MAO - an Extensible Micro-Architectural Optimizer

Robert Hundt, Easwaran Raman, Martin Thuresson, Neil Vachharajani
Google
1600 Amphitheatre Parkway
Mountain View, CA, 94043
{rhundt, eraman, martint}@google.com, nvachhar@gmail.com

Abstract—Performance matters, and so does repeatability and
predictability. Today’s processors’ micro-architectures have be-
come so complex as to now contain many undocumented, not
understood, and even puzzling performance cliffs. Small changes
in the instruction stream, such as the insertion of a single NOP
instruction, can lead to significant performance deltas, with the
effect of exposing compiler and performance optimization efforts
to perceived unwanted randomness.

This paper presents MAO, an extensible micro-architectural
assembly to assembly optimizer, which seeks to address this
problem for x86/64 processors. In essence, MAO is a thin wrapper
around a common open source assembler infrastructure. It offers
basic operations, such as creation or modification of instructions,
simple data-flow analysis, and advanced infra-structure, such
as loop recognition, and a repeated relaxation algorithm to
compute instruction addresses and lengths. This infrastructure
enables a plethora of passes for pattern matching, alignment
specific optimizations, peep-holes, experiments (such as random
insertion of NOPs), and fast prototyping of more sophisticated
optimizations. MAO can be integrated into any compiler that
emits assembly code, or can be used standalone. MAO can be
used to discover micro-architectural details semi-automatically.
Initial performance results are encouraging.

I. INTRODUCTION

Several real world examples from our daily development
experience helped motivate the development of MAO. A
programmer cleans up her code. She doesn’t change the code
itself, but only adds comments and renames a few C++ classes,
functions, and variable names. After this innocuous change,
a performance benchmark extracted from this code shows a
35% degradation. There is no obvious explanation for the
degradation. Profiling reveals that the degradation comes from
a single function. However, this function has an instruction
stream identical to the version before the change and even
the function’s starting address has the same alignment. After
a long and painful analysis using the available hardware
performance counters, the branch predictor is identified as the
source of the problem. Changes to the relative function lay-
out resulted in a pathological, cross-function branch-predictor
aliasing problem. None of the available documentation on the
inner workings of the branch predictor would explain this issue
in full.

For a concrete example of the scenario described above,
consider the short code snippet in Figure 1 from a hot
loop unrolled twice from the SPEC2000 181.mcf benchmark.
Merely inserting the nop instruction right before label .L5
results in a 5% performance speed-up for this loop on a com-
mon Intel Core-2 platform. Our analysis of several hardware

.13 movsbl 1(%rdi,%r8,4),%edx
movsbl (%$rdi, %r8,4), %eax
... 6 instructions

movl %edx, (%rsi,%r8,4)
addg $1, %r8
nop # this instruction speeds up
the loop by 5%
.L5: movsbl 1(%rdi,%r8,4),%edx
movsbl (%$rdi, $r8,4), %eax

... identical code sequence

mov1l %$edx, (%rsi,%r8,4)
addg $1, %r8
cmpl $r8d, %rod
Jjg L3
Fig. 1. Code snippet with high impact NOP instruction

performance counters revealed that another branch predictor
problem was the likely root cause of the problem.

For writers of compiler optimizations and code performance
tuning experts, such pathological effects pose a significant
challenge. Performance effects can no longer be attributed to a
particular transformation. Unknown or undocumented micro-
architectural effects might be the real cause of performance
gains or losses.

Typically, compilers seek to address these issues in a low
level optimizer (LLO), which has intimate knowledge about a
particular micro-architecture. LLO combines the key passes
of register allocation, instruction selection, and scheduling,
with optimization passes such as loop unrolling, prefetching,
peep-hole optimizations, and alignment specific optimizations.
However, because of phase ordering issues in the compiler,
lack of knowledge, or go-to-market pressure, compilers typi-
cally are not good at handling such micro-architectural effects.

