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ABSTRACT
Evaluating the performance of large compute clusters requires bench-
marks with representative workloads. At Google, performance bench-
marks are used to obtain performance metrics such as task schedul-
ing delays and machine resource utilizations to assess changes in
application codes, machine configurations, and scheduling algo-
rithms. Existing approaches to workload characterization for high
performance computing and grids focus on task resource require-
ments for CPU, memory, disk, I/O, network, etc. Such resource
requirements addresshow muchresource is consumed by a task.
However, in addition to resource requirements, Google workloads
commonly include task placement constraints that determinewhich
machine resources are consumed by tasks. Task placement con-
straints arise because of task dependencies such as those related to
hardware architecture and kernel version.

This paper develops methodologies for incorporating task place-
ment constraints and machine properties into performance bench-
marks of large compute clusters. Our studies of Google compute
clusters show that constraints increase average task scheduling de-
lays by a factor of 2 to 6, which often results in tens of minutes
of additional task wait time. To understand why, we extend the
concept of resource utilization to include constraints by introduc-
ing a new metric, theUtilization Multiplier (UM). UM is the ratio
of the resource utilization seen by tasks with a constraint to the
average utilization of the resource. UM provides a simple model
of the performance impact of constraints in that task scheduling
delays increase with UM. Last, we describe how to synthesize rep-
resentative task constraints and machine properties, and how to in-
corporate this synthesis into existing performance benchmarks.
Using synthetic task constraints and machine properties generated
by our methodology, we accurately reproduce performance metrics
for benchmarks of Google compute clusters with a discrepancy of
only 13% in task scheduling delay and 5% in resource utilization.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Miscellaneous; D.4.8 [Performance]:
Metrics—modeling techniques, performance measures.

General Terms
Performance, modeling, benchmarking.
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Keywords
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1. INTRODUCTION
Building compute clusters at Google scale requires having real-
istic performance benchmarks to evaluate the impact of changes
in scheduling algorithms, machine configurations, and application
codes. Providing such benchmarks requires constructing workload
characterizations that are sufficient to reproduce key performance
characteristics of compute clusters. Existing workload characteri-
zations for high performance computing and grids focus on task re-
source requirements such as CPU, RAM, disk, and network. How-
ever, in addition to resource requirements, Google tasks frequently
havetask placement constraints(hereafter, justconstraints) similar
to the Condor ClassAds mechanism [26]. Examples of constraints
are restrictions on task placement due to hardware architecture and
kernel version. Constraints limit the machines on which a task can
run, and this in turn can increase task scheduling delays. This pa-
per develops methodologies that quantify the performance impact
of task placement constraints, and applies these methodologies to
Google compute clusters. In particular, we develop a methodology
for synthesizing task placement constraints and machine properties
to provide more realistic performance benchmarks.

Herein, task scheduling refers to the assignment of tasks to ma-
chines. We do not consider delays that occur once a task is assigned
to a machine (e.g., delays due to operating system schedulers) since
our experience is that these delays are much shorter than the delays
for machine assignment.

We elaborate on the difference between task resource requirements
and task placement constraints. Task resource requirements de-
scribe how muchresource a task consumes. For example, a task
may require 1.2 cores per second, 2.1 GB of RAM per second, and
100 MB of disk space. In contrast, task placement constraints
addresswhich resources are consumed. For example, a common
constraint in Google compute clusters is requiring a particular ver-
sion of the kernel (e.g., because of task dependencies on particular
APIs). This constraint has no impact on the quantities of resource
consumed. However, the constraint does affect the machines on
which tasks can schedule.
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Figure 1: Illustration of the impact of constraints on machine
utilization in a compute cluster. Constraints are indicated by
a combination of line thickness and style. Tasks can schedule
only on machines that have the corresponding line thickness
and style.

The constraints herein addressed are simple predicates on machine
properties. Such constraints can be expressed as a triple of: ma-
chine attribute, relational operator, and a constant. An example is
“kernel version is greater than 1.2.7”.

Why do Google tasks specify constraints? One reason is machine
heterogeneity. Machine heterogeneity arises because financial and
logistical considerations make it almost impossible to have identi-
cal machine configurations in large compute clusters. As a result,
there can be incompatibilities between the pre-requisites for run-
ning an application and the configuration of some machines in the
compute cluster (e.g., kernel version). To address these concerns,
Google tasks may request specific hardware architectures and ker-
nel versions. A second reason for task placement constraints is
application optimization, such as making CPU/memory/disk trade-
offs that result in tasks preferring specific machine configurations.
For these reasons, Google tasks will often request machine config-
urations with a minimum number of CPUs or disks. A third reason
for task constraints is problem avoidance. For example, adminis-
trators might use a clock speed constraint for a task that is observed
to have errors less frequently if the task avoids machines that have
slow clock speeds.

Figure 1 illustrates the impact of constraints on machine utilization
in a compute cluster. There are six machines M1, · · · ,M6 (depicted
by squares) and ten tasks T1, · · · ,T10 (depicted by circles). There
are four constraints c1, · · · ,c4. Constraints are indicated by the
combinations of line thickness and line styles. In this example, each
task requests a single constraint, and each machine satisfies a single
constraint. A task can only be assigned to a machine that satisfies
its constraint; that is, the line style and thickness of a circle must
be the same as its containing square. One way to quantify machine
utilization is the ratio of tasks to machines. In the example, the av-
erage machine utilization is 10 tasks÷6machines= 1.66 tasks per
machine. However, tasks with constraint c3 can be scheduled only
on machineM4 where there are 4 tasks. So, the utilization seen by
a newly arriving task that requests c3 is 4 tasks÷ 1machine= 4
tasks per machine. Now consider c2. There are four tasks that re-
quest constraint c2, and these tasks can run on three machines (M1,
M2, M6). So, the average utilization experienced by a newly arriv-
ing task that requests c2 is 4 tasks÷3machine= 1.33 tasks per ma-
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Figure 2: Components of a compute cluster performance
benchmark.

chine. In practice, it is more complicated to compute the effect of
constraints on resource utilization because: (a) tasks often request
multiple constraints; (b) machines commonly satisfy multiple con-
straints; and (c) machine utilization is a poor way to quantify the
effect of constraints in compute clusters with heterogeneous ma-
chine configurations.

