
Large-Scale Training of SVMs with Automata Kernels

Cyril Allauzen1, Corinna Cortes1, and Mehryar Mohri2,1

1 Google Research, 76 Ninth Avenue, New York, NY 10011
2 Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012

Abstract. This paper presents a novel application of automata algorithms to ma-
chine learning. It introduces the first optimization solution for support vector ma-
chines used with sequence kernels that is purely based on weighted automata
and transducer algorithms, without requiring any specific solver. The algorithms
presented apply to a family of kernels covering all those commonly used in text
and speech processing or computational biology. We show that these algorithms
have significantly better computational complexity than previous ones and report
the results of large-scale experiments demonstrating a dramatic reduction of the
training time, typically by several orders of magnitude.

1 Introduction

Weighted automata and transducer algorithms have been usedsuccessfully in a variety
of natural language processing applications, including speech recognition, speech syn-
thesis, and machine translation [17]. More recently, they have found other important
applications in machine learning [5, 1]: they can be used to define a family of sequence
kernels,rational kernels[5], which covers all sequence kernels commonly used in ma-
chine learning applications in bioinformatics or text and speech processing.

Sequences kernels are similarity measures between sequences that are positive def-
inite symmetric, which implies that their value coincides with an inner product in some
Hilbert space. Kernels are combined with effective learning algorithms such as support
vector machines (SVMs) [6] to create powerful classification techniques, or with other
learning algorithms to design regression, ranking, clustering, or dimensionality reduc-
tion solutions [19]. These kernel methods are among the mostwidely used techniques
in machine learning.

Scaling these algorithms to large-scale problems remains computationally challeng-
ing however, both in time and space. One solution consists ofusing approximation tech-
niques for the kernel matrix, e.g., [9, 2, 21, 13] or to use early stopping for optimization
algorithms [20]. However, these approximations can of course result in some loss in ac-
curacy, which, depending on the size of the training data andthe difficulty of the task,
can be significant.

This paper presents general techniques for speeding up large-scale SVM training
when used with an arbitrary rational kernel, without resorting to such approximations.
We show that coordinate descent approaches similar to thoseused by [10] for linear
kernels can be extended to SVMs combined with rational kernels to design faster al-
gorithms with significantly better computational complexity. Remarkably, our solution

techniques are purely based on weighted automata and transducer algorithms and re-
quire no specific optimization solver. To the best of our knowledge, they form the first
automata-based optimization algorithm of SVMs, probably the most widely used al-
gorithm in machine learning. Furthermore, we show experimentally that our techniques
lead to a dramatic speed-up of training with sequence kernels. In most cases, we observe
an improvement by several orders of magnitude.

The remainder of the paper is structured as follows. We startwith a brief introduc-
tion to weighted transducers and rational kernels (Section2), including definitions and
properties relevant to the following sections. Section 3 provides a short introduction to
kernel methods such as SVMs and presents an overview of the coordinate descent solu-
tion by [10] for linear SVMs. Section 4 shows how a similar solution can be derived in
the case of rational kernels. The analysis of the complexityand the implementation of
this technique are described and discussed in Section 5. In section 6, we report the re-
sults of experiments with a large dataset and with several types of kernels demonstrating
the substantial reduction of training time using our techniques.

2 Preliminaries

This section introduces the essential concepts and definitions related to weighted trans-
ducers and rational kernels. Generally, we adopt the definitions and terminology of [5].

Weighted transducersare finite-state transducers in which each transition carries
some weight in addition to the input and output labels. The weight set has the structure
of a semiring [12]. In this paper, we only consider weighted transducers over thereal
semiring(R+,+,×, 0, 1). Figure 1(a) shows an example. A path from an initial state
to a final state is an accepting path. The input (resp. output)label of an accepting path
is obtained by concatenating together the input (resp. output) symbols along the path
from the initial to the final state. Its weight is computed by multiplying the weights of its
constituent transitions and multiplying this product by the weight of the initial state of
the path (which equals one in our work) and by the weight of thefinal state of the path.
The weight associated by a weighted transducerU to a pair of strings(x,y)∈Σ∗×Σ∗

is denoted byU(x,y). For any transducerU we define the linear operatorD as the sum
of the weights of all accepting paths ofU.

