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Abstract— This paper introduces space-filling trees and an-
alyzes them in the context of sampling-based motion planning.
Space-filling trees are analogous to space-filling curves, but have a
branching, tree-like structure, and are defined by an incremental
process that results in a tree for which every point in the
space has a finite-length path that converges to it. In contrast
to space-filling curves, individual paths in the tree are short,
allowing any part of the space to be quickly reached from the
root. We compare some basic constructions of space-filling trees
to Rapidly-exploring Random Trees (RRTs), which underlie a
number of popular algorithms used for sampling-based motion
planning. We characterize several key tree properties related to
path quality and the overall efficiency of exploration and conclude
with a number of open mathematical questions.

I. INTRODUCTION

We define and analyze an iterative process whereby a single
point in a continuous space is connected via a continuous path
to every other point in the space. The result is called a space-
filling tree, in which every path has finite length and for every
point in the space, there is at least one path that converges
to it. We are inspired by space-filling curves, which started in
the 19th century with Peano [1]. Some well-known examples
are the Hilbert curve [2], Morton curves [3], and Sierpinski
curves [4]; see [5]. The primary mathematical motivation was
to illustrate one of the bizarre consequences of [0, 1] and [0, 1]2

having the same cardinality. Space filling curves have also
gained much recognition due to their fractal properties. Space-
filling curves have a wide-range of interesting applications
in mathematics and geometry [6, 7], biology and computer
graphics [8, 9], cryptography [10], image compression [11],
and in indexing large datasets [12, 13]. We believe there may
be similar potential for space-filling tree constructions.

Structures resembling space-filling trees are common in
nature. Mandelbrot showed many examples of naturally-
occurring fractal structures [14], such as the vascular networks
of trees, ferns, leaves, and river deltas. Examples in animal
biology include the pulmonary network of the lungs, and the
blood vessel networks of animal circulatory systems [15].
Lindenmayer systems (L-systems) [16] are used in computer
graphics for representing and generating models of organic
objects such as trees, bushes, flowers, and seashells [8, 9]
and in crop sciences for modeling root systems and analyzing
their absorption properties [17]. There are also potentially
useful connections to industrial applications, such as designing
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Fig. 1. Six iterations of the square space-filling tree.

electrical power, gas, or water distribution systems for cities.
Engineers already use the “H-tree” or H-fractal in VLSI design
as a clock distribution network for routing timing signals
to all parts of a chip with equal propagation delays [18],
as well in the analysis of worst-case bounds for traveling
salesman problems [19]. Fundamentally, searching continuous
spaces is inherent to computer science problems, such as path
planning, data mining, and optimization. For example, path
planning algorithms search a continuous space for a path that
enables a robot to move from one configuration to another
while avoiding collisions [20, 21]. One successful family
of approaches is based on Rapidly-exploring Random Trees
(RRTs) [22], which can be considered as a Monte Carlo or
stochastic variant of the trees mainly studied here. Recent
works have studied and improved path quality in RRTs [23,
24]. Our work may provide additional insights in this growing
area by introducing a new measure of overall tree quality, as
opposed to the quality of an individual path. We believe that
asymptotically optimizing the overall tree length is important
to efficient exploration in motion planning.

Section II fully covers the basic cases such as trees that
fill square and triangular planar regions. These are the easiest
examples to understand and analyze. Section III will then
generalize it to other space-filling trees that have self-similar,



fractal structure. Section IV introduces a more general con-
struction, which iteratively extends the tree by connecting each
point in a dense sequence to the nearest tree vertex.

II. BASIC SPACE-FILLING TREES

A. Filling a Square

We will “fill” the 2× 2 square, given by the set [−1, 1]2 ⊂
R2. Figure 1 shows six iterations of the construction that will
be described. We will show that path lengths from the start
to arbitrary points in the space are finite, unlike linear space-
filling curves such as the Hilbert curve. The construction we
use is also more efficient at covering the space in terms of
total path distances and maximum path length as compared to
an H-tree construction.

We define a tree T to consist of a set V of vertices, each
of which is a point in [−1, 1]2, and a set E of edges, each of
which is a line segment that connects a pair of vertices.

