distinctly degraded cores

increases exponentially with the number of failure modes.
Consequently, scheduling algorithms must be robust and broadly
applicable. A further complication for scheduling is that there is
no simple effective a priori way to model the power-performance
tradeoffs of running a given application on a particular core.
Unlike power management where it can be assumed that
performance is linearly related to voltage and power is cubically
related (see Section 3.3), there is no clear-cut method for
estimating the interaction of core heterogeneity and application
behavior. Consequently, our approach is to conduct online
sampling of the applications on the degraded cores [32,34].

In the following paragraphs, we describe the scheduling
algorithms studied in this paper, including the rationale for each
approach, the nature of the sampling required, and an analysis of
their computational complexity. A summary of the thread
scheduling algorithms can be found in Table 1.

Table 1: A summary of the thread scheduling algorithms.

Scheduling Algorithm Computational
Complexity

of Sampling
Intervals

Brute Force O(n·n!) n

Greedy Algorithm
(VarF&AppIPC) O(n·logn) n

Local Search (n/2 swaps) O(n2) n

Hungarian Algorithm
(Linear Programming) O(n3) n

Sequential Hierarchical
Hungarian Algorithm O(n) 32

Parallel Hierarchical
Hungarian Algorithm O(1) 32

Brute Force: The simplest method for determining the best
assignment of threads to cores is to try every possibility and pick
the best one. However, this technique suffers from two critical
drawbacks when cores can differ due to random heterogeneity. On
a chip with n cores running n applications, there are n! ways of
assigning applications to cores. This necessitates taking an
infeasible number of samples as the number of cores increases
even beyond four cores. If the scheduler assumes that the
interactions between threads running on different cores are
minimal and ignores them, the algorithm can reduce the sampling
to trying every benchmark on every core once, for n2 samples.
Since all applications can be sampled on one of the cores during
each sampling interval, collecting these n2 samples requires n
sampling periods. This approach is analogous to the sample-one
dynamic scheduling heuristic from Kumar et al. [17], but for
random rather than designed heterogeneity. While this heuristic
greatly reduces the number of samples, the scheduler must still
compute the sum of performances of each application/core pair
(O(n) computation) for each of the n! assignments, leading to an
infeasible O(n·n!) runtime algorithm. Due to the impractical
runtime of this algorithm, it is not considered further.

Greedy Algorithm: On the other end of the spectrum from brute
force are greedy approaches. Greedy algorithms are popular due
to their simple implementation and low runtime complexity.
However, they are most effective when solving problems with
straightforward solution spaces, such as convex optimization,
since greedy solvers typically find local optima. For this study, we

adapt the VarF&AppIPC scheduling algorithm from Teodorescu
and Torrellas [32], which has been shown to be very effective
when combined with global power management on multi-core
processors that suffer from process variations (but without
manufacturing defects and wear-out faults). This algorithm ranks
the applications by average IPC and ranks the cores by inherent
frequency (before applying power management) and matches
applications and cores by rank in an effort to assign high ILP
threads to high frequency cores and memory-bound threads to low
frequency cores [32]. Since our cores are heterogeneous, we
developed a modified version of VarF&AppIPC. Our approach
samples the IPC of each thread on every core and averages the
results to obtain an IPC value that can be fairly compared between
benchmarks. This requires n2 samples as in the sample-one
technique. The complexity of the Greedy Algorithm is O(n·logn)
because the rate determining step sorts the applications by IPC to
determine their rank. (Sorting the cores by frequency can be done
offline, since the impact of process variations on frequency can be
determined at manufacturing time and the degradation due to
wear-out happens over months of use.) Consequently, the Greedy
Algorithm executes far faster than Brute Force.

Local Search: For our combinatorial optimization algorithm, we
implement the Local Search Algorithm from our previous work
[34]. However, in our present work, we optimize for maximum
overall throughput rather than energy-delay-squared (ED2). Local
Search is an archetype for iterative optimization approaches and
the basis for many more advanced approaches. The algorithm
starts with a random assignment of applications to cores and
proceeds by selecting another schedule in the neighborhood of the
current one and accepting this new solution if it is better than the
previous one. In this Local Search Algorithm, the neighborhood is
defined as a scheduling assignment that can be derived from the
current one by pair-wise swapping of the applications on the cores
[34]. In our implementation, we swap all threads such that for an n
core processor, there are n/2 pairs of threads. While Local Search
algorithms are greedy by nature, the improvement introduced by
[34] whereby a solution can be partially accepted offsets much of
this limitation. Partially accepting a solution involves retaining
any pair-wise swaps that locally improve the performance of the
two benchmarks involved and rejecting those swaps that do not,
rather than accepting a solution only in full. During each iteration
of the algorithm, Local Search selects an assignment among the
neighbors of the current best solution and then samples the
applications on their assigned cores to determine the performance
of this schedule. In our implementation, we run n iterations with n
cores, which means that O(n2) samples are again required.
Furthermore, each iteration does O(n) amount of computation,
leading to an overall complexity of O(n2) for the algorithm.