Furthermore, several popular compilers have architectural
limitations that prevent them from even addressing micro-
architectural optimizations. For example, the GNU Compiler
Collection (GCC) [7] follows a structure as in Figure 2. Source
code is parsed and kept in an Abstract Syntax Tree represen-
tation in the compiler front-end (FE). This representation is
transformed into GENERIC and from there directly into GIM-
PLE. This compiler intermediate representation (IR) allows
high level optimizations, such as SSA based optimizations.
From there, the IR is transformed into the Register Transfer
Language (RTL), a lower level representation closer to the
machine. Low level optimizations, such as register allocation

and instruction selection, are performed at this level. The final
results are in tree form at this IR level. As a final step, these
trees are matched against a machine description file (MD). As
a match is made, assembly instructions are written out to an
assembly file. This file is then passed on to the assembler,
which produces object code. Note that the differently colored
box labeled MAO in Figure 2 is not part of the standard GCC
pipeline.

This architecture allows for a portable compiler, which is
re-targetable to new ISAs with minimal effort. However, it
is important to note that the compiler basically stops reason-
ing about instructions after the RTL level. It writes textual
assembly instructions into an output file using simple print
routines. For complex instruction set architectures, it has little
or no information about instruction lengths, alignments, or
aliasing effects, which prevents it from effectively performing
micro-architectural optimizations (even assuming it had all
the platform specific proprietary information from the chip
vendors).

Other code generating infrastructures, e.g., simple dynamic
code generators and opcode threading dynamic compilers,
typically seek the benefits of compiled code but don’t have
the time or bandwidth to implement a full blown low level
optimizer. Besides GCC, there are several other open source
static and dynamic compilers, e.g., Open64 [21] and LLVM
[13]. All these development infrastructures run into similar
issues. For example, it was observed that for a particular hot
loop, LLVM would create the same code sequence as Intel’s
icc compiler, but that icc would place a strategic nop
instruction into the loop, resulting in a substantial performance
gain [4].

In this paper we present MAO, an extensible micro-
architectural optimizer for x86/64. It accepts as input an
assembly file and converts it into an IR. This IR is only a thin
wrapper around the internal data structures of GNU’s binutils,
thus guaranteeing full future ISA compatibility. It performs
optimizations on this IR and emits as output another assembly
file, which can then flow through the standard toolchain.

Since all of the aforementioned compilers have the ability
to emit assembly code, an assembly to assembly micro-
architectural optimizer has the potential to benefit all these
infrastructures, as indicated in Figure 2b. Furthermore, since
all instructions are represented via a single C struct in this IR,
MAQO can be easily integrated into dynamic code generators
without requiring them to take a compilation detour through
textual assembly files. Referring back to Figure 2a, MAO
represents another layer below the assembly level to allow
for micro-architectural optimizations.

The characteristics of the performance cliffs and micro-
architectural features and deficiencies change from processor
stepping to processor stepping, differ between generations of
architectures, and vary between ISA implementations from
different vendors. We named MAO not just an optimizing
assembler, but a full blown micro-architectural optimizer, be-
cause of its ability to programmatically discover performance
cliffs and micro-architectural features and deficiencies.

Front End / AST

Open64 @

(b) Possible input to MAO.

(a) MAO and GCC.

Fig. 2. Various IR levels in GCC. MAO is not part of the original lowering.
When integrated, MAO adds another layer below the abstraction level of MD
files and allows reasoning about assembly instructions.

In this paper, we make the following contributions:

o We provide a detailed description of the design and im-
plementation of a flexible infrastructure, based on GNU
binutils, to perform micro-architectural optimizations.

o We present several micro-architectural performance cliffs
(some unknown to the community) and optimization
passes to address them.

o We outline how this infrastructure can be used to automat-
ically or semi-automatically discover micro-architectural
features and deficiencies.

e We provide performance anecdotes to highlight several
aspects of the infrastructure and the performance effects
it addresses.

As a caveat to the reader - this paper clearly describes an
imminent and important problem, its performance impact, as
well as strategies and parts of solutions. However, it does not
provide a single, conclusive cure. More research needs to be
done and the community is encouraged to contribute to this
open source project.