A space-filling tree is actually defined as an infinite se-
quence of trees, T = {T0, T1, T2, . . .}, in which each Ti has
associated vertices Vi and edges Ei. Furthermore, the trees in
T monotonically grow so that Vi ⊂ Vj and Ei ⊂ Ej for all
i < j.

Now consider the following process, which was used for
Figure 1. Initially, V0 = {(0, 0)}, yielding the root of
the tree, and E0 = ∅. Next, divide the 2 × 2 square
into four quadrants and place a vertex at the center of
each 1 × 1 square. Let V ′1 denote this set of new vertices,
V ′1 = {(1/2, 1/2), (−1/2, 1/2), (−1/2,−1/2), (1/2,−1/2)}.
An edge is formed from every vertex in V ′1 to the root, yielding
four edges in E1. The tree T1 after one iteration is given by
V1 = V0 ∪ V ′1 and E1.

In the next iteration, each of the four 1×1 squares is divided
into quadrants, and a new vertex is placed at the center of each
quadrant. This is perfect symmetry with respect to the previous
iteration; the structure is simply scaled by a factor of 1/2 and
shifted. The set V ′2 of new vertices contains all 16 ways to
make points in which each coordinate is ±1/4 or ±3/4. Let
E′2 be the set of new edges. For each vertex v ∈ V ′2 , an edge
is placed in E′2 that connects v to the vertex in V ′1 that lies at
the center of the 1× 1 square that contains v. The tree T2 is
given by V2 = V1 ∪ V ′2 and E2 = E1 ∪ E′2.

Each subsequent iteration proceeds in the same way. The
tree Ti+1 is constructed from Ti as follows. Each vertex in
v ∈ V ′i lies at the center of a square of width 1/2i−1. That
square is divided into quadrants, with a vertex being placed
into V ′i+1 for the center of each quadrant. An edge is placed
in E′i+1 for each of these four vertices, connecting it to v. The
tree Ti+1 is given by Vi+1 = Vi∪V ′i+1 and Ei+1 = Ei∪E′i+1.
Note that some edges in E′i+1 may overlap with parts of edges
in Ei.

Now that the incremental process has been defined, suppose
it is iterated indefinitely, resulting in a sequence Tsquare of
trees. We will next study the properties of Tsquare.

For any sequence T of trees, let V ∗ = ∪i∈NVi, in which
N is the set of natural numbers. A tree sequence T is called
space-filling in a space X if for every x ∈ X , there exists a

path in the tree that starts at the root and converges to x. This
convergence can be stated in terms of the vertices along the
path from the root to x. For many x ∈ X , this convergence
may occur only in the limit, rather than actually reaching x.

Theorem 1: Tsquare is a space-filling tree.

Proof: To establish the theorem, we argue that for any point
p ∈ [−1, 1]2, there exists a sequence of vertices in V ∗ that
converges to it. Without loss of generality, assume p ∈ [0, 1]2.
The arguments below extend by symmetry to the other three
quadrants.

For any (x, y) ∈ V ∗, let bx and by denote the binary
decimal representations of x and y, respectively. For example,
if x = 3/16, then bx = .0011. Assume that bx and by are
written canonically so that the rightmost bit is always 1. Let
|bx| denote the length of the representation, which is 4 in the
case of x = 3/16. Note that if p ∈ V ′i , then |bx| = |by| = i.
Every V ′i contains 22i vertices, of which 22i−2 are in [0, 1]2.
These are all first-quadrant points that can be expressed as
(j/2i, k/2i) for any odd j, k ∈ {1, 2, 3, . . . , 2i}.

The tree already reaches any p ∈ V ∗; therefore, consider
any point p ∈ [0, 1]2 \ V ∗. Let vi be the vertex in V ′i that is
closest to p. Consider the sequence ṽ = (v1, v2, . . .). Each vi
can be considered as the closest approximation to p for which
the number of bits needed for each coordinate is i. We observe
that ‖p−vi‖ < 1/2i−1 for every i. Therefore, ṽ is a sequence
that converges to p.