Hungarian Algorithm: Linear programming is a highly general
solution method for solving any kind of optimization problem.
The key requirement is finding a scheme for converting the
constraints and optimization objective of a problem into linear
equations or inequalities. While generalized linear programming
solvers can be the most effective approach for finding a good
solution, certain linear programming (LP) problems can be solved
more efficiently by exploiting the special structure of the given
problem.

By simplifying the scheduling problem and assuming that the
interactions between two sequential applications running on
different cores is negligible, thread scheduling can be modeled as

the classic Assignment Problem from operations research [34].
While general linear programming tools can be used to solve the
Assignment Problem, the special structure of this problem where
solutions are a one-to-one mapping of applications to cores,
allows for the application of the Hungarian Algorithm [8]. One
clear advantage of the Hungarian Algorithm over the Simplex
Method (the most widely used general LP method) is that the
Hungarian Algorithm has a bounded worst-case runtime of O(n3)
for a processor with n cores [8]. On the other hand, the Simplex
Method has an exponential runtime in the worst case and a
polynomial-time average case complexity that is highly dependent
on the nature of the objective function and constraints [11]. The
Hungarian Algorithm must sample each application on each core,
requiring n sampling intervals, to create a matrix of the benefit of
assigning each application to each core before running the actual
algorithm.

An advantage of the Hungarian Algorithm over the above
algorithms is that it finds the optimal solution to the simplified
scheduling problem. Thus, provided that the assumption of
negligible interference between applications holds and that the
execution samples accurately reflect the applications’ behaviors,
the Hungarian Algorithm can be the most effective thread
scheduler.

Hierarchical Hungarian Algorithm: The above four scheduling
algorithms suffer from two main drawbacks. First, each algorithm
requires n sampling intervals to provide the necessary
performance evaluation of the different thread-core matchings. In
future many-core processors, this will require hundreds of
sampling intervals. These sampling intervals must be of
reasonable length in order to ensure that they are reflective of the
actual application behavior. In our experimental work, we found
that sample lengths must be on the order of millions of cycles to
amortize the impact of context switching and cache and branch
predictor warm-up. However, running hundreds of million-cycle
samples is impractical because most of the time between
scheduling intervals would be consumed just with sampling. The
second drawback is the time complexity of most of the above
algorithms. Clearly brute force, with exponential runtime, is
infeasible. Nonetheless, as our experimental results will
demonstrate, even an O(n2) or O(n3) algorithm becomes too time
consuming to perform at a desirable scheduling interval
granularity. For these reasons, an alternative scheduling algorithm
is required for future many-core chips.

As we will show, the Hungarian Algorithm is the highest
performing of the above techniques (Section 5.2), and thus we
chose to develop a Hierarchical Hungarian Algorithm that
requires significantly fewer samples and a far shorter runtime than
the previously proposed methods. This algorithm divides the cores
of the CMP into groups of 32 cores (experimentally determined to
be the best group size) and obtains a locally effective scheduling
assignment within each group. Rather than sampling all threads on
all cores, applications are only sampled on those cores in their
group and thus only 32 samples are required for each application.
Likewise, since the size of the groups is fixed, the Hungarian
Algorithm needs to solve constant-sized problems regardless of
core scaling. With n cores, the Hungarian Algorithm must be run
separately on n/32 groups, meaning that the computational
problem grows linearly (O(n)). A further improvement can be
made by noting that the sampling and computation for each group
is completely independent and thus can be conducted in parallel

by employing one core in each group to execute the Hungarian
Algorithm. This parallelized version runs in constant time, since it
is only a function of the group size, making it extremely scalable.

3.3 Global Power Management Algorithms
In addition to developing scalable thread scheduling algorithms,
we investigate global power management (GPM) for many-core
architectures suffering from manufacturing defects, lifetime wear-
out, and process variations. As per prior work [12,15,19,25,32],
the objective is to maximize throughput under a chip-wide power
budget. In this study, we focus on dynamic voltage and frequency
scaling (DVFS), the most widely implemented GPM approach.
Like [12,15,19,25,32], we assume that each core has independent
frequency and voltage control. Future architectures may employ
DVFS at coarser granularities, grouping multiple cores into single
voltage domains. With coarser-grain domains, the scheduler, in
addition to matching threads to cores, might also consider the
affinity of threads for domains for which voltage would be
similarly scaled. Likewise, the global power manager would need
to consider balancing the needs of one thread versus another while
scaling voltage and frequency domains. To allow a more direct
comparison between our study and prior work, we focus on per-
core DVFS and leave a study of the voltage scaling granularity to
future work.

We consider a DVFS mechanism that scales frequency linearly
with voltage (as per prior work) and has seven discrete voltage
levels spaced out evenly between 0.7V and 1.0V (the nominal
voltage). The corresponding frequency range is dependent on the
impact of process variations on a given core (as described below)
but would vary from 2.8 GHz to 4.0 GHz (the nominal frequency)
on a core unaffected by variations.

power ∝ frequency × voltage2 (1)
frequency ∝ voltage (2)
(1) & (2) → power ∝ voltage3 (3)
throughput ∝ frequency (4)
(2) & (4) → throughput ∝ voltage (5)

Figure 4: GPM power-performance modeling assumptions.