While this paper focuses on x86/64, we believe the insights
are applicable to a wider range of platforms, in particular to
those with variable-length instruction encodings and complex
micro-architectures. The underlying GNU binutils infrastruc-
ture supports multiple platforms, and we believe MAO can
be made to support multiple platforms as well with modest
effort. MAO is open source under GNU GPL v3 and available
online [15].

The rest of the paper is organized as follows. Section II
describes the core properties of the IR. Section III describes a
variety of passes with a range of characteristics. This section
displays the power of our simple approach and makes the case
for an automatic system for feature detection which is outlined
in Section IV. Section V presents anecdotal performance
results. Section VI discusses related work and Section VII
concludes.

II. INFRASTRUCTURE

MAO utilizes the GNU assembler (gas) from binutils 2.19
(and later) for parsing and binary encoding of assembly files

and instructions. Changes have been submitted to the open-
source binutils to allow its usage in the MAO context. As MAO
itself is being built, some minimal modifications still have to
be made to gas to enable integration with MAO, specifically,
to suppress binary file creation and to allow repeated relaxation
(explained in detail later). Corresponding small patches are
delivered as part of MAQO’s source distribution. Our goal is to
improve binutils to avoid the need for any local patches in the
future.

Since MAO is based on gas, it accepts assembly files
in either Intel or AT&T syntax, for 32-bit or 64-bit build
models. The input is parsed with gas’ table driven encoder,
which encodes every possible x86 instruction into a single
C struct type. In regular operation mode, gas performs
relaxation and generates a binary object file from sequences
of these st ructs. In MAO mode, however, the generation of
binary output is suppressed. Instead, the encoded instructions
become part of the MAO IR. After parsing has completed,
control is given to the optimizing passes of MAO, which add,
delete, or modify IR nodes and instructions. All instruction
modifications are done on the underlying C struct type. At
the end of the optimization phase, MAO writes out the content
of these structs in legible textual assembly. It should be
noted that while gas is written in C and MAO reuses types
from it, MAO itself is written in C++.

After parsing, all assembly directives and instructions form
one long list of MAO IR nodes. To reflect the structure of
assembly files, MAO offers a notion of sections and functions
and provides easy access to these higher level concepts via
corresponding iterators. For example, if a function located in
a code section happens to be split into two sections by an an
intermittent data section, which is a pattern commonly emitted
by compilers during translation of C switch statements, the
linker will produce a single continuous function body and
move the data section somewhere else. MAQO’s optimization
passes should not have to care about such details and MAO’s
function and instruction iterators handle this transparently.

Every instruction provides access to all potential modifiers,
opcode, operands (including all registers and offsets participat-
ing in the various addressing modes), the instruction’s binary
encoding, and its encoded length.

MAO offers a simple data flow apparatus, but no alias or
points-to analysis. Since many assembly instructions work on
registers, this data flow mechanism is powerful and solves
many otherwise difficult to reason about problems for the op-
timization passes. MAO uses a table-driven approach to model
side effects. A tiny configuration language specifies opcodes,
operands being modified, flags set, and other potential side
effects. A generator program constructs C tables for use by
MAO.

MAO offers a per-function control-flow graph (CFG). In
the presence of indirect jumps, building this graph can be
undecidable. However, we rely on the fact that we handle
compiler generated assembly files and recognize a handful of
patterns to handle indirect jumps properly, e.g., to find jump ta-
bles. If, for a function, a particular branch cannot be resolved,

the function gets flagged and optimization passes can decide
whether or not to proceed. In practice, this mechanism is brittle
and needs constant maintenance. We tested this functionality
on a source base of high complexity containing many inline
assembly sequences. When we updated the internal compiler
to a newer version, we found that 246 out of 320 indirect
branches could no longer be resolved. After adding a single
pattern that uses the data flow framework’s reaching definitions
functionality, only 4 out of the 320 indirect branches (1.2%)
remained unresolved. The remaining patterns were complex,
uncommon cross-basic block scenarios.

MAO offers a loop detection mechanism based on Havlak
[8]. It builds a hierarchical loop structure graph (LSG) repre-
senting the nesting relationships of a given loop nest. In this
graph, each node contains the nested loops, as well as the
remaining basic blocks. The algorithm allows distinguishing
between reducible and irreducible loops and it is up to
particular optimization passes to decide how to proceed in the
presence of irreducible loops. In practice, irreducible loops are
seen rarely, and we have only encountered a handful in legacy
spaghetti FORTRAN code.

