

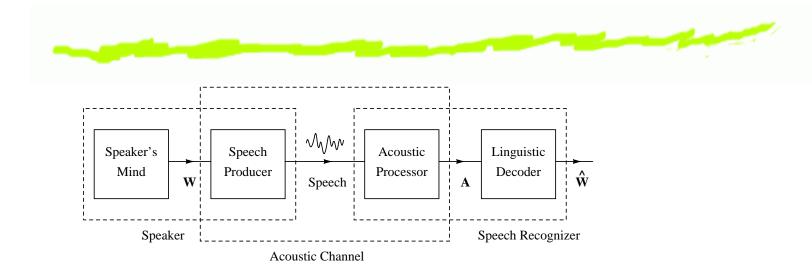
Language Modeling for Automatic Speech Recognition Meets the Web:

Google Search by Voice

Ciprian Chelba, Johan Schalkwyk, Boulos Harb, Carolina Parada, Cyril Allauzen, Michael Riley, Peng Xu, Thorsten Brants, Vida Ha, Will Neveitt

05/02/2011 Ciprian Chelba et al., Voice Search Language Modeling - p. 1

Statistical Modeling in Automatic Speech Recognition



$$\hat{W} = \operatorname{argmax}_{W} P(W|A) = \operatorname{argmax}_{W} P(A|W) \cdot P(W)$$

- \circ P(A|W) acoustic model (Hidden Markov Model)
- \circ P(W) language model (Markov chain)
- search for the most likely word string \hat{W}

Google

due to the large vocabulary size—1M words—an exhaustive search is intractable

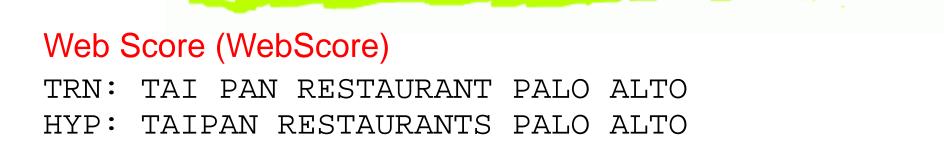
Language Model Evaluation (1)

$$Perplexity(PPL)$$

$$PPL(M) = \exp\left(-\frac{1}{N}\sum_{i=1}^{N}\ln\left[P_M(w_i|w_1\dots w_{i-1})\right]\right)$$

- 6 good models are smooth: $P_M(w_i|w_1 \dots w_{i-1}) > \epsilon$
- other metrics: out-of-vocabulary rate/n-gram hit ratios

Language Model Evaluation (2)



- o produce the same search results
- 6 do not count as error if top search result is identical with that for the manually transcribed query

Language Model Smoothing

Markov assumption:

$$P_{\theta}(w_i/w_1\dots w_{i-1}), \theta \in \Theta, w_i \in \mathcal{V}$$

Smoothing using Deleted Interpolation:

$$P_n(w|h) = \lambda(h) \cdot P_{n-1}(w|h') + (1 - \lambda(h)) \cdot f_n(w|h)$$

$$P_{-1}(w) = uniform(\mathcal{V})$$

Parameters (smoothing weights $\lambda(h)$ must be estimated on cross-validation data):

$$\theta = \{\lambda(h); count(w|h), \forall (w|h) \in \mathcal{T}\}$$

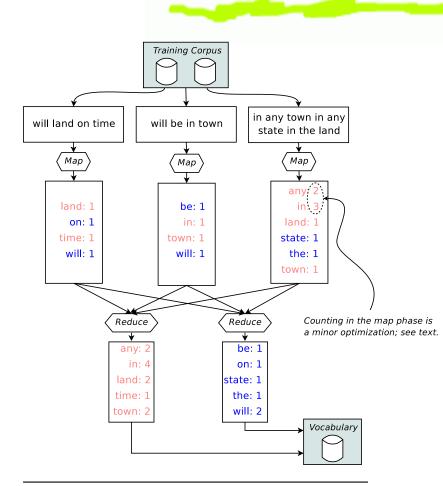
Voice Search LM Training Setup

- 6 correct^a google.com queries, normalized for ASR, e.g. 5th -> fifth
- ocabulary size: 1M words, OoV rate 0.57% (!), excellent n-gram hit ratios
- training data: 230B words

Order	no. n-grams	pruning	PPL	n-gram hit-ratios
3	15M	entropy	190	47/93/100
3	7.7B	none	132	97/99/100
5	12.7B	1-1-2-2-2	108	77/88/97/99/100

