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1.1 Summary

The concept of sparsity has attracted considerable interest in the field of
machine learning in the past few years. Sparse feature vectors contain mostly
values of zero and one or a few non-zero values. Although these feature vectors
can be classified by traditional machine learning algorithms, such as SVM,
there are various recently-developed algorithms that explicitly take advantage
of the sparse nature of the data, leading to massive speedups in time, as
well as improved performance. Some fields that have benefited from the use
of sparse algorithms are finance, bioinformatics, text mining [1], and image
classification [4]. Because of their speed, these algorithms perform well on
very large collections of data [2]; large collections are becoming increasingly
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relevant given the huge amounts of data collected and warehoused by Internet
businesses.

In this chapter, we discuss the application of sparse feature vectors in the
field of audio analysis, and specifically their use in conjunction with prepro-
cessing systems that model the human auditory system. We present early re-
sults that demonstrate the applicability of the combination of auditory-based
processing and sparse coding to content-based audio analysis tasks.

We present results from two different experiments: a search task in which
ranked lists of sound effects are retrieved from text queries, and a music in-
formation retrieval (MIR) task dealing with the classification of music into
genres.

1.2 Introduction

Traditional approaches to audio analysis problems typically employ a short-
window fast Fourier transform (FFT) as the first stage of the processing
pipeline. In such systems a short, perhaps 25ms, segment of audio is taken
from the input signal and windowed in some way, then the FFT of that seg-
ment is taken. The window is then shifted a little, by perhaps 10ms, and the
process is repeated. This technique yields a two-dimensional spectrogram of
the original audio, with the frequency axis of the FFT as one dimension, and
time (quantized by the step-size of the window) as the other dimension.

While the spectrogram is easy to compute, and a standard engineering tool,
it bears little resemblance to the early stages of the processing pipeline in the
human auditory system. The mammalian cochlea can be viewed as a bank of
tuned filters the output of which is a set of band-pass filtered versions of the
input signal that are continuous in time. Because of this property, fine-timing
information is preserved in the output of cochlea, whereas in the spectrogram
described above, there is no fine-timing information available below the 10ms
hop-size of the windowing function.

This fine-timing information from the cochlea can be made use of in later
stages of processing to yield a three-dimensional representation of audio, the
stabilized auditory image (SAI)[11], which is a movie-like representation of
sound which has a dimension of ‘time-interval’ in addition to the standard
dimensions of time and frequency in the spectrogram. The periodicity of the
waveform gives rise to a vertical banding structure in this time interval dimen-
sion, which provides information about the sound which is complementary to
that available in the frequency dimension. A single example frame of a stabi-
lized auditory image is shown in Figure 1.1.

While we believe that such a representation should be useful for audio
analysis tasks, it does come at a cost. The data rate of the SAI is many times
that of the original input audio, and as such some form of dimensionality
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reduction is required in order to create features at a suitable data rate for
use in a recognition system. One approach to this problem is to move from a
the dense representation of the SAI to a sparse representation, in which the
overall dimensionality of the features is high, but only a limit number of the
dimensions are nonzero at any time.

In recent years, machine learning algorithms that utilize the properties
of sparsity have begun to attract more attention and have been shown to
outperform approaches that use dense feature vectors. One such algorithm is
the passive-aggressive model for image retrieval (PAMIR), a machine learning
algorithm that learns a ranking function from the input data, that is, it takes
an input set of documents and orders them based on their relevance to a
query. PAMIR was originally developed as a machine vision method and has
demonstrated excellent results in this field.

There is also growing evidence that in the human nervous system sensory
inputs are coded in a sparse manner; that is, only small numbers of neurons
are active at a given time [10]. Therefore, when modeling the human auditory
system, it may be advantageous to investigate this property of sparseness in
relation to the mappings that are being developed. The nervous systems of
animals have evolved over millions of years to be highly efficient in terms of
energy consumption and computation. Looking into the way sound signals are
handled by the auditory system could give us insights into how to make our
algorithms more efficient and better model the human auditory system.