MAQO also offers the ability to perform repeated relaxation,
which is essential for alignment-based optimizations. Relax-
ation is the process of finding proper instruction sizes for
branches based on branch target distances. This is essential to
determine the start addresses of all instructions. As an exam-
ple, consider the following assembly sequence with instruction
offsets and encoding:

0: 55 push $rbp

1: 48 89 e5 mov %$rsp, $rbp

4: c7 45 fc 05 00 00 00 movl $0x5,-0x4 (%$rbp)

b: eb 7f Jmp 8c <main+0x8c>

d: 83 45 fc 01 addl $0x1,-0x4 (%rbp)

11: 83 6d fc 01 subl $0x1,-0x4 (%$rbp)
<instructions>

8c: 83 7d fc 00 cmpl $0x0,-0x4 (%rbp)

90: O0f 85 7a ff ff ff jne d <main+0xd>

The branch at offset b has a 2 bytes encoding (0Oxeb,
0x7c). Consider a scenario where the branch target moves
down, e.g., because an optimization pass inserted a single-byte
nop instruction right before the cmpl instruction at offset
Ox8c:

0: 55 push $rbp

1: 48 89 e5 mov $rsp, $rbp

4: ¢c7 45 fc 05 00 00 00 movl $0x5,-0x4 (%$rbp)

b: €9 80 00 00 00 Jmpg 90 <main+0x90>

10: 83 45 fc 01 addl $0x1,-0x4 (%rbp)

14: 83 6d fc 01 subl $0x1,-0x4 (%rbp)
<instructions>

8f: 90 nop

90: 83 7d fc 00 cmpl $0x0, -0x4 (%rbp)

94: 0f 85 76 ff ff ff jne 10 <main+0x10>

Then the jump at offset b requires a 5 byte encoding. As
a result, the cmpl instruction moves down by 4 bytes, out
of which 1 byte is due to the nop instruction, and 3 bytes
are due to the changed encoding. Now, since the instruction’s
length and other instructions’ offsets changed, the encodings
of other branches might change and hence another iteration of
this algorithm becomes necessary.

Relaxation in the general case is an NP-complete problem.
In the implementation there is a built-in limit of 100 iterations,
but in practice almost every relaxation succeeds in a few iter-
ations, and it never fails. The gas assembler only performed
relaxation once before generating a binary output file. In MAO,
however, multiple relaxations are necessary and changes were
made to gas to support this feature.

The requirement for relaxation complicates optimization
passes. If, for example, two branches are carefully placed
in two separate 32-byte bundles to avoid branch predictor
aliasing problems, relaxation and the corresponding shifting
of instruction addresses can invalidate that placement. Some
of these problems can be resolved with iterative approaches
or via clever phase ordering. Finding a more general solution
remains an interesting research problem.

MAO’s IR can also be annotated with hardware counter
profile information. Tools like oprofile [14] associate hardware
event samples to offsets within functions. Since MAO has
instruction sizes available, samples can be directly mapped
to individual instructions. Similar to Chen [3] we plan to
construct edge profiles from this information as future work,
as that information can make a large performance difference
in certain contexts.

Finally, the MAO IR itself is intentionally kept simple.
This design enables performance experts knowledgeable in
x86 assembly but lacking knowledge of a compiler’s internals,
to write optimization passes. In our environment, experts used
MAQO to prototype optimizations, to modify short instruction
sequences, or to validate a given performance assumption.

III. OPTIMIZATION PASSES

MAO optimization passes can be roughly classified into
categories such as pattern matches or peep-holes, alignment
specific optimizations, scalar optimizations, advanced opti-
mizations, and experiments. We first outline how to construct
and invoke an optimization pass and then provide examples of
passes in each category. As a sample code base we used a core
library at Google which consists of approximately 80 complex
C++ files containing many inline assembly sequences.