A weighted automatonA can be defined as a weighted transducer with identical
input and output labels. Discarding the input labels of a weighted transducerU results
in a weighted automatonA, said to be theoutput projection ofU, A=Π2(U). The
automaton in Figure 1(b) is the output projection of the transducer in Figure 1(a).

The standard operations of sum+, product or concatenation·, multiplication by a
real number and Kleene-closure∗ are defined for weighted transducers [18]. Theinverse
of a transducerU, denoted byU−1, is obtained by swapping the input and output labels
of each transition. For all pairs of strings(x,y), we haveU−1(x,y) =U(y,x). The
compositionof two weighted transducersU1 andU2 with matching output and input
alphabetsΣ, is a weighted transducer denoted byU1 ◦U2 when the sum:

(U1 ◦U2)(x,y)=
∑

z∈Σ∗

U1(x, z) ×U2(z,y)

2/8 b:b/2

0
b:b/2

3/2

b:a/3

1

a:b/3

a:a/2

b:a/4

a:a/1

2/8 b/2

0
b/2

3/2

a/3

1

b/3

a/2

a/4

a/1

0

a:ε
b:ε

1a:a
b:b

2a:a
b:b

a:ε
b:ε

(a) (b) (c)

Fig. 1. (a) Example of weighted transducerU. (b) Example of weighted automatonA. In this
example,A can be obtained fromU by projection on the output andU(aab, baa)=A(baa)=
3×1×4×2+3×2×3×2. (c) Bigram counting transducerT2 for Σ= {a, b}. Initial states are
represented by bold circles, final states by double circles and the weights of transitions and final
states are indicated after the slash separator.

is well-defined and inR for all x,y [18]. It can be computed in timeO(|U1||U2|))
where|U| denotes the sum of the number of states and transitions of a transducerU.

Given a non-empty setX , a functionK:X×X→R is called akernel. K is said to
bepositive definite symmetric(PDS) when the matrix(K(xi,xj))1≤i,j≤m

is symmetric
and positive semi-definite (PSD) for any choice ofm points inX . A kernel between
sequencesK:Σ∗×Σ∗→R is rational [5] if there exists a weighted transducerU such
thatK coincides with the function defined byU, that isK(x,y) = U(x,y) for all
x,y ∈ Σ∗. When there exists a weighted transducerT such thatU can be decomposed
asU=T◦T−1, then it was shown by [5] thatK is PDS. All the sequence kernels seen
in practice are precisely PDS rational kernels of this form.

A standard family of rational kernels isn-gram kernels, see e.g. [15, 14]. Letcx(z)
be the number of occurrences ofz in x. Then-gram kernelKn of ordern is defined
asKn(x,y) =

∑

|z|=n cx(z)cy(z). Kn is a PDS rational kernel since it corresponds
to the weighted transducerTn ◦T

−1
n where the transducerTn is defined such that

Tn(x, z) = cx(z) for all x, z ∈ Σ∗ with |z|= n. The transducerT2 for Σ = {a, b} is
shown in Figure 1(c).

3 Kernel Methods and SVM Optimization

Kernel methods are widely used in machine learning. They have been successfully used
in a variety of learning tasks including classification, regression, ranking, clustering,
and dimensionality reduction. This section gives a brief overview of these methods, and
discusses in more detail one of the most popular kernel learning algorithms, SVMs.