One advantage of using sparse vectors is that such coding allows very
fast computation of similarity, with a trainable similarity measure [4]. The
efficiency results from storing, accessing, and doing arithmetic operations on
only the non-zero elements of the vectors. In one study that examined the
performance of sparse representations in the field of natural language pro-
cessing, a 20- to 80-fold speedup over LIBSVM was found [7]. They comment
that kernel-based methods, like SVM, scale quadratically with the number
of training examples and discuss how sparsity can allow algorithms to scale
linearly based on the number of training examples.

In this chapter, we use the stabilized auditory image (SAI) as the basis of
a sparse feature representation which is then tested in a sound ranking task
and a music information retrieval task. In the sound raking task, we generate
a two-dimensional SAI for each time slice, and then sparse-code those images
as input to PAMIR. We use the ability of PAMIR to learn representations of
sparse data in order to learn a model which maps text terms to audio features.
This PAMIR model can then be used rank a list of unlabeled sound effects
according to their relevance to some text query. We present results that show
that in certain tasks our methods can outperform highly tuned FFT based
approaches. We also use similar sparse-coded SAI features as input to a music
genre classification system. This system uses an SVM classifier on the sparse
features, and learns text terms associated with music. The system was entered
into the annual music information retrieval evaluation exchange evaluation
(MIREX 2010).
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Results from the sound-effects ranking task show that sparse auditory-
model-based features outperform standard MFCC features, reaching preci-
sion about 73% for the top-ranked sound, compared to about 60% for stan-
dard MFCC and 67% for the best MFCC variant. These experiments involved
ranking sounds in response to text queries through a scalable online machine
learning approach to ranking.

1.2.1 The stabilized auditory image

In our system we have taken inspiration from the human auditory system in
order to come up with a rich set of audio features that are intended to more
closely model the audio features that we use to listen and process music.

Such fine timing relations are discarded by traditional spectral techniques.
A motivation for using auditory models is that the auditory system is very ef-
fective at identifying many sounds. This capability may be partially attributed
to acoustic features that are extracted at the early stages of auditory process-
ing. We feel that there is a need to develop a representation of sounds that
captures the full range of auditory features that humans use to discriminate
and identify different sounds, so that machines have a chance to do so as well.

FIGURE 1.1
An example of a single SAI of a sound file of a spoken vowel sound. The
vertical axis is frequency with lower frequencies at the bottom of the figure
and higher frequencies on the top. The horizontal axis is the autocorrelation
lag. From the positions of the vertical features, one can determine the pitch
of the sound.

This SAI representation generates a 2D image from each section of wave-
form from an audio file. We then reduce each image in several steps: first
cutting the image into overlapping boxes converted to fixed resolution per
box; second, finding row and column sums of these boxes and concatenat-
ing those into a vector; and finally vector quantizing the resulting medium-
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dimensionality vector, using a separate codebook for each box position. The
VQ codeword index is a representation of a 1-of-N sparse code for each box,
and the concatenation of all of those sparse vectors, for all the box positions,
makes the sparse code for the SAI image. The resulting sparse code is accumu-
lated across the audio file, and this histogram (count of number of occurrences
of each codeword) is then used as input to an SVM [5] classifier[3]. This ap-
proach is similar to that of the “bag of words” concept, originally from natural
language processing, but used heavily in computer vision applications as “bag
of visual words”; here we have a “bag of auditory words”, each “word” being
an abstract feature corresponding to a VQ codeword. The bag representation
is a list of occurrence counts, usually sparse.

1.3 Algorithm

In our experiments, we generate a stream of SAIs using a series of modules that
process an incoming audio stream through the various stages of the auditory
model. The first module filters the audio using the pole–zero filter cascade
(PZFC) [9], then subsequent modules find strobe points in this audio, and
generate a stream of SAIs at a rate of 50 per second. The SAIs are then
cut into boxes and are transformed into a high dimensional dense feature
vector [12] which is vector quantized to give a high dimensional sparse feature
vector. This sparse vector is then used as input to a machine learning system
which performs either ranking or classification. This whole process is shown
in diagrammatic form in Figure 1.2