A. Pass Definition

MAO supports two types of passes: function specific passes,
which get invoked for every identified function in an assembly
file, and passes which process the full IR for an assembly file.
There are only a few full IR passes, e.g., reading/parsing of the
input and emission of the output assembly. Most other passes
operate at the function granularity.

Writing a pass is easy and follows the template shown in
Figure 3, which implements a pass that just prints function
names only. The optimization pass is a C++ class derived
from a base class MaoFunctionPass and contains a Go ()
function, which serves as the main entry point for the pass.
In the example, the Go () function simply prints the name of
the current function, using the standard tracing facility that is
available to every pass by default. To make passes externally

#include "Mao.h"
namespace {
MAO_OPTIONS_DEFINE (MAOPASS, 0) { 1};

class MaoPass
public:
MaoPass (MaoOptionMap *opts,
MaoUnit *mao,
Function ~fct)
: MaoFunctionPass ("MAOPASS",
{1}

: public MaoFunctionPass {

// specific options
// current asm file
// current function
opts, mao, fct)

bool Go () {
Trace (3, "Func: %s",
return true;

}

fct->name () .c_str());

}
REGISTER_FUNC_PASS ("MAOPASS",
} // namespace

MaoPass)

Fig. 3. Structure of a minimal optimization pass

visible, an invocation of REGISTER_FUNC_PASS is required
to register a pass under a name.

Passes can be statically linked into MAO, or dynamically
loaded as plug-ins. To make a pass a plug-in only requires
adding another macro. Since all passes are derived from a
common base class, they all offer common functionality, e.g.,
dumping the current state of the IR before or after a given pass
in various formats, or to specify pass specific parameters.

Passes are named and their invocation is controlled via
command-line options. MAO-specific options are prefixed
with ——mao=. Options without this prefix are passed through
to the underlying gas assembler. For example, the following
command line

...mao ——mao=LFIND=trace[0] :ASM=o[/dev/null] in.s

invokes a MAO pass named LFIND, turns on tracing and
generates the assembly output to /dev/null.

The order of passes on the command line specifies the
pass invocation order. When running analysis-only passes, the
assembly generation ASM pass can be omitted. Reading and
parsing the input and converting it to the IR is a pass as well,
but called by default as the first pass.

To verify correctness of basic MAO functionality, we run
MAO on the gas test suite and also compile large source
bases. For each source file we take the compiler generated
assembly file A; and run the assembler on it to generate an
object file O;. Then we run MAO on A;, construct the CFG
and perform loop recognition, and generate an assembly file
As. We run the assembler and generate an object file O5. We
then disassemble O; and O and verify that both disassembled
files are textually identical. Since MAO didn’t perform any
transformations, the disassembled files must match.

B. Pattern Matching

a) Redundant Zero Extension: Pattern matching passes
try to cleanup redundant or bad code sequences which typi-
cally come from weaknesses or deficiencies in the compiler.

For example, GCC 4.3 and 4.4 does not model sign- or zero-
extension well. As a result, many code sequences like the
following are generated:

andl $255, $eax
mov %eax, $eax

The second mov instruction is meant to zero-extend register
%$eax. However, this operation is a by-product of the preced-
ing andl instruction and therefore redundant. In the sample
Google core library we find approximately 1000 occurrences
of this pattern.

This transformation serves well to make a key point about
MAO. We implemented the same transformation, redundant
zero extension, in the GCC 4.3 compiler. We had to go through
several rounds of implementation attempts until we got it right,
and, more importantly, until the upstream reviewers accepted
the implementation. After a lot of effort the patches were com-
mitted, only to find that the performance effect on the target
code base was minimal. A simple prototype implementation in
MAQO catches more than 90% of the opportunities handled by
the compiler. This prototype was implemented in less than a
day and could have helped guide decisions on where to better
spend time and resources.

b) Redundant Test Instructions: GCC does not model the
x86/64 specific condition codes well. Certain instructions set
certain condition codes in a rather non-canonical fashion. As
a result, we find code sequences like the following:

subl 16, %rlbd
testl %rl5d, %rl5d

The test1 instruction is redundant, as the proper condition
codes are being set by the sub1l instruction. On the same core
library, we find a total of 79763 test instructions, of which
19272 (24%) are redundant. MAO precisely models the x86/64
condition codes, enabling it to remove the redundant tests.