3.1 Overview of Kernel Methods

Complex learning tasks are often tackled using a large number of features. Each point
of the input spaceX is mapped to a high-dimensional feature spaceF via a non-linear
mappingΦ. This may be to seek a linear separation in a higher-dimensional space,
which was not achievable in the original space, or to exploitother regression, ranking,
clustering, or manifold properties that are easier to attain in that space. The dimension

of the feature spaceF can be very large. In document classification, the features may be
the set of all trigrams. Thus, even for a vocabulary of just200,000 words, the dimension
of F is 2×1015.

The high dimensionality ofF does not necessarily affect the generalization ability
of large-margin algorithms such as SVMs: remarkably, thesealgorithms benefit from
theoretical guarantees for good generalization that depend only on the number of train-
ing points and the separationmargin, and not on the dimensionality of the feature space.
But the high dimensionality ofF can directly impact the efficiency and even the prac-
ticality of such learning algorithms, as well as their use inprediction. This is because
to determine their output hypothesis or for prediction, these learning algorithms rely on
the computation of a large number of dot products in the feature spaceF .

A solution to this problem is the so-calledkernel method. This consists of defining a
functionK:X×X→R called akernel, such that the value it associates to two examples
x andy in input space,K(x,y), coincides with the dot product of their imagesΦ(x)
andΦ(y) in feature space.K is often viewed as a similarity measure:

∀x,y ∈ X, K(x,y) = Φ(x)⊤Φ(y). (1)

A crucial advantage ofK is efficiency: there is no need anymore to define and explicitly
computeΦ(x), Φ(y), andΦ(x)⊤Φ(y). Another benefit ofK is flexibility: K can be
arbitrarily chosen so long as the existence ofΦ is guaranteed, a condition that holds
whenK verifies Mercer’s condition. This condition is important toguarantee the con-
vergence of training for algorithms such as SVMs. In the discrete case, it is equivalent
toK being PDS.

One of the most widely used two-group classification algorithm is SVMs [6]. The
version of SVMs without offsets is defined via the following convex optimization prob-
lem for a training sample ofm pointsxi∈X with labelsyi∈{1,−1}:

min
w,ξ

1

2
w2 + C

m
∑

i=1

ξi s.t. yiw
⊤Φ(xi) ≥ 1− ξi ∀i ∈ [1,m],

where the vectorw defines a hyperplane in the feature space,ξ is them-dimensional
vector of slack variables, andC ∈ R+ is a trade-off parameter. The problem is typ-
ically solved by introducing Lagrange multipliersα ∈ R

m for the set of constraints.
The standard dual optimization for SVMs can be written as theconvex optimization
problem:

min
α

F (α) =
1

2
α⊤Qα− 1⊤α s.t. 0 ≤ α ≤ C,

whereα ∈ R
m is the vector of dual variables and the PSD matrixQ is defined in terms

of the kernel matrixK: Qij = yiyjKij = yiyjΦ(xi)
⊤Φ(xj), i, j ∈ [1,m]. Expressed

with the dual variables, the solution vectorw can be written asw=
∑m

i=1
αiyiΦ(xi).

3.2 Coordinate Descent Solution for SVM Optimization

A straightforward way to solve the convex dual SVM problem isto use a coordinate
descent method and to update only one coordinateαi at each iteration, see [10]. The

SVMCOORDINATEDESCENT((xi)i∈[1,m])

1 α← 0

2 while α not optimaldo
3 for i ∈ [1, m] do
4 g ← yix

⊤
i w − 1 andα′

i ← min(max(αi −
g

Qii

, 0), C)

5 w← w + (α′
i − αi)xi andαi ← α′

i

6 return w

Fig. 2. Coordinate descent solution for SVM.

optimal step sizeβ⋆ corresponding to the update ofαi is obtained by solving

min
β

1

2
(α+ βei)

⊤Q(α+ βei)− 1⊤(α+ βei) s.t. 0 ≤ α+ βei ≤ C,

whereei is anm-dimensional unit vector. Ignoring constant terms, the optimization
problem can be written as

min
β

1

2
β2Qii + βe⊤

i (Qα− 1) s.t. 0 ≤ αi + β ≤ C.