We use two metrics to quantify the performance impact of task
placement constraints. The first metric istask scheduling delay, the
time that a task waits until it is assigned to a machine that satisfies
the task constraints. Task scheduling delay is the primary metric
by which performance assessments are done in Google compute
clusters because most resources are consumed by tasks that run
for weeks or months [24]. An example is a long running search
task that alternates between waiting for and processing user search
terms. A cluster typically schedules 5 to 10 long-running tasks per
hour, but there are bursts in which a hundred or more tasks must be
scheduled within minutes. For long-running tasks, metrics such as
response time and throughput have little meaning. Instead, the con-
cern is minimizing task scheduling delays when tasks are scheduled
initially and when running tasks are rescheduled (e.g., due to ma-
chine failures). Our second metric ismachine resource utilization,
the fraction of machine resources that are consumed by scheduled
tasks. In general, we want high resource utilizations to achieve a
better return on the investment in compute clusters.

Much of our focus is on developing realistic performance bench-
marks. As depicted in Figure 2, a benchmark has a workload gen-
eration component that generates synthetic tasks that are scheduled
by the Cluster Scheduler and executed on Serving Machines. In-
corporating task placement constraints into a performance bench-
mark requires changes to: (a) the Workload Generators to synthe-
size tasks so that they request representative constraints and (b) the
properties of Serving Machines so that they are representative of
machines in production compute clusters.

Thus far, our discussion has focused on task placement constraints
related to machine properties. However, there are more complex
constraints as well. For example, a job may request that no more
than two of its tasks run on the same machine (e.g., for fault toler-
ance). Although we plan to address the full range of constraints in
the future, our initial efforts are more modest. Another justification
for our limited scope is that complex constraints are less common
in Google workloads. Typically, only 11% of the production jobs
use complex constraints. However, approximately 50% of the pro-
duction jobs have constraints on machine properties.

To the best of our knowledge, this is the first paper to study the
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performance impact of task placement constraints. It is also the
first paper to construct performance benchmarks that incorporate
task placement constraints. The specifics of our contributions are
best described as answers to a series of related questions.

Q1: Do task placement constraints have a significant impact
on task scheduling delays?We answer this question using bench-
marks of Google compute clusters. The results indicate that the
presence of constraints increases task scheduling delays by a factor
of 2 to 6, which often means tens of minutes of additional task wait
time.

Q2: Is there a model of constraints that predicts their impact
on task scheduling delays?Such a model can provide a system-
atic approach to re-engineering tasks to reduce scheduling delays
and to configuring machines in a cost-effective manner. We argue
that task scheduling delays can be explained by extending the con-
cept of resource utilization to include constraints. To this end, we
develop a new metric, theUtilization Multiplier (UM) . UM is the
ratio of the resource utilizations seen by tasks with a constraint to
the average utilization of the resource. For example, in Figure 1
the UM for constraint c3 is 4

1.66 = 2.4 (assuming that there is a
single machine resource, machines have identical configurations,
and tasks have identical resource demands). As discussed in Sec-
tion 4, UM provides a simple model of the performance impact of
constraints in that task scheduling delays increase with UM.

Q3: How can task placement constraints be incorporated into
existing performance benchmarks? We describe how to syn-
thesize representative task constraints and machine properties, and
how to incorporate this synthesis into existing performance bench-
marks. We find that our approach accurately reproduces perfor-
mance metrics for benchmarks of Google compute clusters with a
discrepancy of only 13% in task scheduling delay and 5% in re-
source utilization.
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Figure 3: Fraction of tasks by type in Google compute clusters.

The remainder of this paper is organized as follows: Section 2 de-
scribes our experimental methodology. Section 3 assesses the im-
pact of constraints on task scheduling delays. Section 4 constructs
a simple model of the impact of constraints on task scheduling
delays. Section 5 describes how to extend existing performance
benchmarks to incorporate constraints. Section 6 discusses related
work. Section 7 contains our conclusions and future work.

2. EXPERIMENTAL METHODOLOGY
This section describes the Google task scheduling mechanism and
our experimental methodology.

Our experiments use data from three Google compute clusters. We
refer to these clusters as A, B and C. The clusters are typical in

that: (a) there is no dominant application; (b) there are thousands
of machines; and (c) the cluster runs hundreds of thousands of tasks
in a day.

There are four task types. Tasks of type 1 are high priority pro-
duction tasks; tasks of type 4 are low priority, and are not critical to
end-user interactions; tasks of type 2 and 3 have characteristics that
blend elements of task types 1 and 4. Figure 3 displays the fraction
of tasks by type in the Google compute clusters. These fractions
are used in Section 5 to construct workloads with representative
task placement constraints.

2.1 Google Task Scheduling
Next, we describe how scheduling works in Google compute clus-
ters. Users submit jobs to the Google cluster scheduler. A job
describes one or more tasks [24]. The cluster scheduler assigns
tasks to machines. A task specifies (possibly implicitly) resource
requirements (e.g., CPU, memory, and disk resources). A task may
also have task placement constraints (e.g., kernel version).

In principle, scheduling is done in order by task type, and is first-
come-first-serve for tasks with the same type. Scheduling a task
proceeds as follows:

• determine which machines satisfy the task’s constraints,
• compute the subset of machines that also have sufficient free re-

source capacity to satisfy the task’s resource requirements (called
thefeasible set),

• select the “best” machine in the feasible set on which to run the
task (assuming that the feasible set is not empty).

To elaborate on the last step, selecting the “best” machine does op-
timizations such as balancing resource demands across machines
and minimizing peak demands within the power distribution infras-
tructure. Machines notify the scheduler when a job terminates, and
machines periodically provide statistics so that the cluster sched-
uler has current information on machine resource consumption.