¢) Redundant Memory Access: Because of phase order-
ing issues and how register allocation is performed in GCC,
we find many code sequences of this form:

Srdx
%rcx

movqg 24 (%rsp),
movqg 24 (%rsp),

This can be expressed with shorter encoding by reusing
the $rdx register. The resulting code sequence is two bytes
shorter, and furthermore only performs one single explicit
memory access:

movqg Srdx

movq

In the same code base used above, we find 13362 occur-
rences of this pattern.

d) Add/Add Sequences: Even more trivial code patterns
seem to escape in today’s mature open-source and closed-
source compilers. For example, GCC 4.3 generates patterns
of multiple add instructions in a row, e.g.:

add/sub rX, IMM1
. no re-definition/use of rX,

. no use of condition codes
add/sub rX, IMM2

This pattern can be replaced with a single add/sub
instruction after folding the constants IMM1 and IMM2. In
addition to these described patterns a plethora of similar non-
optimal patterns is being generated by many different com-
pilers. With MAO, these patterns can be found and corrected
easily.

C. Alignment Optimizations

e) Short Loop Alignment: Alignment specific optimiza-
tions seek to change instructions’ relative placement to utilize
processor resources in a more effective manner. For example,
we found a 7% performance degradation in the SPEC 2000 int
benchmark 252.eon between GCC 4.3 and the previous GCC
4.2. The performance degradation was caused by a very short
loop sequence:

426100: movss $xmmO, (%$rdi, $rax, 4)
426105: add $0x1, $rax

426109: cmp $0x8, $rax

42610d: Jjne 426100

The degraded version was identical, except it crossed a 16-
byte alignment boundary:

423c78: movss $xmmO, (%$rdi, $rax,1)
423c7d: add $0x4, $rax

423c81: cmp $0x20, $rax

423c85: Jjne 423c78

After careful examination of the hardware performance
counters, an instruction decoding bottleneck was suspected.
The x86/64 Core-2 decodes instructions in 16-byte chunks.
Aligning the loop at 16 byte boundary resulted in decod-
ing of only one line instead of two. Note that at higher
optimization levels, GCC and other compilers insert many
alignment directives in the generated assembly files. However,
the placement of these directives is very crude and based on
imprecise assumptions about the hardware. In particular, this
loop remained unaligned.

f) Loop Stream Detector: The Loop Stream Detector
(LSD) is a specialized hardware structure on various Intel
platforms meant to bypass instruction fetching and decoding.
There are strict requirements for loops to be streamed from the
LSD. The loop must execute a minimum of 64 iterations, must
not span more than four 16-byte decoding lines, and may only
contain certain types of branches. These requirements change
for more modern processor generations. For example, these
three basic blocks forming a loop might be physically located
as to span six 16-byte decoding lines, as illustrated in Figure 4.

10:
cmp %rld, %d2d
jne 11 12:
[...] add $0x1, $rlo0d
11: add $0x9, %rs8d
add $0x7, %rod add $0x1, %esi
mov %rld, %d2d add $0x1, $%rld
cmp %$r2d, %dld cmp $0x12345678, $%$rl10d
jne 12 j1 10

Inserting six nop instructions moves the code so as to now
only span four 16-byte decoding lines, as seen in Figure 5.
The insertion of these nop instructions speeds the loop up by
a factor of two.

0x00
0x10
0x20
0x30
0x40
0x50
0x60
0x70
0x80
0x90

Fig. 4. Initial layout of instructions (green) which are spread out over 6
16-byte decoding lines.