If Qii =Φ(xi)
⊤Φ(xi) = 0, thenΦ(xi) = 0 andQi = e⊤i Q= 0. Hence the objective

function reduces to−β, and the optimal step size isβ⋆=C−αi, resulting in the update:
αi←0. OtherwiseQii 6=0 and the objective function is a second-degree polynomial in

β. Letβ0=−
Q⊤

i
α−1

Qii

, then the optimal step size and update is given by

β⋆ =

β0, if −αi≤β0≤C−αi,

−αi, if β0 ≤ −αi,

C − αi,otherwise

and αi ← min

(

max

(

αi−
Q⊤

i α− 1

Qii

, 0

)

, C

)

.

When the matrixQ is too large to store in memory andQii 6=0, the vectorQi must be
computed at each update ofαi. If the cost of the computation of each entryKij is in
O(N) whereN is the dimension of the feature space, computingQi is in theO(mN),
and hence the cost of each update is inO(mN).

The choice of the coordinateαi to update is based on the gradient. The gradient of
the objective function is∇F (α)=Qα−1. At a cost inO(mN) it can be updated via

∇F (α)← ∇F (α) +∆(αi)Qi.

Hsieh et al. [10] observed that when the kernel is linear,Q⊤
i α can be expressed in

terms ofw, the SVM weight vector solution,w=
∑m

j=1 yjαjxj :

Q⊤
i α=

m
∑

j=1

yiyj(x
⊤
i xj)αj=yix

⊤
i w.

If the weight vectorw is maintained throughout the iterations, then the cost of anupdate
is only inO(N) in this case. The weight vectorw can be updated via

w ← w +∆(αi)yixi.

SVMRATIONAL KERNELS((Φ′
i)i∈[1,m])

1 α← 0

2 while α not optimaldo
3 for i ∈ [1, m] do
4 g ← D(Φ′

i ◦W
′)− 1 andα′

i ← min(max(αi −
g

Qii

, 0), C)

5 W′ ←W′ + (α′
i − αi)Φ

′
i andαi ← α′

i

6 return W′

Fig. 3. Coordinate descent solution for rational kernels.

Maintaining the gradient∇F (α) is however still costly. Thejth component of the
gradient can be expressed as follows:

[∇F (α)]j = [Qα− 1]j =

m
∑

i=1

yiyjx
⊤
i xjαi − 1 = w⊤(yjxj)− 1.

The update for the main term of componentj of the gradient is thus given by:

w⊤xj ← w⊤xj + (∆w)⊤xj .

Each of these updates can be done inO(N). The full update for the gradient can hence
be done inO(mN). Several heuristics can be used to eliminate the cost of maintain-
ing the gradient. For instance, one can choose a randomαi to update at each iteration
[10] or sequentially update theαis. Hsieh et al. [10] also showed that it is possible to
use the chunking method of [11] in conjunction with such heuristics. Using the results
from [16], [10] showed that the resulting coordinate descent algorithm, SVMCOOR-
DINATEDESCENT (Figure 2) converges to the optimal solution with a linear orfaster
convergence rate.

4 Coordinate Descent Solution for Rational Kernels

This section shows that, remarkably, coordinate descent techniques similar to those
described in the previous section can be used in the case of rational kernels.

For rational kernels, the input “vectors”xi are sequences, or distributions over se-
quences, and the expression

∑m

j=1 yjαjxj can be interpreted as a weighted regular ex-
pression. For anyi ∈ [1,m], let Xi be a simple weighted automaton representingxi,
and letW denote a weighted automaton representingw=

∑m

j=1 yjαjxj . LetU be the
weighted transducer associated to the rational kernelK. Using the linearity ofD and
distributivity properties just presented, we can now write:

Q⊤
i α =

m
∑

j=1

yiyjK(xi,xj)αj =

m
∑

j=1

yiyj D(Xi ◦U ◦Xj)αj (2)

= D(yiXi ◦U ◦

m
∑

j=1

yjαjXj) = D(yiXi ◦U ◦W).