2.2 Methodology
We now describe our methodology for conducting empirical stud-
ies. A study is two or more experiments whose results are com-
pared to investigate the effects of constraints on task scheduling
delays and/or machine resource utilizations. Figure 4 depicts the
workflow used in our studies. There are four sub-workflows. The
data preparation sub-workflowacquires raw trace data from pro-
duction Google compute clusters. A raw trace is a kind of sched-
uler checkpoint (e.g., [31]) that contains the history of all schedul-
ing events along with task resource requirements and placement
constraints. Thebaseline sub-workflowruns experiments in which
there is no modification to the raw trace. This sub-workflow makes
use of benchmarks that have been developed for Google compute
clusters. The benchmarks are structured as in Figure 2. Workload
Generation is done by synthesizing tasks from traces of Google
compute clusters. Then, the real Google cluster scheduler makes
scheduling decisions. One version of the benchmark runs with real
Serving Machines. In a second version of the benchmark, there are
no Serving Machines; instead, the Serving Machines are mocked
using trace data to provide statistics of task executions on Serving
Machines. Our studies use the latter benchmark for two rea-
sons. First, it is unnecessary to use real Serving Machines. This is
because once task assignments are known, task scheduling delays
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Figure 4: Workflow used for empirical studies. TheTreatment
Specificationblock is customized to perform different bench-
mark studies.

and machine resource utilizations can be accurately estimated from
the task execution statistics in the traces. Second, and more impor-
tantly, it is cumbersome at best to use real Serving Machines in our
studies since evaluating the impact of task constraints requires an
ability to modify machine properties. The baseline sub-workflow
produces Baseline Benchmark Results.

The treatment sub-workflowperforms experiments in which ma-
chine properties and/or task constraints are modified from those
in the raw trace resulting in a Treatment Trace. The block la-
beledTreatment Specificationperforms the modifications to the
raw trace for an experiment. For example, in the next section, the
Treatment Specification removes all constraints from tasks in the
raw trace. This sub-workflow produces Treatment Benchmark Re-
sults.

These computations use the Results Analyzer, which inputs the
Baseline Benchmark Results and Treatment Benchmark Results to
compute evaluation metrics for task scheduling delays and machine
resource utilizations. Our studies employ raw traces from the above
mentioned three Google compute clusters. (Although many tasks
are scheduled in a day, most consume few resources.) We use a
total of 15 raw traces, with 5 traces from each of the three compute
clusters. The raw traces are obtained at the same time on succes-
sive days during a work week. Because scheduling considerations
are more important when resources are scarce, we select traces that
have higher resource utilizations.

3. PERFORMANCE IMPACT OF
CONSTRAINTS

This section addresses the questionQ1: Do task placement con-
straints have a significant impact on task scheduling delays?
Answering this question requires considering two factors in combi-
nation: (1) the supply of machine resources that satisfy constraints
and (2) the resources demanded by tasks requesting constraints.

The constraints satisfied by a machine are determined by the ma-
chine’s properties. We express machine properties as attribute-
value pairs. Table 1 displays machine attributes, the short names
of attributes that are used in this paper, and the number of possi-
ble values for each machine attribute To avoid revealing details

Short Description # of
Name values

arch architecture 2
num_cores number of cores 8
num_disks number of disks 21
num_cpus number of CPUs 8
kernel kernel version 7
clock_speed CPU clock speed 19
eth_speed Ethernet speed 7
platform Platform family 8

Table 1: Machine attributes that are commonly used in
scheduling decisions. The table displays the number of possible
values for each attribute in Google compute clusters.

Constraint Constraint Relational
Names Type Operator

c1.{1}.{1} arch =
c2.{1-5}.{1-2} num_cores =, ≥
c3.{1-3}.{1-2} max_disks =, ≥
c4.{1-2}.{1-2} min_disks =, ≥
c5.{1-4}.{1-2} num_cpus =, ≥
c6.{1-2}.{1} kernel =
c7.{1-2}.{1} clock_speed =
c8.{1}.{1} eth_speed =
c9.{1}.{1} platform =

Table 2: Popular task constraints in Google compute clusters.
The constraint name encodes the machine attribute, property
value, and relational operator.

of Google machine configurations, we do not list thevaluesof the
machine attributes.

We use Table 1 to infer the number of possible constraints. Recall
that a constraint is a triple of machine attribute, relational opera-
tor, and value. We only consider constraints that use attribute val-
ues of machine properties since constraints that use other values
are equivalent to constraints that use values of machine proper-
ties. For example, “num_cores > 9” is equivalent to “num_cores >
8” if the maximum value of num_cores is 8. It remains to count
the combinations of relational operators and machine properties.
For categorical variables, there are two possible relational opera-
tors ({=, 6=}), and for numeric variables there are 6 possible rela-
tional operators ({=, 6=,≤,<,≥,>}). Thus, the number of feasible
constraints is∑i vir i ≈ 400, wherevi is the number of values of the
i-th machine attribute andr i is the number of relational operators
that can be used with the machine attribute.

Not surprisingly, it turns out that only a subset of the possible con-
straints are used in practice. Table 2 lists the thirty-five constraints
that are commonly requested by tasks. The constraint type refers to
a group of constraints with similar semantics. With two exceptions,
the constraint type is the same as the machine attribute. The two
exceptions are max_disks and min_disks, both of which use the
num_disks machine attribute. For the commonly requested con-
straints, the relational operator is either= or ≥. Note that≥ is
used with max_disks and min_disks, although the intended seman-
tics is unclear. One explanation is that these are mistakes in job
configurations.

The constraint names in Table 2 correspond to the structure of con-
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straints. Our notation is:c <constraint type>.<attribute value
index>.<relational operator index>. For example, “c2.4.2” is a
num_cores constraint, and so it begins with “c2” since num_cores
is the second constraint type listed in Table 2. The “4” specifies
the index of the value of number of cores used in the constraint
(but 4 is not necessarily the value of the attribute that is used in
the constraint). The final “2” encodes the≥ relational operator.
In general, we encode the relational operators using the indexes 1
and 2 to represent= and≥, respectively.

We provide more insights into the constraints in Table 2. The
num_cores constraint requests a number of physical cores, which
is often done to ensure sufficient parallelism for application codes.
The max_disks constraint requests an upper bound on the num-
ber of disks on the machine, typically to avoid being co-located
with I/O intensive workloads. The min_disks constraint requests a
minimum number of disks on the machine, a common request for
I/O intensive applications. The kernel constraint requests a partic-
ular kernel version, typically because the application codes depend
on certain kernel APIs. The eth_speed constraint requests a net-
work interface of a certain bandwidth, an important consideration
for network-intensive applications. The remaining constraints are
largely used to identify characteristics of the hardware architecture.
The constraints included here are: arch, clock_speed, num_cpus,
and platform.