0x00
0x10
0x20
0x30
0x40
0x50
0x60
0x70
0x80
0x90

Fig. 5. Improved instruction layout after insertion of 6 nop instructions.
Instructions now span 4 decoder lines only.

g) Branch Alignment: We found an example where a
two-deep loop nest of two short running loops would lead to
the placement of the back branches close to each other at the
bottom of the loops, as shown in this code sequence:

32-byte alignment boundary

je 11
add $1, %eax
add $2, %ebx
je 12

In many Intel platforms, branch predictor structures are
indexed by PC >> 5. As a result, the backward branches of
both the loops above use the same branch prediction informa-
tion. Since both loops were short running with iteration counts
of 1 or 2, the branch predictor gets constantly confused and
makes consistently bad predictions. Moving the second branch
instruction down via NOP insertion so that the two branch
instructions with targets 11 and 12 have two different PC
>> 5 values speeds up a full image manipulation benchmark
by 3%.

h) Alias Issues: There are other alignment specific alias
issues, as many hardware features, e.g., the prefetchers, use
tables indexed by address bits at certain granularities, leading
to alias effects. For example, on a specific Intel platform
prefetchable loads should not be located at multiples of 256
bytes. We have not yet implemented a pass to address this
issue.

D. Scalar Optimizations

We added a few scalar optimizations as well, e.g., for
unreachable code elimination and constant folding. There is
typically not much opportunity left in compiler generated
output files. However, as we seek to make MAO useful
in simple code generators, offering a standard set of scalar
optimizations appears valuable.

E. Experimental Optimizations

i) Nopinizer: Inspired by ideas from Diwan [11], this
pass inserts random sequences of nop instructions in the code
stream. A random number seed can be specified to produce
repeatable experiments. Furthermore, the insertion density can
be specified as a random function of nop’s pre-existing
instructions, as well as the length of the NOP sequences.

The idea is that by inserting nop instructions, code gets
shifted around enough to expose micro-architectural cliffs,
e.g., by removing unknown alias constraints, or limitations
in the branch predictor. Performing a large number of experi-
ments found a 4% opportunity in compression code on an older
Pentium 4 platform, which as of today, remains a mystery.

Jj) Nop Killer: The compiler inserts alignment direc-
tives based on some rough ideas about an underlying micro-
architecture. For example, it tries to align branch targets to 8 or
16 bytes. The assembler generates nop instructions of varying
length (e.g., xor %$eax, %eax forthe assembly .align or
.p2align directives).

The question was how effective these alignment directives
actually are. This pass allows removal of all these nop instruc-
tions. We found that on several Intel and AMD platforms, the
performance effects were in the noise range for our set of
benchmarks. The pass resulted in a code size improvement of
about 1%.

k) Inverse Prefetching: On Intel Core-2 platforms, a load
instruction can be turned into a non-temporal load by inserting
a prefetch.nta instruction to the same address before it.
This results in these loads always replacing a single way in the
associative caches. This technique can be used to reduce cache
pollution. We used a novel memory reuse distance profiler to
identify loads with little reuse and used MAO to insert the
prefetch instructions to make these loads non-temporal.
The implementation overhead was minimal and dramatically
simpler than attempting to do this in the compiler. Results of
this technique are promising and will be detailed in another
paper.

1) Dynamic Instrumentation Support: Dynamic binary
instrumentation is a complicated task, in particular in the
presence of variable-sized instructions. For example, if the
instrumenter wants to modify existing code and instrument a
branch to trampoline code to perform a specific task, existing
instructions need to be modified, and, e.g., a 5-byte branch
must be inserted. This must be an atomic operation, otherwise
one thread could be executing in this 5-byte range as it is
being replaced. Instrumenters can work around this issue by
monitoring all threads, and single-stepping threads out of
instrumentation points to allow insertion of branches.

A simpler approach is to guarantee that single 5-byte (nop)
instructions reside at the desired instrumentation points, and
that those instructions do not cross cache lines. MAO offers
an experimental pass that performs this transformation at all
function entry and exit points to allow a specific form of
dynamically instrumented function profiling.

It would have been a significant effort to facilitate imple-
mentation and deployment of this prototype in a compiler.