^aThanks Mark Paskin

Distributed LM Training



- Input: key=ID, value=sentence/doc
- Intermediate: key=word, value=1
- Output: key=word, value=count
- Map chooses reduce shard based on hash value (red or bleu)

^aT. Brants et al., Large Language Models in Machine Translation

Using Distributed LMs

- 6 load each shard into the memory of one machine
- <u>Bottleneck</u>: in-memory/network access at X-hundred nanoseconds/Y milliseconds (factor 10,000)

Example: translation of one sentence

- o approx. 100k n-grams; 100k * 7ms = 700 seconds per sentence
- Solution: batched processing
- 6 25 batches, 4k n-grams each: less than 1 second ^a

^aT. Brants et al., Large Language Models in Machine Translation

ASR Decoding Interface

First pass LM: finite state machine (FSM) API

states: n-gram contexts

Google

- arcs: for each state/context, list each n-gram in the LM
 + back-off transition
- 6 trouble: need all n-grams in RAM (tens of billions)

Second pass LM: lattice rescoring

- states: n-gram contexts, after expansion to rescoring LM order
- o arcs: {new states} X {no. arcs in original lattice}
 - **good**: distributed LM and large batch RPC

Language Model Pruning

6 should one remove n-gram (h, w)?

JOOgle

$$D[q(h)p(\cdot|h) \parallel q(h) \cdot p'(\cdot|h)] = q(h) \sum_{w} p(w|h) \log \frac{p(w|h)}{p'(w|h)}$$

 $| D[q(h)p(\cdot|h) || q(h) \cdot p'(\cdot|h)] | < pruning threshold$

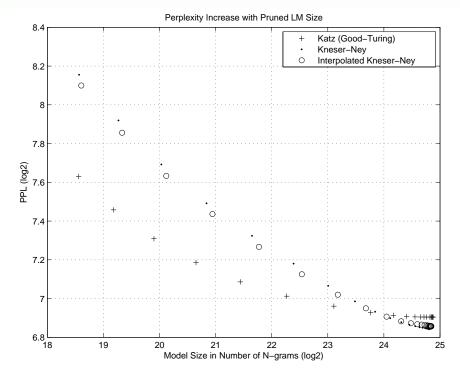
- 6 lower order estimates: $q(h) = p(h_1) \dots p(h_n | h_1 \dots h_{n-1})$ or relative frequency: q(h) = f(h)
- o very effective in reducing LM size at min cost in PPL

On Smoothing and Pruning (1)

- 6 4-gram model trained on 100Mwds, 100k vocabulary, pruned to 1% of raw size using SRILM
- 6 tested on 690k wds

4-gram	I	Perplexity
LM smoothing	raw	pruned
Ney	120.5	197.3
Ney, Interpolated	119.8	198.1
Witten-Bell	118.8	196.3
Witten-Bell, Interpolated	121.6	202.3
Ristad	126.4	203.6
Katz (Good-Turing)	119.8	198.1
Kneser-Ney	114.5	285.1
Kneser-Ney, Interpolated	115.8	274.3
Kneser-Ney (CG)	116.3	280.6
Kneser-Ney (CG, Interpolated)	115.8	274.3

On Smoothing and Pruning (2)



baseline LM is pruned to 0.1% of raw size!

Google

switch from KN to Katz smoothing: 10% WER gain

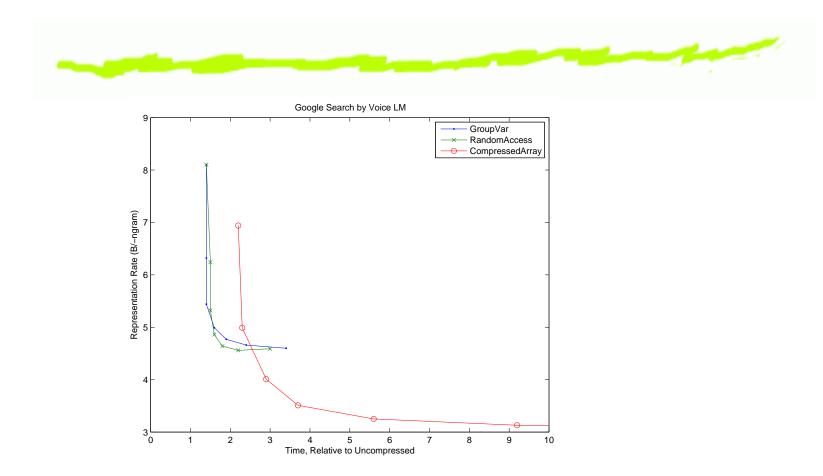
05/02/2011 Ciprian Chelba et al., Voice Search Language Modeling - p. 12