For any point p ∈ [−1, 1]2, we use Tsquare and explicitly
define a continuous path from (0, 0) to p. The path will
be parameterized by distance along the curve. Suppose p 6∈
V ∗. From the proof of Theorem 1, use the sequence ṽ =
(v1, v2, . . .) of vertices that converge to p. We will define
a path π : [0,

√
2) → (−1, 1)2. Let v0 = (0, 0). For each

i ∈ N the path is defined over the interval [
√
2(2i−1 −

1)/2i−1,
√
2(2i − 1)/2i] as

π(s) = (1− α)vi−1 + αvi (1)

in which α = (s/
√
2 − (2i−1 − 1)/2i−1)/2i. Note that the

path does not actually “reach” p, but instead converges to it.
We will nevertheless say that τ is a path to p. For the case
in which p ∈ V ∗, we imagine that ṽ is truncated to a finite
sequence that actually reaches p for some v ∈ V ′k . In this case,
the function (1) and its domain are limited to i from 1 to k,
rather than using an infinite number of segments.

Now that the space filling property has been established,
it is next interesting to consider how efficiently this is ac-
complished. For example, the classical Hilbert space-filling
curve has that property that the length of the curve doubles
(asymptotically) in each iteration. Also in each iteration, the
distance from the furthest away points in [−1, 1]2 from the
curve is cut in half. As the iterations increase, the path length
tends to infinity.

The next theorems establish remarkable properties of
Tsquare. Theorem 2 says that no paths are longer than

√
2,

rather than tending to infinity as in the Hilbert curve. Theorem



3 implies that the total length of all edges grows asymptotically
in each iteration by a factor of 2, just as in the case of the
Hilbert curve.

Theorem 2: For every p ∈ [−1, 1]2, there exists a path in
Tsquare that converges to p and has length no more than

√
2.

Furthermore, the path length equals
√
2 if and only if p 6∈ V ∗.

Proof: Suppose p 6∈ V ∗. In that case, consider the path τ ,
defined in (1), using the sequence ṽ of vertices that converges
to p. Note that each segment of that path is exactly half the
length of the previous segment. The total length is therefore
expressed as an infinite sum∑

i∈N

√
2/2i =

√
2
∑
i∈N

2−i, (2)

in which the right sum is the classical geometric series with
ratio 1/2. The sum converges to 1, and the path length is

√
2.

For the case in which p ∈ V ∗, the path stops at some vertex
v ∈ V ′k for some k. The total length is expressed using only
the first k terms of (2), which is strictly less than

√
2.

Now consider the total length of all edges in Tsquare. For
overlapping edges, we count them only once. Imagine that the
tree is built from electrical wire and we would like to know
how much total wire is used. Clearly, an infinite amount of
wire is needed; however, it is interesting to know the rate
of wire consumption with respect to the iterations. The next
theorem characterizes this.

Theorem 3: The combined length of the union of all edges
in Ti is 4

√
2

3

(
2i − 2−i

)
.

Proof: Let `i denote the combined path length in Ti. By
exploiting symmetry over the four quadrants of [−1, 1]2,
the length in each quadrant is `i/4. We therefore derive an
expression for `i/4:

`i/4 =

√
2

2
+ 3

(√
2

4

)
+ 11

(√
2

8

)
+ · · ·+Ni

(√
2

2i

)
,

in which Ni is the number of new branches that are added at
iteration i. The expression for Ni can be derived by recursion.
The first three iterations are illustrated in Figure 2.

Fig. 2. Successive iterations (T1, T2, and T3) of a square space-filling tree
grown in [0, 1]2. New branches (red) are half the length of the branches added
in the previous iteration. From T1 to T2, three new branches are added, and
from T2 to T3, eleven new branches are added.

The new branches at each iteration (illustrated in red)
are half the length of the branches added in the previous
iteration. From T1 to T2, three new branches of length

√
2/4

are added. From T2 to T3, a total of eleven new branches
of length

√
2/8 are added. Because of edge overlap, the

number of branches Ni added at iteration i is one less than
the nominal four branches for each quadrant of each branch
added at the previous iteration Ni−1. This yields the recurrence
Ni = 4Ni−1−1 with base case N1 = 1. Solving the recurrence
in closed form yields

Ni =
22i−1 + 1

3
.