We now describe the supply of machine resources that satisfy con-
straints. Figure 5 plots the supply of compute cluster CPU, mem-
ory, and disk resources on machines that satisfy constraints. The
horizontal axis is the constraint using the naming convention in Ta-
ble 2. Hereafter, we focus on the 21 constraints (of the 35 con-
straints in Table 2) that are most commonly specified by Google
tasks. These constraints are the labels of the x-axis of Figure 5.
The vertical axis of that figure is the fraction of the compute clus-
ter resources that satisfy the constraint, with a separate bar for each
resource for each constraint. There is much evidence of machine
heterogeneity in these data. For example, constraint c3.1.2 is satis-
fied by machines accounting for 85% of the CPU of compute clus-
ter A, but these machines account for only 60% of the memory of
compute cluster A. On the other hand, constraint c6.2.1 is satis-
fied by machines that account for only 52% of the CPU of compute
cluster A but 75% of the memory.

Next, we consider task demands for constraints. Figure 6 displays
the demand by task type for compute cluster resources that sat-
isfy the constraints in Table 2. These data are organized by task
type. The horizontal axis is the constraint, and the vertical axis is
the fraction of the tasks (by type) that request the constraint. Note
that it is very common for tasks to request the machine architec-
ture constraint (c1.1.1). This seems strange since from Figure 5 we
see that all machines satisfy c1.1.1 in the compute clusters that we
study. One reason may be that historically there has been a diver-
sity of machine architectures. Another possible explanation is that
the same task may run in other compute clusters, where constraint
c1.1.1 does affect scheduling. Other popular constraints are: the
number of cores (c2.*.*), the kernel release (c6.*.*), and the CPU
clock speed (c7.*.*).

We note in passing that even more insight can be provided by ex-
tending Figure 6 to include the resources requested by tasks. How-
ever, these are high dimension data, and so they are challenging to
present. Further, these data do not provide a complete picture of
the impact of constraints on task scheduling delays in that schedul-

ing decisions depend onall constraints requested by the task, not
just the presence of individual constraints. The constraint charac-
terizations described in Section 5 address this issue in a systematic
manner.

Returning to Q1, we assess the impact of constraints on task schedul-
ing delays. Our approach is to have the Treatment Specification in
Figure 4 be “remove all constraints”. Our evaluation metric isnor-
malized scheduling delay, the ratio of the task scheduling delay
in the baseline sub-workflow in which constraints are present to
the task scheduling delay in the treatment sub-workflow in which
all constraints are removed. Thus, a normalized scheduling delay
of 1 means that there is no change from the baseline and hence
constraints have no impact on task scheduling delays.

Figure 7 plots normalized scheduling delays for the three compute
clusters. The horizontal axis is the raw trace file used as input for
the experiment (see Figure 4). The vertical axis is the normalized
scheduling delay, and there are separate bars for each task type.
Observe thatthe presence of constraints increases task schedul-
ing delay by a factor of 2 to 6. In absolute units, this often means
tens of minutes of additional task wait time. The reason for this
additional wait time is readily explained by examining the supply
of machine resources that satisfy constraints and the task demand
for these resources. For example, scheduling delays are smaller
for tasks that request the first two num_cpus constraints (c5.[1-
2].*) compared with tasks that request the clock_speed constraints
(c7.*.*). This is because: (a) there are more machine resources
that satisfy c5.[1-2].* than those that satisfy c7.*.* (see Figure 5);
and (b) the task demand for c7.*.* is much greater than that for
c5.[1-2].* (see Figure 6).

From the foregoing, we conclude that the presence of constraints
dramatically increases task scheduling delays in the compute clus-
ters we study. The degree of impact does, however, depend on the
load on the compute cluster. Our analysis focuses on periods of
heavy load since it is during these times that problems arise. Dur-
ing light loads, constraints may have little impact on task schedul-
ing delays. However, our experience has been that if compute clus-
ters are lightly loaded, then administrators remove machines to re-
duce costs. This results in much heavier loads on the remaining
machines, and hence a much greater impact of constraints on task
scheduling delays.

In this and the next section, we do not report results for resource uti-
lizations because our experiments do not reveal significant changes
in resource utilizations due to constraints. This is likely because
only a small fraction of tasks are unable to schedule due to task
placement constraints, and the impact of constraints on utilization
is modest. However, the delays encountered by tasks with con-
straints can be quite large, and so the presence of constraints on
task average scheduling delays can be large.

4. MODELING PERFORMANCE WITH CON-
STRAINTS

This section provides insight into how constraints impact task schedul-
ing delays. Our approach is motivated by insights from queuing
theory [21], in particular, that scheduling delays increase with re-
source utilizations.

Our initial hypothesis is that task scheduling delays can be ex-
plained by average resource utilizations without considering con-
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Figure 5: Fraction of compute cluster resources on machines thatsatisfy constraints.
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Figure 6: Fraction of tasks that have individual constraints.

1 2 3 4 5
Trace File

Ta
sk

 S
ch

ed
u

lin
g

 D
el

ay

0

2

4

6

8

10
TaskType 1
TaskType 2
TaskType 3
TaskType 4

1 2 3 4 5
Trace File

Ta
sk

 S
ch

ed
u

lin
g

 D
el

ay

0

2

4

6

8

10
TaskType 1
TaskType 2
TaskType 3
TaskType 4

1 2 3 4 5
Trace File

Ta
sk

 S
ch

ed
u

lin
g

 D
el

ay

0

2

4

6

8

10
TaskType 1
TaskType 2
TaskType 3
TaskType 4

(a) Compute Cluster A (b) Compute Cluster B (c) Compute Cluster C

Figure 7: Normalized task scheduling delay, the ratio of the task scheduling delays with constraints to task scheduling delays when
constraints are removed.

straints. To test this hypothesis, we conduct studies in which we
add to the raw trace 10,000 Type 1 tasks with small resource re-
quirements. We restrict ourselves to task type 1 because of their
importance. The added tasks have small resource requirements to
ensure that they would schedule if there are no task placement con-
straints. Also, since the tasks have minimal resource requirements,
they do not affect resource utilizations; hence, for a single compute
cluster, tasks with different constraints see the same average re-
source utilization. We conduct a total of 315 studies, one study for
each of the 15 raw trace files and each of the 21 constraints that we
consider. Then, for each constraintc and each compute cluster, we

average the delays observed in the five benchmarks of the compute
cluster. From this, we calculate normalized task scheduling delays
in the same way as is described in Section 3.