One distinct difference between GPM and scheduling is that the
impact of changing the voltage and frequency of a core on
application performance and power dissipation can be estimated
effectively by knowing the power-performance characteristics of
the application on the core at the current DVFS level. We employ
the model of Isci et al. [15] described in Figure 4, and assume that
within the narrow range of DVFS levels, performance is linearly
proportional to voltage and power is a cubic function of voltage.
Consequently, GPM algorithms using this model need only one
sample per application/core pair.

As with the scheduling algorithms, we examine five approaches to
power management: a brute force method, a greedy algorithm, a
heuristic combinatorial optimization scheme, linear programming,
and a hierarchical approach. In the following paragraphs, we
discuss these algorithms, their sampling requirements, and their
computational complexity. A summary of the algorithms is given
in Table 2.

Brute Force: Isci et al. propose the MaxBIPS algorithm [15],
which uses the model discussed above to calculate the

performance and power dissipation achieved for each combination
of power settings available on the chip. Assuming that DVFS can
be set to p discrete levels (for Isci et al., p = 3 and for our work p
= 7), there are pn possible power settings for a CMP with n cores.
For each power setting option, the calculated performance and
power of each core must be summed to determine the chip
throughput and power, requiring O(n) time. While MaxBIPS is
very effective at calculating a good DVFS assignment with a
single sample per application/core pair taken at the middle voltage
level, clearly even for p = 3, the O(n·pn) computation cost is
prohibitive for many-core processors. Consequently, we do not
consider MaxBIPS further in this paper.

Table 2: A summary of the GPM algorithms.
Global Power

Management Algorithm
Computational

Complexity
of Sampling

Intervals
Brute Force (MaxBIPS) O(n·pn) 1

Greedy Algorithm O(n·logn) 1
Steepest Drop O(p·n·logn) 1

LinOpt
(Linear Programming)

O(n4)
(average case) 3

Greedy Algorithm: We develop a simple greedy approach to
power management which leverages a key intuition about global
power management for maximum throughput. Essentially,
performance is maximized by shifting power to applications that
can individually generate the highest throughput. To achieve this,
the Greedy Algorithm gives as much power as possible to
application/core combinations with the greatest inherent
performance capability. As with MaxBIPS, a single sample is
taken for each scheduler-assigned application/core pair at the
same voltage setting (the middle level) and the throughput is
calculated. The throughput is a function of both the application
IPC on the assigned degraded core and the core’s operating
frequency due to variations.

Using the samples and the voltage/performance/power model, the
Greedy Algorithm estimates the power consumed by each core
while running at the lowest DVFS setting. By subtracting the
minimum power consumed by each core from the total power
budget, the algorithm then determines how much extra power is
available to assign to high throughput application/core
combinations. The pairs are then ranked by throughput, and
starting with the highest ranked pair, cores are greedily set to the
highest voltage/frequency setting proceeding down the ranking
until, according to the voltage/performance/power model, the
power budget is reached. If there is some leftover power that was
insufficient to allow the final core to be set to the highest setting,
that core is set to the highest setting that still meets the budget.
The rest of the lower ranked cores are then left at the lowest
DVFS setting. Since the most complex step of the Greedy
Algorithm is ranking the application/core pairs by throughput, the
algorithm’s complexity is O(n·logn).

Steepest Drop: We call our heuristic optimization algorithm
Steepest Drop, which is a directed Local Search method. Rather
than randomly select a configuration in the neighborhood of the
current best known configuration as in Local Search scheduling,
Steepest Drop exploits the known correlation between voltage,
performance, and power to direct the search. We modify the
algorithm from Meng et al. [19] that was designed to address the
large search space resulting from applying multiple power
optimizations simultaneously. In our work, we only use DVFS,

but because of the large scale of our many-core architecture, the
optimization problem is sufficiently challenging with DVFS
alone. Again, only one sample at the middle DVFS level is needed
to calibrate the voltage/performance/power model.

The algorithm starts by assuming each core is set to the highest
power setting. Then using the analytical model, if the power is
estimated to be over the chip-wide budget, the algorithm selects
the application/core pair that would provide the biggest ratio of
power reduction to performance loss if the voltage was dropped
one step. This new configuration’s power dissipation is estimated
and, if the power is still over budget, the steepest drop is again
calculated from the new configuration. This process is repeated
until the power budget is met. To optimize the runtime of Steepest
Drop, our version uses a max-heap data structure for storing the
ranking of the power reduction to performance loss ratio for each
application/core pair. In the worst case, the Steepest Drop
algorithm would have dropped the voltage/frequency settings
from the highest values all the way to the lowest for each core.
This would involve n x p iterations for n cores and p power levels.
By using the efficient heap data structure, our approach only takes
O(logn) time to access the steepest drop and update the data
structure during each iteration, for a total complexity of
O(p·n·logn).