The combined path length `i/4 can be expressed as the sum

`i/4 =

i∑
j=1

Nj

√
2

2j
.

This sum represents adding up all edges of a fixed height in
the tree. In the first iteration, a single edge of length

√
2/2 is

produced. In the second iteration, 3 edges of length
√
2/4 are

formed, and in general, at iteration i, Ni branches of length√
2/2i are added.
Substituting the closed form of Ni into the sum yields

`i/4 =

i∑
j=1

(
22j−1 + 1

3

) √
2

2j
.

By factoring out the constant
√
2/3, we obtain

`i/4 =

√
2

3

i∑
j=1

(
22j−1 + 1

2j

)
.

Splitting the sum into two terms gives

`i/4 =

√
2

3

 i∑
j=1

2j−1 +

i∑
j=1

1

2j

 .

Each of the two sums can be simplified to their known closed-
form equivalents:

i∑
j=1

2j−1 = 2i − 1

and
i∑

j=1

1

2j
= 1− 2−i.

Finally, by substitution we obtain

`i/4 =

√
2

3

(
(2i − 1) + (1− 2−i)

)
,

which after further simplification reduces to

`i/4 =

√
2

3

(
2i − 2−i

)
.

Note that the construction in this section can be nicely
transformed into other another space by using a well-behaved
mapping, such as a Lipschitz continuous function from the
square into the desired space. The same applies to construc-
tions in Section III. These transformations, however, may
destroy self-similarity.



III. OTHER SELF-SIMILAR SPACE-FILLING TREES

The space-filling tree Tsquare of Section II-A clearly has
self-similarity, making it a fractal, much like the Sierpinski
triangle, Cantor sets, and numerous other constructions. This
section introduces several other self-similar space-filling trees.

A. Filling a cube

We can easily generalize Tsquare to fill a cube [−1, 1]n ⊆
Rn for any positive integer n. Whereas the square was divided
into quadrants in each iteration, we now divide [−1, 1]n into
2n orthants. Once again, we initially have V0 = {(0, 0)}. The
vertices in V ′1 are the centers of the 2n orthants. These are all
points of the form (±1/2,±1/2, · · · ,±1/2). This results in
2n edges in E1 (there were 2n = 4 for Tsquare). Proceeding
incrementally, each v ∈ V ′i lies at the center of a cube of
width 1/2i−1. The result is a sequence Tcube that fills [−1, 1]n.
Figure 3 illustrates the space-filling tree for the case of n = 3.

Fig. 3. Subdivision scheme (left) and the third iteration of the space-filling
tree (right) for the 3-dimensional cube, [−1, 1]3.

The theorems of Section II-A cleanly generalize:

Theorem 4: Tcube is a space-filling tree.

Proof: The proof proceeds in the same manner as the proof
of Theorem 4. The sequence ṽ is formed by the sequence of
closer and closer approximations to p ∈ [0, 1]n by considering
binary representations for all n coordinates.

Theorem 5: For every p ∈ [−1, 1]n, there exists a path in
Tcube that converges to p and has length no more than

√
n.

Furthermore, the path length equals
√
n if and only if p 6∈ V ∗.

Proof: The proof is nearly identical to that of Theorem 2. The
edge length is again divided by 2 in each iteration. Therefore,
the same geometric series is obtained. It is scaled by

√
n

(generalized from
√
2), which can be seen by considering the

path length from the root to any corner of the cube.

Theorem 6: The combined length of the union of all edges
in Tcube increases asymptotically as O(2(n−1)i), with the
combined length of the union of all edges in Ti given exactly
by 2n

√
n

2n−1
(
2(n−1)i − 2−i

)
.

Proof: Let `i denote the combined path length in Ti.
Following the proof of Theorem 3, we exploit symmetry across

the orthants. First, we derive the number of branches Ni added
at each iteration i.