1.3.1 Pole–Zero Filter Cascade

We first process the audio with the pole–zero filter cascade (PZFC) [9], a
model inspired by the dynamics of the human cochlea. The PZFC is a cascade
of a large number of simple filters with an output tap after each stage. The
effect of this filter cascade is to transform an incoming audio signal into a
set of band-pass filtered versions of the signal. In our case we used a cascade
with 95 stages, leading to 95 output channels. Each output channel is half-
wave rectified to simulate the output of the inner hair cells along the length
of the cochlea. The PZFC also includes an automatic gain control (AGC)
system that mimics the effect of the dynamic compression mechanisms seen
in the cochlea. A smoothing network, fed from the output of each channel,
dynamically modifies the characteristics of the individual filter stages. The
AGC can respond to changes in the output on the timescale of milliseconds,
leading to very fast-acting compression. One way of viewing this filter cascade
is that its outputs are an approximation of the instantaneous neuronal firing
rate as a function of cochlear place, modeling both the frequency filtering and
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FIGURE 1.2
A flowchart describing the flow of data in our system. First, either the pole–
zero filter cascade (PZFC) or gammatone filterbank filters the input audio
signal. Filtered signals then pass through a half-wave rectification module
(HCL), and trigger points in the signal are then calculated by the local-max
module. The output of this stage is the SAI, the image in which each signal is
shifted to align the trigger time to the zero lag point in the image. The SAI
is then cut into boxes with the box-cutting module, and the resulting boxes
are then turned into a codebook with the vector-quantization module.

the automatic gain control characteristics of the human cochlea [8]. The PZFC
parameters used for the sound-effects ranking task are described in [9]. We
did not do any further tuning of this system to the problems of genre, mood
or song classification; this would be a fruitful area of further research.

1.3.2 Image Stabilization

The output of the PZFC filterbank is then subjected to a process of strobe
finding where large peaks in the PZFC signal are found. The temporal loca-
tions of these peaks are then used to initiate a process of temporal integra-
tion whereby the stabilized auditory image is generated. These strobe points
“stabilize” the signal in a manner analogous to the trigger mechanism in an
oscilloscope. When these strobe points are found, a modified form of autocor-
relation, known as strobed temporal integration, which is like a sparse version
of autocorrelation where only the strobe points are correlated against the sig-
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FIGURE 1.3
The cochlear model, a filter cascade with half-wave rectifiers at the output
taps, and an automatic gain control (AGC) filter network that controls the
tuning and gain parameters in response to the sound.

nal. Strobed temporal integration has the advantage of being considerably less
computationally expensive than full autocorrelation.

1.3.3 Box Cutting

We then divide each image into a number of overlapping boxes using the
same process described in [9]. We start with rectangles of size 16 lags by 32
frequency channels, and cover the SAI with these rectangles, with overlap.
Each of these rectangles is added to the set of rectangles to be used for vector
quantization. We then successively double the height of the rectangle up to
the largest size that fits in an SAI frame, but always reducing the contents of
each box back to 16 by 32 values. Each of these doublings is added to the set
of rectangles. We then double the width of each rectangle up to the width of
the SAI frame and add these rectangles to the SAI frame. The output of this
step is a set of 44 overlapping rectangles. The process of box-cutting is shown
in Figure 1.4.

In order to reduce the dimensionality of these rectangles, we then take
their row and column marginals and join them together into a single vector.

1.3.4 Vector Quantization

The resulting dense vectors from all the boxes of a frame are then converted
to a sparse representation by vector quantization.

We first preprocessed a collection of 1000 music files from 10 genres using
a PZFC filterbank followed by strobed temporal integration to yield a set of



10 Book title goes here

FIGURE 1.4
The boxes, or multi-scale regions, used to analyze the stabilized auditory
images are generated in a variety of heights, widths, and positions.

SAI frames for each file . We then take this set of SAI and apply the box-
cutting technique described above. The followed by the calculation of row and
column marginals. These vectors are then used to train dictionaries of 200
entries, representing abstract “auditory words”, for each box position, using
a k-means algorithm.

This process requires the processing of large amounts of data, just to train
the VQ codebooks on a training corpus.