LinOpt: Teodorescu and Torrellas [32] propose using linear
optimization to solve the global power management problem in a
multi-core chip afflicted with process variations. Their algorithm,
LinOpt, involves three steps. First, the power management task is
formulated as a linear programming problem. Then, the
formulation is run through a linear programming solver that
implements the Simplex Method. Linear programming requires
continuous-valued variables, and thus the linear solver can return
voltage settings that lie between the discrete DVFS levels. Thus,
the third step conservatively drops any voltage values to the next
lowest DVFS setting. As in all the other algorithms, performance
is modeled as linearly dependent on voltage. However, the cubic
relationship between voltage and power cannot be captured in a
linear program. Instead, a linear approximation is found that
minimizes the error with the true relationship as determined by
three samples taken at the lowest, middle, and highest DVFS
setting [32]. We implement this linear approximation using linear
least squares fitting (LLSF), which can be computed in O(1) time.
Since this must be done for each application/core combination, the
total time is O(n).

As mentioned above, the Simplex Method has exponential worst
case complexity and polynomial time average case complexity
and thus dominates LinOpt’s runtime. Experimental and
stochastic analysis [11] have concluded that average case runtime
estimates for linear programming are O(n4) when considering
problems where the number of constraints is of the same order as
the number of variables, such as in our case. In our results, we
evaluate whether this high-order polynomial runtime becomes a
problem for many-core processors.

Hierarchical GPM Algorithms: A logical direction to pursue
would be to design hierarchical algorithms for global power
management to increase scalability in an analogous manner to the
Hierarchical Hungarian Algorithm. For instance, a Hierarchical
LinOpt Algorithm would divide the chip into groups that are
given a fraction of the chip-wide power budget and then solve
each resulting sub-problem by applying linear programming.

However, our results in Section 5.3 show that Steepest Drop is
very effective at finding a power-performance efficient DVFS
setting and is also highly scalable from a computational
complexity perspective, obviating the need for pursuing a
hierarchical approach.

4. EVALUATION METHODOLOGY
4.1 Simulation Infrastructure
To model many-core multiprocessors, we take an approach
similar to [9,20] of building a hierarchical framework where
cycle-accurate simulations of individual cores are combined by a
top-level chip-wide simulator to model an entire many-core
processor. Our framework is illustrated in Figure 5.

Figure 5: Hierarchical and parallel many-core simulation

framework.

The lower level of the hierarchy consists of microarchitectural
simulations of each core using an improved version of the SESC
simulator [22]. We augmented SESC’s power and thermal
modeling with Cacti 4.0 [31], an improved version of Wattch [7],
the block model of Hotspot 3.0 [29], and an improved version of
HotLeakage [35]. Our baseline core, unaffected by process
variations and defects, is a single-threaded, four-way superscalar,
out-of-order processor. Table 3 lists the main architectural
parameters.

The top-level chip-wide simulator performs two roles. First, it
serves as a tool for managing the many-core simulations and is
responsible for combining the performance, power, and thermal
statistics from the SESC simulations of each core into the
complete statistics for the whole processor. Second, the chip-wide
simulator implements the application scheduler and global power
manager. In this role, it directs the sampling and steady phases of
the runtime managers, it executes the actual algorithms, and it
manages the execution of the single-core simulations by migrating
threads among the cores and changing DVFS settings as specified
by the algorithms.

4.2 Simulating Heterogeneous Many-Core
Processors
We evaluate many-core architectures with 4-256 cores, for which
we consider three types of degradation that cause core-to-core
heterogeneity. We model the disabling of all or part of a processor
component such as an ALU or a set of queue entries as a
consequence of a manufacturing defect or wear-out. We assume a
processor core can have at most two faults of this type. Cores also
have variable frequencies that are randomly assigned to be in the

range of 60% to 110% of the nominal frequency of 4GHz, similar
to prior work [13,32,34]. Finally, sections of the core can suffer
from increased leakage causing higher than normal static power.
Table 4 presents a list of the core degradations possible for each
type of degradation. A heterogeneous n-core processor is
generated by randomly picking n cores each affected by some or
all of these three types of degradations.

Table 3: Core microarchitectural parameters.
Front-End Parameters

Branch Predictor hybrid of gshare and bimodal
 with 4K entries in each

Branch Target Buffer 512 entries, 4-way associative.
Return Address Stack 64 entries, fully associative.
Front-End Width 4-way
Fetch Queue Size 32 entries
Re-Order Buffer 128 entries
Retire Width 4-way

Back-End Parameters
Integer Issue Queue 48 entries, 4-way issue
Integer Register File 80 registers
Integer Execution
Units

4 ALUs/address calculation
 units and 1 mult/div unit

FP Issue Queue 24 entries, 1-way issue
FP Register File 80 registers
FP Execution Units 1 adder and 1 mult/div unit

Memory Hierarchy

L1 Instruction Cache 8KB, 2-way associative,
1 port, 1 cycle latency

Instruction TLB 32 entry, fully associative., 1 port
Load Queue 48 entries, 4 ports
Store Queue 24 entries, 4 ports