Because of edge overlap, Ni is one less than the nominal 2n

branches for each orthant of each branch added at the previous
iteration Ni−1. The general recurrence is Ni = bNi−1 − c, in
which b = 2n is the constant nominal branching factor of
the tree and c is the constant number of overlapping branches
discounted at each iteration. For the case of our method of
constructing Tcube, we have c = 1. As before, the base case
for the recursion is N1 = 1, and solving in closed form yields

Ni =
(b− c− 1)bi−1 + c

b− 1
.

For the square (n = 2), we have b = 4 and c = 1, which yields
a formula that matches the result of the recursive derivation in
Theorem 2. For the case of n = 3, we have b = 8 and c = 1;
therefore,

Ni =
6 ∗ 8i−1 + 1

7
.

For the general case, we have b = 2n and c = 1, and the
general formula for the number of branches added to Tcube at
iteration i is

Ni =
(2n − 2)2n(i−1) + 1

2n − 1
.

We now derive the combined path length `i/2
n as the com-

bined sum of all edges in Ti as

`i
2n

=

i∑
j=1

Nj

√
n

2j
.

This sum represents adding up all edges of a fixed height in the
tree. At iteration i, Ni branches of length

√
n/2i are added.

Substituting the closed form of Ni into the sum yields

`i
2n

=

i∑
j=1

(
(2n − 2)2n(i−1) + 1

2n − 1

) √
n

2j
.

By factoring out the constant
√
n/(2n − 1), we obtain

`i
2n

=

√
n

2n − 1

i∑
j=1

(
(2n − 2)2n(i−1) + 1

2j

)
.

Splitting the sum into two terms gives

`i
2n

=

√
n

2n − 1


i∑

j=1

(
(2n − 2)2n(i−1)

2j

)
+

i∑
j=1

1

2j

 .

Each of the two sums can be simplified to the closed-form
equivalents:

i∑
j=1

(
(2n − 2)2n(i−1)

2j

)
= 2(n−1)i − 1

and
i∑

j=1

1

2j
= 1− 2−i.
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Fig. 4. Six iterations of the triangle space-filling tree.

Finally, by substitution we obtain

`i
2n

=

√
n

2n − 1

(
(2(n−1)i − 1) + (1− 2−i)

)
,

which after further simplification reduces to

`i
2n

=

√
n

2n − 1

(
2(n−1)i − 2−i

)
.

We verify that for n = 2, we obtain the same formula
derived in Theorem 3. This general result proves that the
combined length of the union of all edges in Tcube increases
asymptotically as O(2(n−1)i).

B. Filling a Triangle

Figure 4 shows a space-filling tree Ttri over a triangular
region. To define the incremental construction, we divide the
triangular region into smaller triangles, instead of quadrants.
Initially, the root vertex is placed at the triangle center, yielding
V0. The triangle is then subdivided into four triangles. For V ′1 ,
we obtain four vertices, one for the center of each smaller
triangle; however, one of the vertices coincides with the root.
The other three vertices in V ′1 are connected to the root to form
E1. This process continues in the same way by exploiting the
symmetries of the subdivision. An interesting difference can
be observed in Figure 4 in comparison to Figure 1. In each
step of the subdivision, the central triangle appears “upside
down” with respect to the others. This causes an interesting
orientation change in that part of the tree. This was not
obtained for the square case because all smaller squares are
axis aligned.

Theorems 1 to 3 can again be adapted. To establish that
Ttri is space-filling, a sequence ṽ is constructed by using
the sequence of refined triangles that contain p, rather than
squares. This results in a converging sequence of vertices for
any point in the triangle.

Now consider the length of the path to each point. If the
height of the equilateral triangle h = 1 and the tree is defined
to be rooted at the center of the triangle, then the length of each
edge in T1 is 1/3. In general, for a triangle of side length L,

the length of added edges in T1 will be L
2
√
3

, or h/3 (exactly
1/3 of the height). As with the case of the square, each of
the subtriangles is exactly half the size of the triangle in the
previous iteration. Thus, subsequently added edges are reduced
in length by a factor of two at each iteration.