SinceU is a constant, in view of the complexity of composition, the expressionyiXi◦
U◦W can be computed in timeO(|Xi||W|). WhenyiXi ◦U◦W is acyclic, which

i xi yi Qii

1 ababa +1 8
2 abaab +1 6
3 abbab −1 6

0

1a/2

2

b/2 3/1

b/1

a/1 0

1a/1

2

b/1

3/1

a/1
b/2

a/1 0

1a/-2

2

b/-1

3/1

b/1

a/1

b/1

(a) (b) (c) (d)

Fig. 4. (a) Example dataset. (b-d) The automataΦ′
i corresponding to the dataset of (a) when using

a bigram kernel. The givenΦ′
i andQii’s assume the use of a bigram kernel.

0

1a/1

2

b/1

3
a/1

4
b/1

5
a/1

6

b/1

0

1a/1

2

b/1

3
a/1

4/(1/4)
b/1

5/(1/4)
a/1

6

b/1

0

1a/1

2

b/1

3/(1/24)
a/1

4/(1/3)
b/1

5/(7/24)
a/1

6

b/1

0

1a/1

2

b/1

3/(1/24)

a/1

4/(-23/72)
b/1

5/(-1/48)
a/1

6/(-47/144)

b/1

(a) (b) (c) (d)

Fig. 5. Evolution ofW′ through the first iteration of SVMRATIONAL KERNELSon the dataset
from Figure 4.

is the case for example ifU admits no inputǫ-cycle, thenD(yiXi ◦U◦W) can be
computed in linear time in the size ofyiXi◦U◦W using a shortest-distance algorithm,
or forward-backward algorithm. For all of the rational kernels that we are aware of,U
admits no inputǫ-cycle and this property holds. Thus, in that case, if we maintain a
weighted automatonW representingw, Q⊤

i α can be computed inO(|Xi||W|). This
complexity does not depend onm and the explicit computation ofm kernel values
K(xi,xj), j ∈ [1,m], is avoided. The update rule forW consists of augmenting the
weight of sequencexi in the weighted automaton by∆(αi)yi:

W←W +∆(αi)yiXi.

This update can be done very efficiently ifW is deterministic, in particular if it is
represented as a deterministic trie.

When the weighted transducerU can be decomposed asT◦T−1, as for all sequence
kernels seen in practice, we can further improve the form of the updates. LetΠ2(U)
denote the weighted automaton obtained formU by projection over the output labels
as described in Section 2. Then

Q⊤
i α = D

(

yiXi ◦T ◦T
−1 ◦W

)

= D((yiXi ◦T) ◦ (W ◦T)−1)

= D (Π2(yiXi ◦T) ◦Π2(W ◦T)) = D(Φ′
i ◦W

′), (3)

whereΦ′
i =Π2(yiXi◦T) andW′ =Π2(W ◦ T). Φ′

i, i∈ [1,m] can be precomputed
and instead ofW, we can equivalently maintainW′, with the following update rule:

W′ ←W′ +∆(αi)Φ
′
i. (4)

0,0

1,1a/2

2,2

b/2

3,4
b/1

3,5
a/1

0,0

1,1a/1

2,2

b/1

3,3
a/1

3,4/(1/4)
b/2

3,5/(1/4)
a/1

0,0

1,1a/-2

2,2

b/-1

3,4/(1/3)b/1

3,5/(7/24)
a/1

3,6

b/1

(a) (b) (c)

Fig. 6. The automataΦ′
i◦W

′ during the first iteration of SVMRATIONAL KERNELSon the data
in Figure 4.Table 1. First iteration of SVMRATIONAL KERNELSon the dataset given Figure 4. The last line
gives the values ofα andW′ at the end of the iteration.