L1 Data Cache 8KB, 2-way associative,
2 ports, 1 cycle latency

Data TLB 32 entry, fully associative., 2 ports

L2 Cache 1MB, 8-way associative,
1 port, 10 cycle latency

Main Memory 1 port, 200 cycle latency

4.3 Workloads
We randomly generate workloads from among the 17 SPEC CPU
2000 benchmarks for each many-core processor configuration.
We use three fast-forward points (one, two, and three billion
instructions) for each benchmark to add further diversity to the
workloads. In the main scalability study of Sections 5.2 and 5.3,
each algorithm is run on four different randomly generated
workloads and four different randomly degraded many-core
configurations, resulting in 16 different test cases for each size
many-core processor.

4.4 Assessing Algorithm Runtimes
In addition to the computational complexity results presented in
Sections 3.2 and 3.3, we empirically assess the execution
requirements of our algorithms. Each of the algorithms is
implemented in C and compiled with full optimizations into a
special MIPS binary that can be executed with the SESC
simulator. These binaries are then run on SESC while modeling
the microarchitecture of the cores in our many-core processor in
order to accurately characterize the runtime of the algorithms.

Table 4: Possible forms of core degradation due to hard faults
and variations.

Type of
Degradation List of Options

none
memory latency is doubled

half the L2 cache
half the L1 instruction cache
a way of the L1 instruction

cache is broken
front-end bandwidth is reduced from
4-way to 3-way fetch/decode/rename

half the integer issue queue
integer issue bandwidth

is reduced by one
one or more integer ALUs are disabled

half the rename registers are broken
half the load queue
half the store queue

half the L1 data cache
a way of the L1 data cache is broken

Degraded
Component

half the re-order buffer
Frequency

Degradation
60 – 110 % of the nominal,

set at intervals of 2.5%
none

2X nominal in L1 caches and TLBs
2X nominal in front-end and ROB

2X nominal in integer back-end
2X nominal in floating point back-end
2X nominal in load and store queues

Increased
Leakage

2X nominal across core (excluding L2)

5. RESULTS AND DISCUSSION
5.1 Coordinating Thread Scheduling and
Global Power Management
Section 2.2 provides an analytical argument as to why scheduling
and power management affect different components of the
performance equation. In this section, we investigate the
importance of coordinating thread scheduling and power
management in future many-core architectures. We compare the
performance and power dissipation of running independent
schedulers and power managers against an oracle combined
policy, which can compute the optimal scheduling assignment and
power management settings without accounting for sampling or
computational overheads. In every quantum, the oracle algorithm
employs a brute force examination of all possible scheduling and
power management combinations and then selects the application-
to-core assignment and DVFS settings that provide the maximum
possible performance while staying within the chip-wide power
budget. For the uncoordinated algorithms, we run the Hungarian
Scheduling Algorithm together with MaxBIPS, LinOpt, and
Steepest Drop. If these independent approaches can achieve
performance results very close to that of the oracle scheduler and
power manager, then there is no point implementing a coordinated
technique.

For our three uncoordinated algorithms, we always run the
scheduler first and then the power manager in order to ensure that
the chosen schedule does not lead to power overshoots. We
verified experimentally that running power management first and
then scheduling leads to less optimal power-performance
efficiency and does indeed create over-budget scenarios. During
the scheduler sampling period, the runtime manager sets the
DVFS level of each core to the middle level, calculates the best
schedule, and then employs the GPM during the scheduler’s
steady phase to find the best DVFS assignment.

The performance losses for the three combinations in comparison
to the oracle are shown in Figure 6 for an eight core system with
four different degraded configurations and four different
workloads. The largest losses – at most 3% – occur when the
uncoordinated algorithms slightly undershoot the power budget.
These results validate our assertion that the algorithms can operate
independently with near-optimal performance.

Figure 6: A comparison of uncoordinated scheduling and

GPM algorithms relative to the oracle manager.

5.2 Thread Scheduling Algorithms
We now evaluate the scheduling algorithms described in Section
3.2 in terms of their performance relative to the Hungarian
Scheduling Algorithm and their runtime overhead. Figure 7 shows
the runtime overhead of each algorithm over a range of four to
256 core organizations expressed as a percentage of the
scheduling quantum. We implement both a sequential (SQ)
version of the Hierarchical Hungarian Algorithm, where a
centralized scheduler makes the assignments for all the groups,
and a parallel (PA) version where the scheduling task is
partitioned among the groups of cores, leaving each group
responsible for its own local schedule. For both hierarchical
algorithms, we experimented with groups of size 8, 16, and 32 and
found that groups of 32 provided the best balance of algorithm
runtime and performance. For a small number of cores, the
overhead for all scheduling algorithms is minor, but grows rapidly
for the less-scalable Hungarian and Local Search algorithms,
which have O(n3) and O(n2) complexity to over 16% and 9% of
the scheduling quanta. On the other hand, the Greedy Algorithm
and Sequential Hierarchical Hungarian Algorithm have low
overheads even for 256 cores, but only the Parallel Hierarchical
Hungarian Algorithm remains scalable beyond 256 cores.