Theorem 7: For every p contained in an equilateral triangle
of height h, there exists a path in Ttri that converges to p and
has length no more than 2h/3. Furthermore, the path length
equals 2h/3 if and only if p 6∈ V ∗.

Proof: The proof follows that of Theorem 2, as the edge
length is again divided by 2 in each iteration. The distance di
from the root at the center of the tree to a leaf vertex of Ti is
bounded by the sum:

di ≤
h

3

(
1 +

1

2
+

1

4
+

1

8
+ · · ·+ 1

2i

)
.

Let dmax be the upper bound on the length of the path to any
point p inside the triangle from the root. Note that dmax is
the limit of the sum

dmax =
h

3
lim
i→∞

i∑
j=0

1

2i
.

The closed-form of the sum is 2; therefore, the result is
dmax = 2h/3.

Note the perfect correspondence with the
√
2 limit for the

square case, which was the distance from the center of the
square to a corner. For the general case of a cube of dimension
n and side length 2L, the upper bound on dmax, the length
of the path to any point p ∈ [−L,L]n inside the cube from
the root asymptotically approaches

√
nL. In the case of an

equilateral triangle of height h, the distance from the center
to a corner is exactly 2h/3, which is analogous to this result.

We now derive the sum total length of all edges in Ti for
the equilateral triangle case.

Theorem 8: The combined length of the union of all edges
in Ttri increases asymptotically as O(2i), with the combined
length of the union of all edges in Ti given exactly by
h
(
5
32

i−1 − 2
32

1−i) for a triangle of height h.

Proof: Let `i denote the combined path length in Ti. First, we
derive the number of branches Ni added at each iteration i.
Each triangle is divided into four equal subtriangles, with the
terminal vertex of each edge added in the previous iteration
becoming the center point of four new subtriangles at the next
iteration. Thus, the total number of subtriangles at iteration i is
given by 4i. Although Ttri has a nominal constant branching
factor of 4, due to the coincident subsequent vertex at the
center and overlap between edges, the structure of Ti can be
expressed entirely with vertices of degree 1, 3, 4, or 6. The
initial tree T0 contains only a single vertex in the center. The
first three iterations are illustrated in Figure 5.

The new branches at each iteration (illustrated in red) are
half the length of the branches added in the previous iteration.
The first iteration adds three branches of length h/3 yielding



Fig. 5. Successive iterations (T1, T2, and T3) of a triangle space-filling tree.
New branches (red) are half the length of the branches added in the previous
iteration. From T1 to T2, twelve new branches are added, and from T2 to
T3, twenty-two new branches are added.

T1 (thus Ni = 3). The subsequent iteration, T2, adds three
branches of length h/6 to each of the four vertices of T1
for a total of twelve additional edges (N2 = 12). From T2
to T3, a total of forty-two new branches of length h/12 are
added (N3 = 42). All subsequent iterations follow the general
recurrence

Ni+1 = 3Ni + 2(4i −Ni − 4i−2),

which is valid for i > 2. The first term represents the 3
edges added to each terminal vertex of each edge added at
the previous iteration, whereas the second term represents the
2 edges added to the remaining vertices (4i −Ni) minus the
number of vertices that have already achieved degree 6 (4i−2).
Solving the recurrence in closed form in terms of Ni and
simplifying gives

Ni = 10(4i−2) + 2,

in which i ≥ 2. We now derive the combined path length `i
in Ti as the sum length of all edges added at each iteration:

`i = T1ei +

i∑
j=2

Njej .

At iteration i, Ni branches of length ei =
2h
3 2−i are added.

Substituting T1e1 = h and the closed form of Ni and ei into
the sum and splitting the sum into two terms yields

`i = h+
2

3
h

10

i∑
j=2

2j−4 + 2

i∑
j=2

2−j

 .

Each of the two sums can be simplified to the closed-form
equivalents:

i∑
j=2

2j−4 =
2i+1 − 4

24

and
i∑

j=2

2−j =
1

2
− 2−i.