i α W′ Φ′
i◦W

′ D(Φ′
i◦W

′) α′
i

1 (0, 0, 0) Fig. 5(a) Fig. 6(a) 0 1
8

2 (1
8
, 0, 0) Fig. 5(b) Fig. 6(b) 3

4
1
24

3 (1
8
, 1
24
, 0) Fig. 5(c) Fig. 6(c) − 23

24
47
144

(1
8
, 1
24
, 47
144

) Fig. 5(d)

The gradient∇(F)(α)=Qα− 1 can be expressed as follows

[∇(F)(α)]j = [Q⊤α− 1]j = Q⊤
j α− 1 = D(Φ′

j ◦W
′)− 1.

The update rule for the main termD(Φ′
j ◦W

′) can be written as

D(Φ′
j ◦W

′)← D(Φ′
j ◦W

′) + D(Φ′
j ◦∆W′).

Using (3) to compute the gradient and (4) to updateW′, we can generalize Al-
gorithm SVMCOORDINATEDESCENT of Figure 2 and obtain Algorithm SVMRA-
TIONAL KERNELS of Figure 3. It follows from [16] that this algorithm converges at
least linearly towards a global optimal solution. Moreover, the heuristics used by [10]
and mentioned in the previous section can also be applied here to empirically improve
the convergence rate of the algorithm. Table 1 shows the firstiteration of SVMRA-
TIONAL KERNELSon the dataset given by Figure 4 when using a bigram kernel.

5 Implementation and Analysis

A key factor in analyzing the complexity of SVMRATIONAL KERNELS is the choice of
the data structure used to representW′. In order to simplify the analysis, we assume that
theΦ′

is, and thusW′, are acyclic. This assumption holds for all rational kernels used in
practice, however, it is not a requirement for the correctness of SVMRATIONAL KER-
NELS. Given an acyclic weighted automatonA, we denote byl(A) the maximal length
of an accepting path inA and byn(A) the number of accepting paths inA.

A straightforward choice follows directly from the definition of W′. W′ is rep-
resented as a non-deterministic weighted automaton,W′ =

∑m

i=1 αiΦ
′
i, with a sin-

gle initial state andm outgoingǫ-transitions, where the weight of theith transition
is αi and its destination state the initial state ofΦ′

i. The size of this choice ofW′ is

Table 2. Time complexity of each gradient computation and of each update ofW′ and the space
complexity required for representingW′ given for each type of representation ofW′.

Representation ofW′ Time complexity Space complexity
(gradient) (update) (for storingW′)

naive (W′
n) O(|Φ′

i|
∑m

i=1 |Φ
′
i|) O(1) O(m)

trie (W′
t) O(n(Φ′

i)l(Φ
′
i)) O(n(Φ′

i)) O(|W′
t|)

minimal automaton (W′
m) O(|Φ′

i◦W
′
m|) open O(|W′

m|)

|W′|=m+
∑m

i=1 |Φ
′
i|. The benefit of this representation is that the update ofα using

(4) can be performed in constant time since it requires modifying only the weight of
one of theǫ-transitions out of the initial state. However, the complexity of computing
the gradient using (3) is inO(|Φ′

j ||W
′|)=O(|Φ′

j |
∑m

i=1 |Φ
′
i|).

RepresentingW′ as a deterministic weighted trie can lead to a simple update us-
ing (4). A weighted trieis a rooted tree where each edge is labeled and each node
is weighted. During composition, each accepting path inΦ′

i is matched with a dis-
tinct node inW′. Thus,n(Φ′

i) paths ofW′ are explored during composition. Since the
length of each of these paths is at mostl(Φ′

i), this leads to a complexity inO (n(Φ′
i)l(Φ

′
i))

for computingΦ′
i◦W

′ and thus for computing the gradient using (3). Since each accept-
ing path inΦ′

i corresponds to a distinct node inW′, the weights of at mostn(Φ′
i) nodes

of W′ need to be updated. Thus, the complexity of an update ofW′ isO (n(Φ′
i)).