The resulting dictionaries for all boxes are then used in the MIREX ex-
periment to convert the dense features from the box cutting step on the test
corpus songs into a set of sparse features where each box was represented by
a vector of 200 elements with only one element being non-zero. The sparse
vectors for each box were then concatenated, and these long spare vectors are
histogrammed over the entire audio file to produce a sparse feature vector
for each song or sound effect. This operation of constructing a sparse bag of
auditory words was done for both the training and testing corpora.
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1.3.5 Machine Learning

For this system, we used the support vector machine learning system from
libSVM which is included in the Marsyas[13] framework. Standard Marsyas
SVM parameters were used in order to classify the sparse bag of auditory
words representation of each song. It should be noted that SVM is not the
ideal algorithm for doing classification on such a sparse representation, and
if time permitted, we would have instead used the PAMIR machine learning
algorithm as described in [9]. This algorithm has been shown to outperform
SVM on ranking tasks, both in terms of execution speed and quality of results.

1.4 Experiments

1.4.1 Sound Ranking

We performed an experiment in which we examined a quantitative ranking
task over a diverse set of audio files using tags associated with the audio files.

For this experiment, we collected a dataset of 8638 sound effects, which
came from multiple places. 3855 of the sound files were from commercially
available sound effect libraries, of these 1455 were from the BBC sound effects
library. The other 4783 audio files were collected from a variety of sources on
the internet, including findsounds.com, partnersinrhyme.com, acoustica.com,
ilovewaves.com, simplythebest.net, wav-sounds.com, wav-source.com and
wavlist.com.

We then manually annotated this dataset of sound effects with a small
number of tags for each file. Some of the files were already assigned tags and
for these, we combined our tags with this previously existing tag information.
In addition, we added higher level tags to each file, for example, files with
the tags “cat”, “dog” and “monkey” were also given the tags “mammal” and
“animal”. We found that the addition of these higher level tags assist retrieval
by inducing structure over the label space. All the terms in our database were
stemmed, and we used the Porter stemmer for English, which left a total of
3268 unique tags for an average of 3.2 tags per sound file.

In order to estimate the performance of the learned ranker, we used a
standard three-fold cross-validation experimental setup. In this scheme, two
thirds of the data is used for training and one third is used for testing; this
process is then repeated for all three splits of the data and results of the three
are averaged. We removed any queries that had fewer than 5 documents in
either the training set or the test set, and if the corresponding documents had
no other tags, these documents were removed as well.

To determine the values of the hyperparameters for PAMIR we performed
a second level of cross-validation where we iterated over values for the aggres-
siveness parameter C and the number of training iterations. We found that in
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general system performance was good for moderate values of C and that lower
values of C required a longer training time. For the agressiveness parameter,
we selected a value of C=0.1, a value which was also found to be optimal in
other research [6]. For the number of iterations, we chose 10M, and found that
in our experience, the system was not very sensitive to the exact value of these
parameters.

We evaluated our learned model by looking at the precision within the top
k audio files from the test set as ranked by each query. Precision at top k is
a commonly used measure in retrieval tasks such as these and measures the
fraction of positive results within the top k results from a query.

The stabilized auditory image generation process has a number of param-
eters which can be adjusted including the parameters of the PZFC filter and
the size of rectangles that the SAI is cut into for subsequent vector quantiza-
tion. We created a default set of parameters and then varied these parameters
in our experiments. The default SAI box-cutting was performed with 16 lags
and 32 channels, which gave a total of 49 rectangles. These rectangles were
then reduced to their marginal values which gives a 48 dimension vector, and a
codebook of size 256 was used for each box, giving a total of 49 x 256 = 12544
feature dimensions. Starting from these, we then made systematic variations
to a number of different parameters and measured their effect on precision of
retrieval. For the box-cutting step, we adjusted various parameters including
the smallest sized rectangle, and the maximum number of rectangles used for
segmentation. We also varied the codebook sizes that we used in the sparse
coding step.