Figure 7: Scheduling algorithm runtimes as a percentage of

the scheduling quantum.

While both the Sequential and Parallel Hierarchical Hungarian
Algorithms are identically partitioned, the Sequential Algorithm is
slowed down by the need to process sample results for the whole
processor, the sequential computation of the Hungarian Algorithm
for each group, and the time to construct the chip-wide scheduling
assignment. Together, the factors slow down the sequential
approach on a 256 core machine by an order of magnitude relative
to the parallelized version. Furthermore, the Parallel Hierarchical
Hungarian Algorithm runs 150X faster than the standard
Hungarian Scheduler.

Figure 8: Scheduling algorithm performance percentage loss

relative to the Hungarian Algorithm.

Figure 8 shows the performance loss of the different algorithms
relative to the performance of the Hungarian Algorithm. The
Greedy Algorithm experiences the largest loss by far, 8-10% for
the larger organizations. This is not surprising considering that
VarF&AppIPC’s method of ranking applications purely by IPC
does not fully address the complexity of scheduling for randomly
heterogeneous many-core architectures. A given application may
suffer significantly due to the particular degradations on one core
and have very high IPC on another. The average of this thread’s
IPC across these cores can be misleading when trying to rank the
thread as compute or memory bound. The performance of the
Local Search Algorithm is quite good as the number of cores
increases but it is more than offset by the higher runtime overhead
associated with the extra search intervals. The Parallel
Hierarchical Hungarian Algorithms offers the best combination of
runtime overhead and performance of the scheduling assignment.

Figure 9: GPM algorithm runtimes as a percentage of the

power management quantum.

Figure 10: GPM algorithm performance percentage loss

relative to the LinOpt algorithm.

5.3 Global Power Management Algorithms
The runtime overhead and performance relative to LinOpt for the
power management algorithms (from Section 3.3) are shown in
Figures 9 and 10, respectively. Due to its high-order polynomial
average runtime, the overhead of LinOpt grows rapidly with the
problem size (number of cores), and even exceeds the length of
the power management quantum (10ms) for 256 cores. Due to the
fact that they have almost identical complexity (O(n·logn) versus
O(p·n·logn)), the Greedy Algorithm and Steepest Drop have about
the same overheads, less than 2% for 256 cores, and run 75X and
62X faster (respectively) than LinOpt. Looking at the
performance results shown in Figure 10, Steepest Drop
outperforms the Greedy Algorithm and even slightly outperforms
LinOpt in all cases. Overall, Steepest Drop has much more
scalable runtime behavior than LinOpt and superior performance
to the Greedy Power Manager. Given that LinOpt does not
provide a performance benefit over Steepest Drop and linear
programming is much more complex to implement in hardware or
in the operating system, we see no reason to explore a hierarchical
implementation of LinOpt.

In summary, our results demonstrate that thread scheduling based
on a Hierarchical Hungarian Algorithm coupled in an
uncoordinated fashion with a Steepest Drop global power
manager provides the most scalable and effective solution to the
challenge of maintaining high performance and power efficiency
for future many-core processors that suffer from process
variations and intrinsic and extrinsic defects.

6. RELATED WORK
In the introduction, we discussed prior work addressing power
management and scheduling for randomly heterogeneous small-
scale CMPs. In this section, we discuss remaining related research
involving global power management in homogeneous multi-core
processors as well as scheduling and power management in
designed-heterogeneous CMPs.
Juang et al. [16] argue for coordinated formal control-theoretic
methods to manage energy efficiency in multi-core systems. Isci
et al. [15] introduce the problem of trying to maximize total
throughput under a chip-wide power constraint by dynamically
tuning DVFS to workload characteristics and develop the
effective (but limited in scalability) brute force MaxBIPS
algorithm. Sharkey et al. [25] extend this work by exploring
algorithms based on both DVFS and fetch toggling, and by
studying design tradeoffs including the granularity at which the
GPM is called and local versus global management.
Sartori and Kumar [23] propose decentralized power management
algorithms for homogeneous many-core architectures. They
propose alternative approaches to DVFS such as setting cores to
high and low power states at a coarse granularity and migrating
benchmarks at a finer granularity to meet the power budget. In a
similar vein, Rangan et al. [21] explore the use of scheduling on
cores statically set to different voltage and frequency levels as an
alternative power management approach to fine-grained DVFS.
Wang et al. [33] propose a coordinated approach to global power
and temperature management based on optimal control theory.
They use multi-input-multi-output control strategies and model
predictive control, which require matrix-matrix multiplication and
either matrix inversion or factorization. Since these high-order
polynomial-time matrix algorithms scale poorly, we do not
consider them in our work.
Some prior work addresses designed-heterogeneous CMPs with
different issue widths and pipeline complexities. Kumar et al. [17]
focus on multiprogrammed performance and develop algorithms
to schedule applications on cores that best match their execution
requirements. However, since only two types of cores are used,
the solution space is small and thus a simple sampling scheme
achieves good assignments. Becchi and Crowley [3] extend that
work to use performance driven heuristics for scheduling. A
number of research papers look at a restricted form of
heterogeneity, where cores run at different frequencies, allowing
their experimental evaluation to be conducted using real
hardware. Balakrishnan et al. [2] study the impact of frequency
asymmetry on multi-threaded commercial workloads. Others
[10,18,26] develop scheduling algorithms for chip multiprocessors
with this kind of restricted heterogeneity. In comparison to these
earlier research efforts, we develop methods for many-core
processors with significantly more forms of heterogeneity and
scaling to far more cores.