Finally, by substitution we obtain

`i = h+
2

3
h

(
10

(
2i+1 − 4

24

)
+ 2

(
1

2
− 2−i

))
,

which after further simplification reduces to

`i = h

(
5

3
2i−1 − 2

3
21−i

)
.

We see that the combined length of the union of all edges in
Ttri increases asymptotically as O(2i).

C. Honeycombs and Spatial Subdivisions

It is not surprising that many space-filling tree constructions
are possible given the number of shapes that can be used to
tile regions of space. In the previous examples, we relied on
base shapes (square, cube, and triangle) that could easily be
subdivided into smaller, self-similar regions.

Patterns of space-filling or close-packing polyhedral or
higher-dimensional cells without gaps are called honeycombs.
Although the cubic tiling is notable as the only regular
honeycomb in Rn for n > 2, there are numerous non-regular
honeycomb subdivisions [25, 26]. By connecting the centers
of honeycomb cells to recursively subdivided close-packing
shapes, it is possible to construct a rich variety of space-
filling trees. We illustrate this concept with the examples of
the regular tetrahedron and the regular octahedron in R3.

Tetrahedral and octahedral shapes yield alternating recursive
spatial subdivisions, which can be generalized into space-
filling tree construction techniques for both shapes. A regular
tetrahedron of side length L can be subdivided into four
smaller tetrahedra and a single octahedron, all of uniform
side length L/2. Figure 6 illustrates this subdivision scheme.
A regular octahedron of side length L can be subdivided
into six smaller octahedra and eight tetrahedra all of uniform
side length L/2, which is illustrated in Figure 7. Note that
each of these subdivision schemes requires the other in order
to be iterated. The alternating recursive iterations allow us
to start with any size base shape and construct a space-
filling tree. We begin by defining a single root vertex at
the center of the original shape. At each iteration, we add
branches that connect each vertex to new vertices defined at
the centers of each of the subshapes. Smaller tetrahedra use
the tetrahedron subdivision scheme, whereas smaller octahedra
use the octahedron subdivision scheme. The process can be
iterated indefinitely.

Intuitively, if the vertices of each Ti lie at the centers
of the subshapes that are completely contained within the
original shape and form a close-packing, increasingly fine-
grained subdivision will gradually fill the original shape. As
before, Theorems 1 to 3 can be adapted to yield a converging
sequence of vertices for any point inside the original shape for
which the total length from the root is finite. Although we do
not derive the exact formulas here, the scaling factors for both
the tetrahedron and octahedron are again 1/2, which produces
a similar exponential growth rate for the combined length of
the union of all edges.

IV. OTHER SPACE-FILLING TREES

In addition to the basic constructions presented in Sections
II and III, an even larger variety of space-filling trees can



(a) (b) (c) (d)

Fig. 6. Subdivision of the Tetrahedron: (a) base primitive; (b) first subdivision
into one central octahedron and four corner tetrahedra; (c) exploded view of
first subdivision; (d) second subdivision iteration.

(a) (b) (c) (d)

Fig. 7. Subdivision of the Octahedron: (a) base primitive; (b) first subdivision
into six octahedra and eight tetrahedra; (c) exploded view of first subdivision;
(d) second subdivision iteration.

be imagined. Suppose that we start with any bounded path-
connected region R of some metric space. Consider a count-
ably infinite set Y of points that is dense1 in R. Suppose the
points in Y have been ordered into a sequence γ : N→ Y , in
which γ(i) yields the ith point in the sequence. We refer to γ
as a dense sequence of points.

Now designate any point x ∈ R as the root vertex, and
then connect x to every point in γ via any finite-length path
that maps into R. As a simple example, suppose R is a unit
disc in R2, centered at the origin. Using a dense set Y and
sequence γ of points in R, we connect every γ(i) to (0, 0) by
a continuous path. Clearly this makes a tree. If possible2, we
may connect x to each γ(i) along the shortest possible path.
This yields optimal distance to every point in the dense set,
which seems wonderful. However, this tree is not space-filling
because there is not a path that converges to points outside of
Y . We can present a sequence of entire paths whose endpoints
get closer and closer to some p ∈ R \ Y ; however, it is not
achieved by a single path.