In order to evaluate our method, we compared it with results obtained
using a very common feature extraction method for audio analysis, MFCCs
(mel-frequency cepstral coefficients). In order to compare this type of feature
extraction with our own, we turned these MFCC coefficients into a sparse
code. These MFCC coefficients were calculated with a Hamming window with
initial parameters based on a setting optimized for speech. We then changed
various parameters of the MFCC algorithm, including the number of cepstral
coefficients (13 for speech), the length of each frame (25ms for speech), and the
number of codebooks that were used to sparsify the dense MFCC features for
each frame. We obtained the best performance with 40 cepstral coefficients, a
window size of 40ms and codebooks of size 5000.

We investigated the effect of various parameters of the SAI feature extrac-
tion process on test-set precision, these results are displayed graphically in
Figure 1.5 where the precision of the top ranked sound file is plotted against
the number of features used. As one can see from this graph, performance
saturates when the number of features approaches 105 which results from
the use of 4000 code words per codebook, with a total of 49 codebooks. This
particular set of parameters led to a performance of 73%, significantly better
than the best MFCC result which achieved a performance of 67%, which rep-
resents a smaller error of 18% (from 33 % to 27 % error). It is also notable
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FIGURE 1.5
Ranking at top-1 retrieved result for all the experimental runs described in
this section. A few selected experiment names are plotted next to each point,
and different experiments are shown by different icons. The convex hull that
connects the best-performing experiments is plotted as a solid line.

that SAI can achieve better precision-at-top-k consistently for all values of k,
albeit with a smaller improvement in relative precision.

In table 1.2 results of three queries along with the top five sound files that
were returned by the best SAI-based and MFCC-based systems. From this
table, one can see that the two systems perform in different ways, this can be
expected when one considers the basic audio features that these two systems
extract. For example, for the query “gulp”, the SAI system returns “pouring”
and “water-dripping”, all three of these share the similarity of involving the
movement of water or liquids.

When we calculated performance, it was based on textual tags, which
are often noisy and incomplete. Due to the nature of human language and
perception, people often use different words to describe sounds that are very
similar, for example, a Chopin Mazurka could be described with the words “pi-
ano”, “soft”, “classical”, “Romantic”, and “mazurka”. To compound this diffi-
culty, a song that had a female vocalist singing could be labelled as “woman”,
“women”, “female”, “female vocal”, or “vocal”. This type of multi-label prob-
lem is common in the field of content based retrieval. It can be alleviated
by a number of techniques, including the stemming of words, but due to the
varying nature of human language and perception, will continue to remain an
issue.

In Figure 1.6 the performance of the SAI and MFCC based systems are
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FIGURE 1.6
A comparison of the average precision of the SAI and MFCC based systems.
Each point represents a single query, with the horizontal position being the
MFCC average precision and the vertical position being the SAI average pre-
cision. More of the points appear above the y=x line, which indicates that the
SAI based system achieved a higher mean average precision.

compared to each other with respect to their average precision. A few select
full tag names are placed on this diagram, for the rest, only a plus is shown.
This is required because otherwise the text would overlap to such a great
degree that it would be impossible to read.

In this diagram we plot the average precision of the SAI based system
against that of the MFCC based system, with the SAI precision shown along
the vertical axis and the MFCC precision shown along the horizontal axis.
If the performance of the two systems was identical, all points would lie on
the line y=x. Because more points lie above the line than below the line, the
performance of the SAI based system is better than that of the MFCC based
system.
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top-k SAI MFCC percent error reduction
1 27 33 18 %
2 39 44 12 %
5 60 62 4 %
10 72 74 3 %
20 81 84 4 %

TABLE 1.1
A comparison of the best SAI and MFCC configurations. This table shows
the percent error at top-k, where error is defined as 1 - precision.

Query SAI file (labels) MFCC file (labels)
tarzan Tarzan-2 (tarzan, yell) TARZAN (tarzan, yell)

tarzan2 (tarzan, yell) 175orgs (steam, whistle)
203 (tarzan) mosquito-2 (mosquito)
wolf (mammal, wolves, wolf, ...) evil-witch-laugh (witch, evil, laugh)
morse (morse, code) Man-Screams (horror, scream, man)

applause 27-Applause-from-audience 26-Applause-from-audience
audience 30-Applause-from-audience phase1 (trek, phaser, star)

golf50 (golf) fanfare2 (fanfare, trumpet)
firecracker 45-Crowd-Applause (crowd, applause)
53-ApplauseLargeAudienceSFX golf50

gulp tite-flamn (hit, drum, roll) GULPS (gulp, drink)
water-dripping (water, drip) drink (gulp, drink)
Monster-growling (horror, monster, growl) california-myotis-search (blip)
Pouring (pour,soda) jaguar-1 (bigcat, jaguar, mammal, ...)