7. CONCLUSIONS
In the future, microprocessors containing hundreds of cores will
need to tolerate manufacturing defects, wear-out failures, and
extreme process variations. The resulting heterogeneity of these
systems requires intelligent, yet highly scalable, runtime
scheduling and power management algorithms. In this paper, we
perform a detailed analysis of the effectiveness and scalability of a
range of algorithms for many-core systems of up to 256 cores.

First, we show that there is no need to coordinate scheduling and
global power management, which greatly reduces the search space
for runtime power-performance optimization. We develop the
Parallel Hierarchical Hungarian Algorithm for thread scheduling
and demonstrate that it is up to 150X faster than the Hungarian
Algorithm while providing only 1% less throughput. We also
demonstrate that the Steepest Drop global power management
algorithm has 75X less runtime overhead (for 256 cores) than the
LinOpt algorithm and similar performance. Our results show that
it is essential to consider runtime overhead and scalability when
designing scheduling and power management algorithms for
future many-core processors.

ACKNOWLEDGMENTS
This research was supported by NSF grants CCF-0811729
and CNS-0708788 and equipment grants from Intel.

REFERENCES
[1] N. Aggarwal, P. Ranganathan, N.P. Jouppi, and J. E. Smith.

Configurable Isolation: Building High Availability Systems
with Commodity Multi-Core Processors. In Proceedings of
the 34th International Symposium on Computer Architecture
(ISCA), June 2007, pp. 470-481.

[2] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The
Impact of Performance Asymmetry in Emerging Multicore
Architectures. In Proceedings of the 32nd International
Symposium on Computer Architecture (ISCA), June 2005, pp.
506-517.

[3] M. Becchi and P. Crowley. Dynamic Thread Assignment on
Heterogeneous Multiprocessor Architectures. In Proceedings
the of ACM International Conference on Computing
Frontiers (CF), 2006, pp. 29-39.

[4] S. Borkar. Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and
Degradation. In IEEE Micro, Nov./Dec. 2005, 25(6):10-16.

[5] F.A. Bower, D. J. Sorin, and L.P. Cox. The Impact of
Dynamically Heterogeneous Multicore Processors on Thread
Scheduling. In IEEE Micro, May/June 2008, 28(3):17-25.

[6] F.A. Bower, P.G. Shealy, S. Orev, and D.J. Sorin. Tolerating
Hard Faults in Microprocessor Array Structures. In
Proceedings of the 34th International Conference on
Dependable Systems and Networks (DSN), June 2004, pp.
51-60.

[7] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations. In Proceedings of the 27th International
Symposium on Computer Architecture (ISCA), June 2000, pp.
83-94.

[8] R. Burkard, M. Dell’Amico, and S. Martello. Assignment
Problems. Published by the Society of Industrial and Applied
Mathematics, Philadelphia, PA, 2009, pp. 73-87.

[9] J. Chen, M. Annavaram, and M. Dubois. SlackSim: A
Platform for Parallel Simulations of CMPs on CMPs. In the
Workshop on Design, Analysis, and Simulation of Chip
Multiprocessors (dasCMP), Nov. 2008.

[10] S. Ghiasi, T. Keller, and F. Rawson. Scheduling for
Heterogeneous Processors in Server Systems. In Proceedings

of the ACM International Conference on Computing
Frontiers (CF), May 2005, pp. 199-210.

[11] I. Griva, S.G. Nash, and A. Sofer. Linear and Nonlinear
Optimization. Published by the Society of Industrial and
Applied Mathematics, Philadelphia, PA, 2009, pp. 301-317.

[12] S. Herbert and D. Marculescu. Variation-Aware Dynamic
Voltage/Frequency Scaling. In Proceedings of the 15th
International Symposium on High-Performance Computer
Architecture (HPCA), Feb. 2009, pp. 301-312.

[13] E. Humenay, D. Tarjan, and K. Skadron. Impact of Process
Variations on Multi-Core Performance Symmetry. In
Proceedings of Design, Automation and Test in Europe
(DATE), April 2007, pp. 1653-1658.

[14] Intel Corporation. From a Few Cores to Many: A Tera-scale
Computing Research Overview, Whitepaper, 2006.

[15] C. Isci, A. Buyuktosunoglu, C-Y. Cher, P. Bose, and M.
Martonosi. An Analysis of Efficient Multi-Core Global
Power Management Policies: Maximizing Performance for a
Given Power Budget. In Proceedings of the 39th
International Symposium on Microarchitecture (MICRO),
Dec. 2006, pp. 347-358.