Billion n-gram 1st Pass LM (1)

LM representation rate

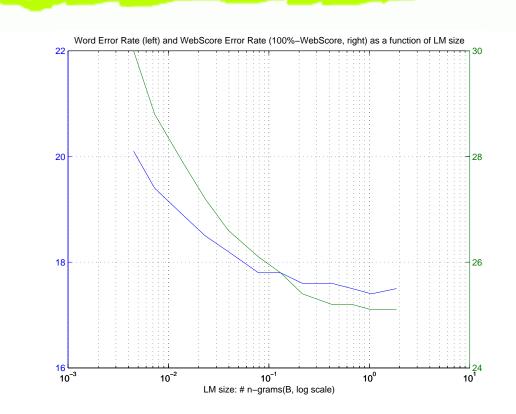
Compression	Block	Rel.	Rep. Rate
Technique	Length	Time	(B/n-gram)
None		1.0	13.2
Quantized		1.0	8.1
CMU 24b, Quantized		1.0	5.8
GroupVar	8	1.4	6.3
	64	1.9	4.8
	256	3.4	4.6
RandomAccess	8	1.5	6.2
	64	1.8	4.6
	256	3.0	4.6
CompressedArray	8	2.3	5.0
	64	5.6	3.2
	256	16.4	3.1

Billion n-gram 1st Pass LM (2)



6 1B 3-grams: 5GB of RAM @acceptable lookup speed^a

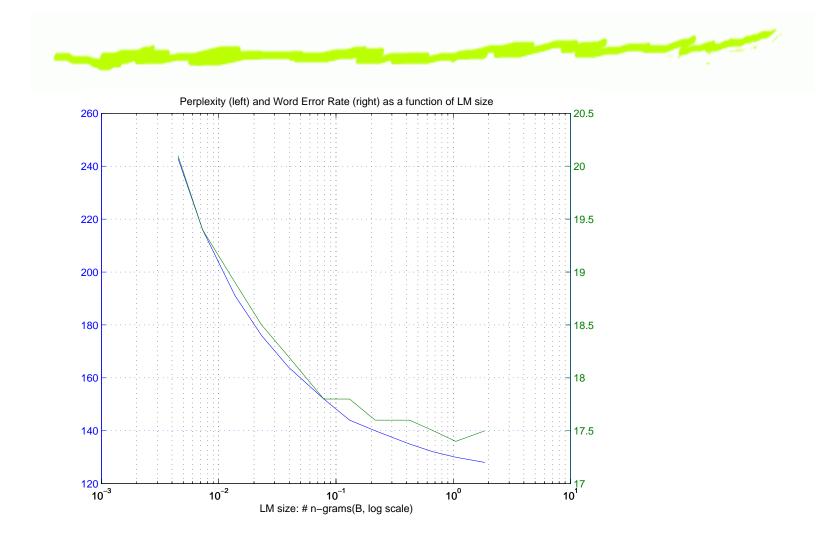
^aB. Harb, C. Chelba, J. Dean and S. Ghemawat, *Back-Off Language Model* Google Compression, Interspeech 2009



8%/10% relative gain in WER/WebScore^a

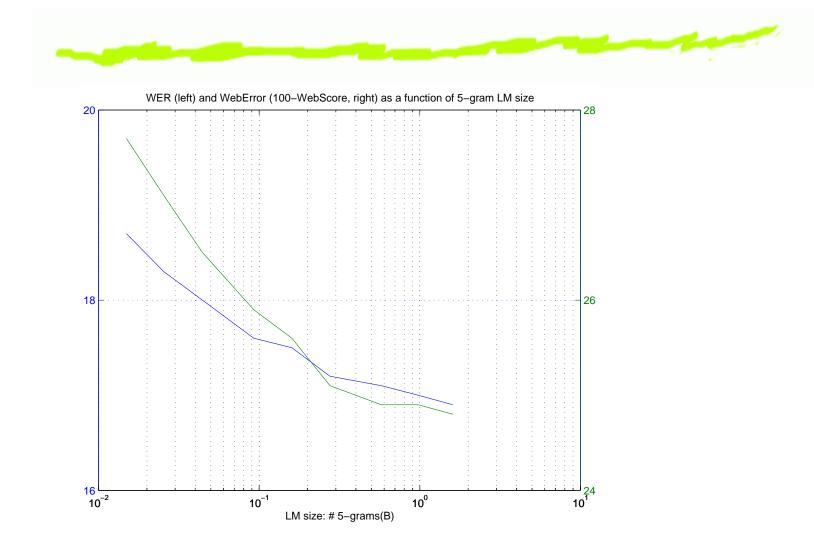
^aWith Cyril Allauzen, Johan Schalkwyk, Mike Riley, May reachable composi-Google tion CLoG be with you!