Figure 8 plots the results for each compute cluster. Recall, that the
experiments are structured so that tasks scheduled on a compute
cluster see the same average resource utilizations regardless of the
task constraint. Thus, if resource utilization without constraints is
sufficient to explain task scheduling delays, then the points for a
compute cluster should be grouped closely around a single value of
task scheduling delay. However, this is not the case. Instead, we
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Figure 8: Scheduling delays for tasks with a single constraint.
Each point is the average task scheduling delay for 10,000 type
1 tasks with one of the 21 constraints we study.

see a wide dispersion of points for each of the compute clusters.
We conclude that resource utilization by itself cannot explain task
scheduling delays if there are task placement constraints.

The foregoing motivates the need to extend the concept of resource
utilization to include constraints. We use the termeffective utiliza-
tion to refer to the resource utilizations seen by a task with con-
sideration for its constraints. Modeling effective resource utiliza-
tion allows us to answer questionQ2: “Which constraints most
impact task scheduling delays?” And, answering this question
is crucial to determine actions to take to reduce task scheduling
delays by modifying applications codes and/or changing machine
configurations.

We proceed based on insights obtained from Figure 1. Rather
than computing effective utilization directly, we compute the ra-
tio of effective utilization to average utilization. Our metric is
the Utilization Multiplier (UM) . UM is computed for a particu-
lar constraintc and a resourcer. In our analysis,r is in the set
{CPU, memory, disk}. Computing separate values of UM for each
r allows us to address heterogeneous machine configurations.

We construct UM by considering both the task demand imposed by
requests for constraintc and the supply of machine resources for
which c is satisfied. We begin with task demand. Letdcr be the
demand for resourcer that is seen by tasks that request constraint
c, and letdr be the total demand for resourcer across all tasks.
We use the superscriptD to indicate a demand metric. So,f D

cr is
the fraction of the demand for resourcer due to tasks requesting
constraintc:

f D
cr =

dcr

dr
.

Next, we analyze the supply of machine resources. Letscr be the
capacity of resourcer on machines that satisfy constraintc. (Note
that machine capacity is the “raw” supply without consideration
for demands from other tasks.) Letsr denote the total capacity of
resourcer on all machines. We use the superscriptS to denote a
supply metric. So,f S

cr is the fraction of total resourcesr that satisfy
c:

f S
cr =

scr

sr
.

It is more convenient to consider the vector of resources rather than

resources individually. Thus, we define forn resources,
dc = (dc1, · · · ,dcn), sc = (sc1, · · · ,scn),
d = (d1, · · · ,dn), s= (s1, · · · ,sn),
fDc = ( f D

c1, · · · , f D
cn) andfSc = ( f S

c1, · · · , f S
cn).

Note thatfSc, f
D
c ≤ 1, where1 is the unit vector with dimensionn.

UM is the ratio of the fraction of the resource demand for a con-
straint to its supply. That is:

ucr =
f D
cr

f S
cr
. (1)

In vector notation, this isuc =
fD
c
fS
c

where the division is done ele-

ment by element. In what follows, all vector operations are done
element by element.

uc provides a number of insights. First, consider a constraintc that
is requested by all tasks and is satisfied by all machines. Then,fSc =
1= fDc , and souc = 1. That is, if UM is 1, then the constraint has no
impact on the resource utilizations seen by tasks with the constraint.
In general, we expect that constraints limit the machines on which
a task can run. This implies thatfSc < 1. There are some Google
compute clusters in which most resource demands come from tasks
that request constraints. For these compute clusters it is likely that
for one or morec fDc > fSc, and souc > 1. That is, in this case, a
task requestingc sees larger than average resource utilizations. On
the other hand, in some Google compute clusters, tasks request a
constraintc that will place the tasks on less desirable (e.g., older)
machines thereby reducing effective resource utilization. Such a
strategy works iffSc > fDc so thatuc < 1.

uc can also be interpreted as an adjusted resource utilization, which
motivates our phrase “effective resource utilization.” Letρc be the
vector of resource utilizations for machines that satisfy constraint
c. That is,ρc =

dc
sc

. Let ρ be the vector resource utilizations for all

machines, and soρ = d
s . So,

uc =
fDc
fSc

=
dc

d
s
sc

=
dc

sc

s
d
=

ρc

ρ
.

That is, the utilization of resourcer seen by tasks that request con-
straintc is a factor ofucr larger than the average utilization of re-
sourcer.

Often, task scheduling delays are determined by the bottleneck re-
source rather than the entire resource vector. The bottleneck re-
source is the resource that has the largest utilization. Thus, we
define themaximum UM , denoted byu∗c, to be the scalar

u∗c = maxr (ucr). (2)

Figure 9 displaysuc by CPU, memory, and disk for Type 1 tasks.
Although the values ofuc vary from compute cluster to cluster,
there is a general consistency in the relative magnitude ofuc. For
example,uc.1.1.1 is consistently smaller than the other constraints,
anduc.2.1.2 is consistently one of the largest values. For the most
part, uc > 1. The one exception is c1.1.1 where there are a few
instances in whichuc ≈ 1. At a first glance, this is surprising since
Figure 6 shows that a large fraction of tasks request c1.1.1. How-
ever, UM is the ratio of the demand for resources withc to the sup-
ply of these resources. From Figure 5, we know that there is a large
supply of machine resources that satisfy c1.1.1. Hence,uc.1.1.1 is
small.