There nevertheless exists a simple way to convert any dense
sequence into a space-filling tree. Rather than connecting every
point in Y to the root, we connect each γ(i) to the nearest
vertex in Vi−1. Ideally, this connection should be along the
shortest possible path (if it exists). In this case, the ith vertex vi
is simply vi = γ(i). The ith edge ei is produced by connecting
vi to vj in which

j = argmin
k∈{1,...,i−1}

ρ(vi, vk) (3)

and ρ is the distance metric on R.

1From topology, a set Y is dense in X if the closure of Y is X . This
implies that there are no open sets in X that do not contain at least one point
in Y . in R.

2If R is a geodesic metric space.

(a) (b)

(c) (d)

Fig. 8. Example of a Rapidly-exploring Random Tree (RRT) in [−1, 1]2
after: (a) 100 samples; (b) 500 samples; (c) 1000 samples; (d) 5000 samples.

Using the general process described in (3), numerous con-
structions can be imagined, leading to many open questions
regarding path lengths. The properties of the resulting space-
filling tree depend heavily on the particular sequence γ.
The tree will generally not have self-similarity unless the
appropriate symmetries exist in γ.

The method of (3) can even be applied as an alternative way
to construct Tsquare. We need only to define γ as the centers
of the squares that are constructed in each iteration. Hence,
γ(1) = (0, 0), and γ(2) through γ(5) are the four points of
the form (±1/2,±1/2) (the particular order these four does
not matter). The next iteration is simulated by assigning the
centers of the 16 squares of width 1/2 from γ(6) to γ(21).
The process continues in this way indefinitely.

Now suppose that γ is obtained as the result of uniform
random sampling in R. The sequence is dense almost surely.
Using this to construct the tree generates what is referred to as
a Rapidly-exploring Random Tree (RRT) [22]. Figure 8 shows
an example. The RRT is space-filling with probability one. The
RRT has been particularly useful in recent years for searching
high-dimensional spaces for path planning, optimization, and
control problems [27, 28, 29, 30].

As in previous sections, consider the lengths of paths in
the tree. Figure 9 illustrates the distribution of values for the
average path length and the maximum path length for an RRT
rooted at the center of [−1, 1]2 after 1000 iterations. The path
length is defined as sum of the total edge lengths to reach any
given point on the tree from the root. The histograms were
computed over 1000 independent trials using point-to-edge
distances for RRT growth which removes any slight geometric



Fig. 9. Distribution of values for the average path length (red), and maximum
path length (blue) for a Rapidly-exploring Random Tree (RRT) in [−1, 1]2
after 1000 samples (N = 1000 trials).

variations in the tree structure due to discretization of the RRT
step size [21].

The average path length from the center of the square to
any point on the RRT had a mean of 1.3028 and a median of
1.2766, whereas the maximum from among all possible paths
in the tree had a mean of 2.7206 and a median of 2.6736
over 1000 trials. This compares to the worst-case path length
of
√
2 ≈ 1.4142 for the square space-filling tree. Although

the maximum path length for an RRT in the worst-case is
theoretically unbounded, the data show that in practice the
average or expected value is rather small (less than twice the
value of

√
2).

V. CONCLUSIONS

We introduced an incremental construction called a space-
filling tree and provided several examples. Although it is
straightforward to construct trees for which the set of vertices
is dense, the distinguishing feature of a space-filling tree is
that for every point in the space, there is a finite-length path
that converges to it. The two main properties to analyze are:
1) the lengths of individual paths in the tree, and 2) how
the total length of all edges increases incrementally. Finally,
some trees exhibit nice fractal or self-similarity structure.
There are numerous possibilities for other space-filling tree
constructions, leading to many interesting open questions.
What shapes can be filled with self-similar structures? Which
constructions are optimal with respect to path lengths or total
edge lengths? What constructions can be made that optimize
vertex degree? In addition to open mathematical questions,
we hope that they may become useful in many fields, such
as computer graphics, robotics, crop sciences, urban planning,
data bases, optimization, and other fields utilizing models of
branching distribution systems or networks.
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