Is Bigger Better? YES!



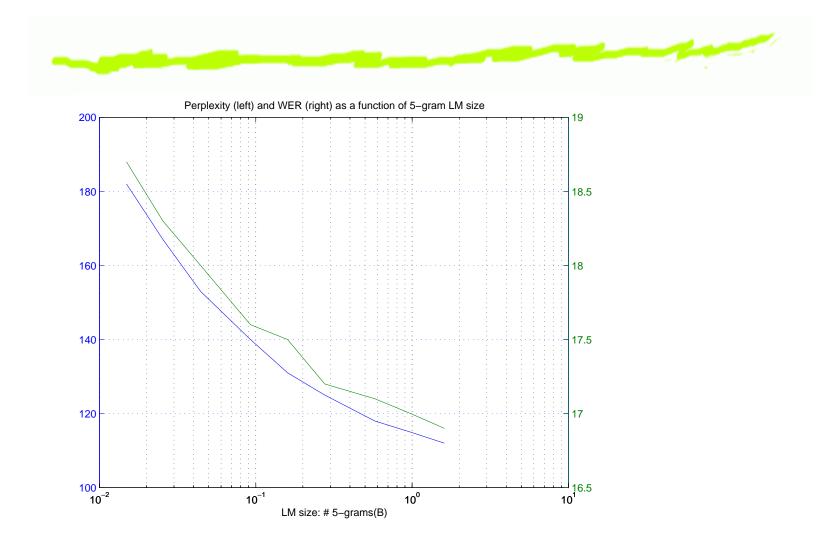
9 PPL is really well correlated with WER!

Is Even Bigger Better? YES!



5-gram: 11% relative in WER/WebScore

Is Even Bigger Better? YES!



Again, PPL is really well correlated with WER!

Detour: Search vs. Modeling error

 $\hat{W} = \operatorname{argmax}_{W} P(A, W | \theta)$

If correct $W^* \neq \hat{W}$ we have an error:

- 6 $P(A, W^*|\theta) > P(A, \hat{W}|\theta)$: search error
- 6 $P(A, W^*|\theta) < P(A, \hat{W}|\theta)$: modeling error
- wisdom has it that in ASR search error < modeling error</p>
- 6 Corollary: improvements come primarily from using better models, integration in decoder/search is second order!

Lattice LM Rescoring

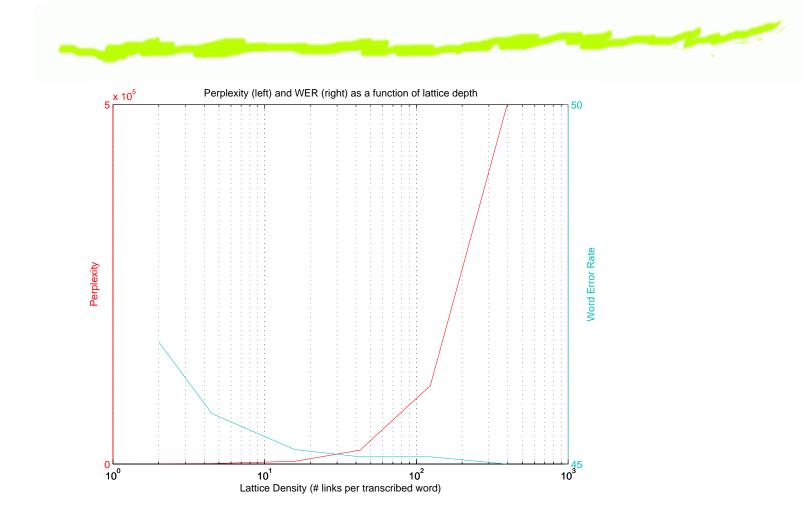
		and a second of the
		Contraction of the second s