We return to the experiment described earlier in this section to see
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Figure 9: Utilization Multiplier by resource for constraints.
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Figure 10: Impact of maximum utilization multiplier on normalized task scheduling delay.
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Figure 11: Constraint frequency vectors for machine statisticalclusters for compute clusters A and B. The numbers are the percent-
age of machines in the statistical cluster that satisfy the constraint.
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Figure 12: Resource distribution for machine statistical clusters.

if UM provides a better explanation of task scheduling delays than
average resource utilization. Figure 10 displays the relationship
betweenu∗c and normalized task scheduling delay. Note that for
the most part,UM provides a simple model of the performance
impact of constraints in that task scheduling delays increase
with maximum UM ( u∗c). The relationship is linear for smaller
values ofu∗c, but increases faster than linearly for largeru∗c. Such
curves are common in queuing analysis [21].

Figure 10 indicates that if we order constraints by UM, then we
have also ordered constraints by their impact on task scheduling
delays. From Figure 9, we see that in all three compute clusters,
the constraint with the largest UM (and hence the largest impact
on task scheduling delay) is c2.1.2, the first num_cores constraint.
For compute cluster A, the constraints with the second and third
largest impact on scheduling delays are clock_speed (c7.1.1) and
min_disks (c4.2.2) constraints respectively. The situation is a bit
different for compute cluster B. Here, the second and third largest
scheduling delays are due to max_disks (c3.2.1) and min_disks
(c4.2.2) constraints.

Much insight can be obtained from the simple model that task
scheduling delays increase with UM. For example, consider the
problem of resolving large scheduling delays for a task that has
small resource requirements and many task placement constraints.
We first compute the UM of the task’s constraints in the compute
cluster in which the task has long scheduling delays. We focus on
the constraints with the largestu∗c. It may be that some of these
constraints can be eliminated from the task’s request, especially if
the constraints are actually preferences rather than requirements.
However, if constraints with largeu∗c cannot be eliminated, an al-
ternative is to find another compute cluster in whichu∗c is smaller.
Such a cluster will either have less demand for machine resources
that satisfyc or a larger supply of such resources.

5. BENCHMARKING WITH CONSTRAINTS
This section investigates how to synthesize constraints to produce
representative performance benchmarks. There are two parts to
this: (1) characterizing task constraints and machine properties;
and (2) incorporating synthetic constraints and properties into per-
formance benchmarks.

5.1 Constraint Characterization

To characterize task placement constraints, we must address both
tasks and machines. We use statistical clustering1 to construct
groups of tasks and machines, a commonly used approach in work-
load characterization [4]. Atask statistical cluster is a group of
tasks that are similar in terms of constraints that the tasks request.
A machine statistical clusteris a group of machines that are sim-
ilar in terms of constraints that the machines satisfy. Tasks and
machines belong to exactly one statistical cluster.

Task and machine statistical clusters have a common structure, and
so the following definitions apply to both. To this end, we use the
term entity to refer to both task and machine. A statistical cluster
has two metrics. The first metric is the scalarcluster occurrence
fraction . This is the fraction of all entities (of the same type in the
same compute cluster) that are members of the statistical cluster.
The second metric is theconstraint frequency vector. This vector
has one element for each constraintc. The vector element forc is
the scalarconstraint occurrence fraction, which is the fraction of
entities in the statistical cluster that “have” the constraintc. For
tasks, “have” means that the task requests the constraint, and for
machines “have” means that the machine satisfies the constraint.

We use the termmachine constraint characterizationto refer to
the set of machine statistical clusters. Thetask constraint charac-
terization is defined analogously. Aconstraint characterization
is the combination of the machine constraint characterization and
the task constraint characterization.

We construct machine statistical clusters by using a binary feature
vector. For each machine, thei-th element of its feature vector
is 1 if the machine satisfies thei-th constraint; otherwise, the ele-
ment is 0. The elements of the feature vector are indexed by de-
scending value of the maximum UM of the constraint. That is,
u∗ci

≥ u∗ci+1
. Initially, we used k-means [17] to construct machine

statistical clusters. However, this proved to be unnecessarily com-
plex for our data. Rather, it turns out that a simple approach based
on sorting works extremely well. Our approach starts by sorting the
machine feature vectors lexicographically. We form machine statis-
tical clusters by placing together machines that are adjacent in the
sorted sequence as long as no element in their constraint frequency
vector differs by more than 0.05. The choice of 0.05 is empirical; it
is based on the trade-off between the goals of having few statistical

1Unfortunately, the statistics and cloud computing communities both usethe term
cluster but with very different semantics. We distinguish between these semantics by
using the phrases "statistical cluster" and "compute cluster".
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clusters and having statistical clusters with homogeneous machine
properties. The result is four machine statistical clusters for each
of the three compute clusters that we study.

For task statistical clusters, we also use a binary feature vector.
Here, elementi is 1 if the task requests constraintci ; otherwise, the
vector value is 0. Task statistical clusters are constructed using k-
means [17] on the task feature vector. K-means is used to construct
task statistical clusters because many values in the task constraint
frequency vectors are close to 0.5 and this precludes using simple
clustering algorithms as we did with constructing machine statisti-
cal clusters.
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Figure 13: Occurrence fraction for machine statistical clusters.

Algorithm 1 : Extend an existing benchmark to include task
placement constraints.
Require: Existing benchmark that generates machine resource ca-

pacities and task resource requirements.
1: if event = benchmark initializationthen
2: Assign properties to machines using Algorithm 2.
3: end if
4: if event = task arrivalthen
5: Assign constraints to the task using Algorithm 3.
6: end if
7: if event = task is a candidate to run on a machinethen
8: Determine if the machine satisfies the constraints required

by the task using Algorithm 4.
9: end if

Figure 11 displays the constraint frequency vector for machine sta-
tistical clusters A and B. The results for compute cluster C are
similar to those for A and B. More complete data can be found
in [28]. The horizontal axis is the machine statistical cluster, and
the vertical axis is the constraint. Each point is sized in proportion
to the fraction of machines in the statistical cluster that satisfy the
constraint (with the actual value marked alongside). For example,
in Figure 11(a), about 74.2% of the machines that belong to statis-
tical cluster 1 satisfy constraint c5.1.2. We see that the machine
statistical clusters are fairly consistent between the compute clus-
ters. Indeed, even though there are thousands of machines in each
compute cluster, the variation in machine properties can largely be
explained by four statistical clusters.