TABLE 1.2
A comparison of the best SAI and MFCC configurations. This table shows
the percent error at top-k, where error is defined as (1 - precision).
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Algorithm Classification Accuracy
SAI/VQ 0.4987
Marsyas MFCC 0.4430
Best 0.6526
Average 0.455

TABLE 1.3
Classical composer train/test classification task

Algorithm Classification Accuracy
SAI/VQ 0.4861
Marsyas MFCC 0.5750
Best 0.6417
Average 0.49

TABLE 1.4
Music mood train/test classification task

1.4.2 MIREX 2010

All of these algorithms were then ported to the Marsyas music information
retrieval framework from AIM-C, and extensive tests were written as described
above. These algorithms were submitted to the MIREX 2010 competition as
C++ code, which was then run by the organizers on blind data. As of this
date, only results for two of the four train/test tasks have been released. One
of these is for the task of classifying classical composers and the other is for
classifying the mood of a piece of music. There were 40 groups participating in
this evaluation, the most ever for MIREX, which gives some indication about
how this classification task is increasingly important in the real world. Below
I present the results for the best entry, the average of all entries, our entry,
and the other entry for the Marsyas system. It is instructive to compare our
result to that of the standard Marsyas system because in large part we would
like to compare the SAI audio feature to the standard MFCC features, and
since both of these systems use the SVM classifier, we partially negate the
influence of the machine learning part of the problem.

For the classical composer task the results are shown in table 1.3 and for
the mood classification task, results are shown in table 1.4

From these results we can see that in the classical composer task we outper-
formed the traditional Marsyas system which has been tuned over the course
of a number of years to perform well. This gives us the indication that the
use of these SAI features has promise. However, we underperform the best
algorithm, which means that there is work to be done in terms of testing dif-
ferent machine learning algorithms that would be better suited to this type
of data. However, in a more detailed analysis of the results, which is shown
in 1.7, it is evident that each of the algorithms has a wide range of perfor-
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mance on different classes. This graph shows that the most well predicted in
our SAI/VQ classifier overlap significantly with those from the highest scoring
classification engines.

FIGURE 1.7
Per class results for classical composer

In the mood task, we underperform both Marsyas and the leading algo-
rithm. This is interesting and might speak to the fact that we did not tune the
parameters of this algorithm for the task of music classification, but instead
used the parameters that worked best for the classification of sound effects.
Music mood might be a feature that has spectral aspects that evolve over
longer time periods than other features. For this reason, it would be impor-
tant to search for other parameters in the SAI algorithm that would perform
well for other tasks in music information retrieval.

For these results, due to time constraints, we only used the SVM classifier
on the SAI histograms. This has been shown in [9] to be an inferior classifier
for this type of sparse, high-dimensional data than the PAMIR algorithm. In
the future, we would like to add the PAMIR algorithm to Marsyas and to
try these experiments using this new classifier. It was observed that the MIR
community is increasingly becoming focused on advanced machine learning
techniques, and it is clear that it will be critical to both try different machine
learning algorithms on these audio features as well as to perform wider sweeps
of parameters for these classifiers. Both of these will be important in increasing
the performance of these novel audio features.
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1.5 Conclusions

The use of physiologically-plausible acoustic models combined with a sparsi-
fication approach has shown promising results in both the sound effects rank-
ing and MIREX 2010 experiments. These features are novel and hold great
promise in the field of MIR for the classification of music as well as other tasks.
Some of the results obtained were better than that of a highly tuned MIR sys-
tem on blind data. In this task we were able to expose the MIR community
to these new audio features. These new audio features have been shown to
outperform MFCC features in a sound-effects ranking task, and by evaluating
these features with machine learning algorithms more suited for these high di-
mensional, sparse features, we have great hope that we will obtain even better
results in future MIREX evaluations.
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