Pass	Language Model	PPL	WER	WebScore
1st	15M 3g	191	18.7	72.2
1st	1.6B 5g	112	16.9	75.2
2nd	15M 3g	191	18.8	72.6
2nd	1.6B 3g 12B 5g	112	16.9	75.3
2nd	12B 5g	108	16.8	75.4

- 6 10% relative reduction in remaining WER, WebScore error
- Ist pass gains matched in ProdLm lattice rescoring^a at negligible impact in real-time factor

^aOlder front end, 0.2% WER diff

Lattice Depth Effect on LM Rescoring



5 LM becomes ineffective after a certain lattice depth

N-best Rescoring

- 6 N-best rescoring experimental setup
- 6 minimal coding effort for testing LMs: all you need to do is assign a score to a sentence

Experiment	LM	WER	WebScore
SpokenLM baseline	13M 3g	17.5	73.3
lattice rescoring	12B 5g	16.1	76.3
10-best rescoring	1.6B 5g	16.4	75.2

a good LM will immediately show its potential, even on as little as 10-best alternates rescoring!

Query Stream Non-stationarity (1)

- **USA training data**^{*a*}:
 - XX months
 - X months
- test data: 10k, Sept-Dec 2008^b
- very little impact in OoV rate for 1M wds vocabulary: 0.77% (X months vocabulary) vs. 0.73% (XX months vocabulary)

^aThanks Mark Paskin

^bThanks Zhongli Ding for query selection.

Query Stream Non-stationarity (2)

3-gram LM	Training Set	Test Set PPL
unpruned	X months	121
unpruned unpruned	XX months	132
entropy pruned entropy pruned	X months	205
entropy pruned	XX months	209

bigger is not always better^a

Google

- 10% rel reduction in PPL when using the most recent
 X months instead of XX months
- 6 no significant difference after pruning, in either PPL or WER

^aThe vocabularies are mismatched, so the PPL comparison is a bit trouble-

some. The difference would be higher if we used a fixed vocabulary.

More Locales

- 6 training data across 3 locales^a: USA, GBR, AUS, spanning same amount of time ending in Aug 2008
- 6 test data: 10k/locale, Sept-Dec 2008

Out of Vocabulary Rate:

Training		Test L	ocale
Locale	USA	GBR	AUS
USA	0.7	1.3	1.6
GBR	1.3	0.7	1.3
AUS	1.3	1.1	0.7

Iocale specific vocabulary halves the OoV rate

^aThanks Mark Paskin

Locale Matters (2)

Perplexity of unpruned LM:

Training		Test L	ocale
Locale	USA	GBR	AUS
USA	132	234	251
GBR	260	110	224
AUS	276	210	124

Iocale specific LM halves the PPL of the unpruned LM

Locale Matters (3)

Perplexity of pruned LM:

	Training		Test L	ocale
_	Locale	USA	GBR	AUS
-	USA	210	369	412
	GBR	442	150	342
_	AUS	422	293	171

6 locale specific LM halves the PPL of the pruned LM as well

Open Problems in Language Modeling for ASR and Beyond

- Ianguage model adaptation: bigger is not always better. Making use of related, yet not fully matched data, e.g.:
 - Web text should help query LM?
 - related locales—GBR, AUS should help USA?
- 6 discriminative LM: ML estimate from correct text is of limited use in decoding, where the LM is presented with atypical n-grams (see lattice PPL experiment)

• need parallel data (A, W^*) or not?

significant amount can be mined from voice search logs using confidence filtering

ASR Success Story: Google Search by Voice

What contributed to success:

- excellent language model built from query stream
- clearly set user expectation by existing text app
- clean speech:
 - users are motivated to articulate clearly
 - app phones (Android, iPhone) do high quality speech capture
 - speech tranferred error free to ASR server over IP

Challenges:

Google

 Measuring progress: manually transcribing data is at about same word error rate as system (15%)

ASR Core Technology

Current state:

JOOgle

- automatic speech recognition is incredibly complex
- o problem is fundamentally unsolved
- 6 data availability and computing have changed significantly since the mid-nineties

Challenges and Directions:

- 6 re-visit (simplify!) modeling choices made on corpora of modest size
- 6 2-3 orders of magnitude more data and computation is available
- 6 multi-linguality built-in from start