[16] P. Juang, Q. Wu, L-S. Peh, M. Martonosi, and D. W. Clark.
Coordinated, Distributed, Formal Energy Management of
CMP Multiprocessors. In Proceedings of the International
Symposium on Low Power Electronics and Design
(ISLPED), Aug. 2005, pp. 127-130.

[17] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, and
K. I. Farkas. Single-ISA Heterogeneous Multi-Core
Architectures for Multithreaded Workload Performance. In
Proceedings of the 31st International Symposium on
Computer Architecture (ISCA), June 2004, pp. 64-75.

[18] T. Li, D. Baumberger, D.A. Koufaty, and S. Hahn. Efficient
Operating System Scheduling for Performance-Asymmetric
Multi-Core Architectures. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC07), Nov 2007.

[19] K. Meng, R. Joseph, R.P. Dick, and L. Shang. Multi-
Optimization Power Management for Chip Multiprocessors.
In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (PACT),
Oct 2008, pp. 177-186.

[20] M. Monchiero, J.-H. Ahn, A. Falcón, D. Ortega, and P.
Faraboschi. How to Simulate 1000 Cores. In the Workshop
on Design, Analysis, and Simulation of Chip Multiprocessors
(dasCMP), Nov. 2008.

[21] K.K. Rangan, G.-Y. Wei, and D. Brooks. Thread Motion:
Fine-Grained Power Management for Multi-Core Systems.
In Proceedings of the 36th International Symposium on
Computer Architecture (ISCA), June 2009, pp. 302-313.

[22] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L.
Ceze, S. Sarangi, P. Sack, K. Strauss, and P. Montesinos.
SESC: Cycle Accurate Architectural Simulator.
http://sesc.sourceforge.net, 2005.

[23] J. Sartori and R. Kumar. Distributed Peak Power
Management for Many-core Architectures. In Proceedings of
Design, Automation, and Test in Europe (DATE), April 2009.

[24] E. Schuchman and T.N. Vijaykumar. Rescue: A
Microarchitecture for Testability and Defect Tolerance. In
Proceedings of the 32nd International Symposium on
Computer Architecture (ISCA), June 2005, pp. 160-171.

[25] J. Sharkey, A. Buyuktosunoglu, and P. Bose. Evaluating
Design Tradeoffs in On-Chip Power Management for CMPs.
In Proceedings of the International Symposium on Low
Power Electronics and Design (ISLPED), Aug. 2007, pp. 44-
49.

[26] D. Shelepov, J.C.S. Alcaide, S. Jeffery, A. Fedorova, N.
Perez, Z.F. Huang, S. Blagodurov, and V. Kumar. HASS: A
Scheduler for Heterogeneous Multicore Systems. In the ACM
SIGOPS Operating Systems Review, April 2009, pp. 66-75.

[27] P. Shivakumar, S.W. Keckler, CR. Moore, and D. Burger.
Exploiting Microarchitectural Redundancy for Defect
Tolerance. In the Proceedings of the International
Conference on Computer Design (ICCD), Oct. 2003, pp.
481-488.

[28] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and T.
Austin. Ultra Low-Cost Defect Protection for
Microprocessor Pipelines. In Proceedings of the 12th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
Oct. 2006, pp. 73-82.

[29] K. Skadron, M.R. Stan, W. Huang, S. Velusamy, K.
Sankaranarayanan, and D. Tarjan. Temperature-Aware
Microarchitecture. In Proceedings of the 30th International
Symposium on Computer Architecture (ISCA), June. 2003,
pp. 2-13.

[30] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers.
Exploiting Structural Duplication for Lifetime Reliability
Enhancement. In Proceedings of the 32nd International
Symposium on Computer Architecture (ISCA), June 2005, pp.
520-531.

[31] D. Tarjan, S. Thoziyoor, and N.P. Jouppi. CACTI 4.0. HP
Laboratories Palo Alto Technical Report HPL-2006-86,
2006.

[32] R. Teodorescu and J. Torrellas. Variation-Aware Application
Scheduling and Power Management for Chip
Multiprocessors. In Proceedings of the 35th International
Symposium on Computer Architecture (ISCA), June 2008, pp.
363-374.

[33] Y. Wang, K. Ma, and X. Wang. Temperature-Constrained
Power Control for Chip Multiprocessors with Online Model
Estimation. In Proceedings of the 36th International
Symposium on Computer Architecture (ISCA), June 2009, pp.
314-324.

[34] J.A. Winter and D.H. Albonesi. Scheduling Algorithms for
Unpredictably Heterogeneous CMP Architectures. In
Proceedings of the 38th International Conference on
Dependable Systems and Networks, June 2008, pp. 42-51.

[35] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and
M. Stan. HotLeakage: A Temperature-Aware Model of
Subthreshold and Gate Leakage for Architects. University of
Virginia, Department of Computer Science, Technical Report
CS-2003-05, March 2003.