The drawback of a trie representation is that it does not provide all of the sparsity
benefits of a fully automata-based approach. A more space-efficient approach consists
of representingW′ as a minimal deterministic weighted automaton which can be sub-
stantially smaller, exponentially smaller in some cases, than the corresponding trie.

The complexity of computing the gradient using (3) is then inO(|Φ′
i◦W

′|) which
is significantly less than theO (n(Φ′

i)l(Φ
′
i)) complexity of the trie representation. Per-

forming the update ofW′ using (4) can be more costly though. With the straightforward
approach of using the general union, weighted determinization and minimization algo-
rithms [5], the complexity depends on the size ofW′. The cost of an update can thus
sometimes become large. However, it is perhaps possible to design more efficient algo-
rithms for augmenting a weighted automaton with a single string or even a set of strings
represented by a deterministic automaton, while preserving determinism and minimal-
ity. The approach just described forms a strong motivation for the study and analysis
of such non-trivial and probably sophisticated automata algorithms since it could lead
to even more efficient updates ofW′ and overall speed-up of the SVMs training with
rational kernels. We leave the study of this open question tothe future. We note, how-
ever, that that analysis could benefit from existing algorithms in the unweighted case.
Indeed, in the unweighted case, a number of efficient algorithms have been designed for
incrementally adding a string to a minimal deterministic automaton while keeping the
result minimal and deterministic [7, 3], and the complexityof each addition of a string
using these algorithms is only linear in the length of the string added.

Table 2 summarizes the time and space requirements for each type of representation
for W′. In the case of ann-gram kernel of orderk, l(Φ′

i) is a constantk, n(Φ′
i) is the

number of distinctk-grams occurring inxi, n(W′
t) (= n(W′

m)) the number of distinct
k-grams occurring in the dataset, and|W′

t| the number of distinctn-grams of order less
than or equal tok in the dataset.

Table 3. Time for training an SVM classifier using an SMO-like algorithm and SVMRA-
TIONAL KERNELS using a trie representation forW′, and size ofW′ (number of transitions)
when representingW′ as a deterministic weighted trie and a minimal deterministic weighted
automaton. Dataset Kernel SMO-like New Algo. trie min. aut.

Reuters 4-gram 2m 18s 25s 66,331 34,785
(subset) 5-gram 3m 56s 30s 154,460 63,643

6-gram 6m 16s 41s 283,856 103,459
7-gram 9m 24s 1m 01s 452,881 157,390

10-gram 25m 22s 1m 53s 1,151,217 413,878
gappy 3-gram 10m 40s 1m 23s 103,353 66,650
gappy 4-gram 58m 08s 7m 42s 1,213,281 411,939

Reuters 4-gram 618m 43s 16m 30s 242,570 106,640
(full) 5-gram >2000m 23m 17s 787,514 237,783

6-gram >2000m 31m 22s 1,852,634 441,242
7-gram >2000m 37m 23s 3,570,741 727,743

6 Experiments

We used the Reuters-21578 dataset, a large data set convenient for our analysis and
commonly used in experimental analyses of string kernels (http://www.daviddlewis.com/

resources/). We refer byfull datasetto the12,902 news stories part of the ModeApte
split. Since our goal is only to test speed (and not accuracy), we train on training and
test sets combined. We also considered a subset of that dataset consisting of 466 news
stories. We experimented both withn-gram kernels and gappyn-gram kernels with dif-
ferentn-gram orders. We trained binary SVM classification for theacq class using the
following two algorithms: (a) the SMO-like algorithm of [8]implemented using LIB-
SVM [4] and modified to handle the on-demand computation of rational kernels; and
(b) SVMRATIONAL KERNELSimplemented using a trie representation forW′. Table 3
reports the training time observed using a dual-core 2.2 GHzAMD Opteron workstation
with 16GB of RAM, excluding the pre-processing step which consists of computingΦ′

i

for each data point and that is common to both algorithms. To estimate the benefits of
representingW′ as a minimal automaton, we applied the weighted minimization algo-
rithm to the tries output by SVMRATIONAL KERNELS(after shifting the weights to the
non-negative domain) and observed the resulting reductionin size. The results reported
in Table 3 show that representingW′ by a minimal deterministic automaton can lead
to very significant savings in space and a substantial reduction of the training time with
respect to the trie representation using an incremental addition of strings toW′.