Figure 12 displays the fraction of resources supplied by the ma-
chine statistical clusters. The horizontal axis is the machine sta-
tistical cluster, and the vertical axis is the fraction of resources by
resource type. For instance, in Figure 12 (a), approximately 25%

Algorithm 2 : Assign properties to a machine.
Require: MachineOccurrenceFraction (Figure 13), MachineCon-

straintFrequencyVector (Figure 11), Machine
1: cluster = randomly choose cluster weighted by MachineOccur-

renceFraction
2: mcfv = MachineConstraintFrequencyVector for cluster
3: for constraint in mcfvdo
4: if random(0,1)≤mcfv[constraint].ConstraintOccurrenceFraction

then
5: Machine.add(property that satisfies the constraint)
6: end if
7: end for

Algorithm 3 : Assign task placement constraints to a task.
Require: TaskOccurrenceFraction(Figure15), TaskConstraintFre-

quencyVector(Figure14), Task
1: cluster = randomly choose cluster weighted by TaskOccur-

renceFraction
2: tcfv = TaskConstraintFrequencyVector for cluster
3: for constraint in tcfvdo
4: if random(0,1)≤ tcfv[constraint].ConstraintOccurrenceFraction

then
5: Task.add(constraint)
6: end if
7: end for

of the memory capacity in compute cluster A is on machines be-
longing to statistical cluster 1.

Figure 13 shows the occurrence fractions of the machine statistical
clusters in the three Google compute clusters. The horizontal axis
is the machine statistical cluster and the vertical axis is the fraction
of machines that belong to the statistical cluster. For example, in
Figure 13approximately 20% of the machines in compute cluster A
belong to machine statistical cluster 1.

Figure 14 displays the constraint frequency vectors of the task sta-
tistical clusters for compute clusters A and B. The figure is struc-
tured in the same way as for the machine statistical clusters in Fig-
ure 11. The horizontal axis is the task statistical cluster; the vertical
axis is the constraint; each point is sized in proportion to the frac-
tion of tasks in the statistical cluster that request the constraint (with
the actual value marked alongside). The task statistical clusters are
more difficult to interpret than the machine statistical clusters be-
cause: (a) many constraints have values closer to 0.5; (b) there is
more similarity between the statistical clusters; and (c) it is difficult
to relate task clusters in one compute cluster to task clusters in an-
other compute cluster. Figure 15 displays the occurrence fractions
of the task statistical clusters by task type. The horizontal axis is
the task statistical cluster, and the vertical axis is the fraction of
tasks (by type) that belong to the statistical cluster. For instance, in
Figure 15 (a), approximately 4% of Type 1 tasks belong to task sta-
tistical cluster 1. To provide further insight into the nature of tasks
in clusters, Figure 16 shows the distribution of resources demanded
(by task type) for the 10 task statistical clusters. These data can be
used in performance benchmarks to specify resource requirements
that are representative of Google compute clusters.

5.2 Extending Performance Benchmarks
Next, we show how to extend existing performance benchmarks
to incorporate task constraints and machine properties. First, we
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Figure 14: Constraint frequency vectors for task statistical clusters for compute clusters A and B. The numbers are the percentage
of tasks in the statistical cluster that request the constraint.
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Figure 15: Occurrence fraction for task statistical clusters.
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Figure 16: Resource distribution for task statistical clusters.

detail how to characterize and synthesize representative task con-
straints and machine properties. Then, we show that how to incor-

porate this synthesis into existing performance benchmarks such
as those described in [13,16].
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Algorithm 4 : Determine if a task can be run on a machine.
Returns TRUE if Task can run on Machine.
Require: Task, Machine
1: for constraint in Task.constraints()do
2: if constraint is not in Machine.constraints()then
3: return FALSE
4: end if
5: end for
6: return TRUE

Algorithm 1 describes the logic added to such an existing bench-
mark in order to incorporate representative constraints. This logic
is event-based, with processing done when the following events oc-
cur: (a) the benchmark is initialized; (b) a task arrives; and (c) a
task is a candidate to be placed on a machine.

Algorithm 2 details how to assign properties to a machine. In step
1, a machine statistical cluster is chosen randomly based on the oc-
currence fractions of machine statistical clusters (e.g., Figure 13).
The algorithm uses the constraint frequency vector of the chosen
machine statistical cluster (e.g., Figure 11) and a random number
generator to select constraints that the machine must satisfy. The
structure of constraints in Figure 2 makes it trivial to specify a
property that satisfies a constraint. For example, if the constraint
is “num_cores≥ 2”, then the machine is assigned the value of 2
for its num_cores attribute. In general, there can be logical incon-
sistencies in the properties inferred in this manner. However, this
problem does not arise for the set of constraints of the four machine
statistical clusters for the compute clusters that we study.

Algorithm 3 assigns constraints to tasks in a manner similar to what
Algorithm 2 does for machines. A task statistical cluster is chosen
randomly based on the occurrence fractions of task statistical clus-
ters (e.g., Figure 15). Then, the constraint frequency vector of the
chosen task statistical cluster (e.g., Figure 14) is used to assign con-
straints. Note that the logic assumes that the task type is known. If
this is not the case, a task type can be chosen randomly using the
distributions in Figure 3.

Algorithm 4 describes the logic added to an existing compute clus-
ter scheduler to take into account task constraints. Before a task
is assigned to a machine, the cluster scheduler calls Algorithm 4.
The algorithm returns true only if the machine satisfies all of the
constraints required by the task.

How accurately do the foregoing algorithms reproduce the per-
formance characteristics of Google compute clusters? To answer
this question, we construct experiments by changing the Treatment
Specification block in Figure 4 to synthesize constraints for ma-
chines and tasks using Algorithm 1. Specifically, for all machines
in the trace, we remove the machine’s properties and then apply
Algorithm 2 to generate synthetic constraints that in turn determine
the properties that are assigned to the machines. Similarly, for all
tasks in the trace, we remove its constraints and then apply Al-
gorithm 3 to generate synthetic constraints that replace the task’s
constraints in the raw trace. Each study produces two metrics: av-
erage error in task scheduling delay and average error in machine
resource utilization. The error in task scheduling delays is com-
puted as the percent deviation of the average task scheduling delay
in the treatment (synthesized constraints) from the average schedul-
ing delay in the baseline (constraints in the raw trace). The error in
compute cluster resource utilization is computed similarly.