7 Conclusion

We presented novel techniques for large-scale training of SVMs when used with se-
quence kernels. We gave a detailed description of our algorithms and discussed differ-
ent implementation choices, and presented an analysis of the resulting complexity. Our
empirical results with large-scale data sets demonstrate dramatic reductions of the train-
ing time. Our software will be made publicly available through an open-source project.
Remarkably, our training algorithm for SVMs is entirely based on weighted automata
algorithms and requires no specific solver.

References

1. C. Allauzen, M. Mohri, and A. Talwalkar. Sequence kernelsfor predicting protein essential-
ity. In ICML 2008, 2008.

2. F. R. Bach and M. I. Jordan. Kernel independent component analysis.JMLR, 3:1–48, 2002.
3. R. C. Carrosco and M. L. Forcada. Incremental construction and maintenance of minimal

finite-state automata.Computational Linguistics, 28(2):207–216, 2002.
4. C.-C. Chang and C.-J. Lin.LIBSVM: a library for support vector machines, 2001.
5. C. Cortes, P. Haffner, and M. Mohri. Rational Kernels: Theory and Algorithms.JMLR, 2004.
6. C. Cortes and V. Vapnik. Support-Vector Networks.Machine Learning, 20(3), 1995.
7. J. Daciuk, S. Mihov, B. W. Watson, and R. Watson. Incremental construction of minimal

acyclic finite state automata.Computational Linguistics, 26(1):3–16, 2000.
8. R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information

for training SVM. JMLR, 6:1889–1918, 2005.
9. S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations.

Journal of Machine Learning Research, 2:243–264, 2002.
10. C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S.Sundararajan. A dual coordinate

descent method for large-scale linear SVM. InICML, pages 408–415, 2008.
11. T. Joachims. Making large-scale SVM learning practical. In Advances in Kernel Methods:

Support Vector Learning. The MIT Press, 1998.
12. Werner Kuich and Arto Salomaa.Semirings, Automata, Languages. Number 5 in EATCS

Monographs on Theoretical Computer Science. Springer, NewYork, 1986.
13. S. Kumar, M. Mohri, and A. Talwalkar. On sampling-based approximate spectral decompo-

sition. In ICML, 2009.
14. C. S. Leslie, E. Eskin, and W. S. Noble. The Spectrum Kernel: A String Kernel for SVM

Protein Classification. InPacific Symposium on Biocomputing, pages 566–575, 2002.
15. H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini,and C. Watkins. Text classification

using string kernels.JMLR, 2, 2002.
16. Z. Q. Luo and P. Tseng. On the convergence of the coordinate descent method for convex

differentiable minimization.J. of Optim. Theor. and Appl., 72(1):7–35, 1992.
17. Mehryar Mohri. Weighted automata algorithms. InHandbook of Weighted Automata, pages

213–254. Springer, 2009.
18. A. Salomaa and M. Soittola.Automata-Theoretic Aspects of Formal Power Series. Springer,

1978.
19. John Shawe-Taylor and Nello Cristianini.Kernel Methods for Pattern Analysis. Cambridge

Univ. Press, 2004.
20. I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Core vector machines: Fast SVM training on

very large data sets.JMLR, 6:363–392, 2005.
21. C. K. I. Williams and M. Seeger. Using the Nyström methodto speed up kernel machines.

In NIPS, pages 682–688, 2000.