Figure 17 shows the results of our evaluation of the workload char-
acterizations for task scheduling delays. Figure 17(a) displays the
errors introduced if we use synthetic constraints for tasks and the
actual machine properties. We see that synthesizing task constraints
introduces an error of approximately 8%. Figure 17(b) displays the
errors in task scheduling delays if only machines constraints are
synthesized. Here, we see an average error of around 5%. Fig-
ure 17(c) displays the errors if both task and machine constraints
are synthesized. The average error is approximately 13%.

Figure 18 analyzes the errors in compute cluster resource (CPU,
memory and disk) utilization introduced by using synthetically gen-
erated constraints. Figure 18(a) displays the results when we syn-
thesize task constraints and use the actual machine properties. We
see that this introduces an error of around 6%. Figure 18(b) shows
the errors resulting from synthesizing machines constraints and us-
ing the actual tasks constraints. Here, we see an average error of
around 3%. In Figure 18(c), we see that the average error is ap-
proximately 5% if both task and machine constraints are synthe-
sized.

From these results, we conclude thatour constraint synthesis pro-
duces representative workloads for Google compute clusters.
Specifically, synthetic workloads generated using our constraint
characterizations result in task scheduling delays that differ by an
average of 13% from what is produced by using the production
machines/tasks. And, our approach produces machine resource uti-
lizations that differ by an average of average of 5% from the pro-
duction machines/tasks.

Although our methodology for building performance benchmarks
that incorporate constraints is illustrated using data from Google
compute clusters, the methodology is not specific to Google. Our
characterization of constraints for machines and tasks is done in
a general way using clustering, cluster occurrence fractions, and
cluster constraint frequency vectors. Our approach to incorporating
these characterizations into performance benchmarks is also quite
general, as described in Algorithm 1-Algorithm 4.

6. RELATED WORK
Many compute clusters incorporate task placement constraints. Ex-
amples include: the Condor system [10] that uses the ClassAds
mechanism [31], IBM’s load balancer [18], the Utopia system [32],
and grid toolkits [15].

Other related work includes predicting the queuing delay [29], ad-
vance reservation and queue bounds estimation [3, 25] for jobs in
Grid computing and parallel supercomputers context. Although
these studies address the performance impact of resource require-
ments, they do not consider task placement constraints. A central
part of our contribution is the characterization of task placement
constraints in terms of task and machine statistical clusters and their
properties (e.g., occurrence fractions and frequency vectors).Fur-
ther, we introduce a new metric, Utilization Multiplier (UM), that
extends resource utilization to include constraints. UM provides
a simple model of task scheduling delays in the presence of con-
straints in that task scheduling delays increase with UM.

There is a vast literature on workload characterization for distributed
systems in general and compute clouds in particular. Examples in-
clude: web server workload characterization [1,2,14], scientific and
high performance computing workloads [5, 9, 23], chip-level char-
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Figure 17: Percent error in task scheduling delay resulting from using synthetic task constraints and/or machine properties.
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Figure 18: Percent error in compute cluster resource utilizations resulting from using synthetic task constraints and/or machine
properties.

acteristics [22,27], resource consumption of Google compute clus-
ters [6,24], and characterizations of MapReduce [7,12,19]. Further,
there has been work in the area of workload generation and bench-
marking including: MapReduce workload generation [8, 16, 20],
Web 1.0 benchmark tools such asab, httpperf, Web 2.0 bench-
marks [30], and the Yahoo! Cloud Servicing Benchmark [11].
However, none of the foregoing provide characterizations of task
placement constraints and machine properties, nor does the exist-
ing literature consider how to incorporate constraints into perfor-
mance benchmarks.

7. CONCLUSIONS AND FUTURE WORK
There has been much prior work on task scheduling that consid-
ers resource requirements that addresshow muchresource tasks
consume. This paper addresses the performance impact of task
placement constraints. Task placement constraints impactwhich
resources tasks consume. Task placement constraints, such as char-
acteristics specified by the Condor ClassAds mechanism, provide
a way to deal with machine heterogeneity and diverse software re-
quirements in compute clusters. Our experience at Google sug-
gests that task placement constraints can have a large impact on
task scheduling delays.

This paper is the first to develop a methodology that addresses the
performance impact of task placement constraints. We show that
in Google compute clusters, constraints can increase average task
scheduling delays by a factor of 2 to 6, which often means tens
of minutes of additional task wait time. To understand why, we
introduce a new metric, the Utilization Multiplier (UM), that ex-

tends the concept of resource utilization to include constraints. We
show that task scheduling delays increase with UM for the tasks
that we study. We also show how to characterize and generate rep-
resentative task constraints and machine properties, and how to
incorporate synthetic constraints and properties into existing per-
formance benchmarks. Applying our approach to Google compute
clusters, we find that our constraint characterizations accurately re-
produce production performance characteristics. Specifically, our
constraint synthesis produces benchmark results that differ from
production workloads by an average of 13% in task scheduling de-
lays and by an average of 5% in machine resource utilizations.

Although our data is obtained from Google compute clusters, the
methodology that we develop is general. In particular, the UM
metric applies to any compute cluster that employs a ClassAds style
of constraint mechanism. We look forward to seeing data that pro-
vides insights into the performance impact of task placement con-
straints in other compute clusters.

We are pursuing two extensions to this work. The first is to address
constraints that are preferences rather than requirements. For ex-
ample, in some situations, a task may prefer to run on a machine
with 4 cores, but the task may not require this. We expect that UM
will be a useful tool in these studies since it allows us to under-
stand effective task utilizations with and without satisfying a pref-
erential constraint. A second extension is to study constraints that
apply to collections of tasks. For example, there may be a require-
ment that tasks be assigned to the same machine because of shared
data. Characterizing and benchmarking with inter-task constraints
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is complicated because tasks and machines cannot be addressed in
isolation.
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