Writing this transformation in MAO took engineers not fa-
miliar with MAO only a few days and it could be deployed
immediately, allowing further experimentation on overhead,
code-size issues, and of course the profiling results themselves.
Remarkably, while the insertion of the nop instructions was
expected to result in degradations because of larger I-cache
footprint and added instructions, it actually resulted in no
degradations overall, as well as an unexpected 8% improve-
ment in an image processing benchmark. This is due to an
alignment effect and is not fully understood at time of this
writing.

m) Instruction Simulation: In another effort we imple-
mented a sampling-based race detector. The idea [19] is to
construct probabilistic lock sets by sampling instructions with
memory addresses and simultaneously tracking instrumented
locks. This sampling based approach reduces overhead by
an order of magnitude compared to existing approaches. The
same paper shows that the probability of finding races can
be increased by increasing the number of sampled addresses.
Instead of increasing the sampling frequency, which could be
prohibitive in regards to runtime overhead, we implemented
a MAO pass performing forward and backward instruction
simulation, handling only a small subset of all instructions.
While simple, this pass is able to generate additional ad-
dresses following address calculations using register content
snapshots.

For example, consider this instruction sequence:

IP1: mov -0x08 (%rbp), $Sedx
IP2: mov %edx, (%rax)
IP3: addl 0xl, -0x4(%rbp)

For each PMU sample, we also get the content of the register
file for the sampled instruction. Assume the hardware samples
on instruction IP1. Since the value of $rax is not being
killed by this instruction, and since we got this register’s
value when we sampled IP1, we can use this register’s
content to compute the address used in instruction IP2 via
simple forward simulation. Similarly, assume we only sampled
instruction IP 3. Since we also got the value of register $rax
at this point, we can do a backward simulation and get the
address used at IP2 as well.

Using this technique, for the benchmarks presented in this
paper, the number of sampled effective addresses could be
increased by factors ranging from 4.1 to 6.3.

F. Scheduling Optimizations

We found significant performance opportunity (21%) in one
of our hashing micro benchmarks, simply from scheduling
instructions differently. Consider the following code snippet
found in that benchmark:

xorl $edi, %ebx
subl %ebx, %ecx
subl $ebx, %edx
movl %ebx, %edi
shrl $12, %edi
xorl $edi, %edx
The xorl %edi, %ebx feeds three other instructions.

Performance differences were observed by reordering those

three instructions. The instructions in question did not have
dependencies among them, had the same latencies, and can
all potentially execute in the same cycle without any structural
hazards. By analyzing various PMU counters, it was found that
the performance degradation correlated with a proportional
increase in reservation station stalls as measured by the
hardware event RESOURCE_ STALLS:RS_FULL.

Based on the PMU values, our hypothesis was that there
is some bandwidth limitation while forwarding the values
from an executed instruction to its dependent instructions.
If, due to forwarding bandwidth limitation, the result of the
xorl instruction does not reach the dependent instructions
in the same cycle, that would cause one or more dependent
instructions to wait in the reservation stall resulting in an
increase in RESOURCE_STALLS:RS_FULL events. Since
the numbers from various hand-modified schedules supported
that hypothesis, we added a scheduling pass in MAO. The
pass provides a framework for list-scheduling at the assembly
instruction level. By changing the cost functions associated
with the instructions, different scheduling heuristics can be
implemented. The current cost function ensures that, when
scheduling successors of an instruction with multiple fan-
outs, the instructions on the critical path are given a higher
priority. This resulted in a 15% performance improvement in
the hashing microbenchmark and a 0.6% improvement across
our benchmark suite.

In addition, we noticed more machine-dependent scheduling
opportunities. A basic block in the hot loop had this layout:

.L5:
leal (%$r8, %rdi), %ebx
movl $ebx, %ecx
sarl %ecx
movl $ecx, %edx
xorb $01, %dl
leal 2 (%rdx), %r8d

The particular Intel chip has execution ports with asym-
metric capabilities. The 1lea instruction can only be executed
on port 0, the sarl instruction can only be executed on
ports O and 5. We suspect that other micro-operations were
competing for the same execution ports, which introduces
another interesting scheduling constraint.

There are many mysteries that this scheduling pass is
trying to address, without any particular knowledge about
the actual effects. Based on these experiences, we decided
to write a more automated mechanism to extract and discover
micro-architectural features. An ambitious goal is to discover
highly beneficial schedules for a target micro-architecture
automatically. While we are far from this goal, detecting
features automatically remains interesting and the mechanism
is described next.

IV. MICRO-ARCHITECTURAL PARAMETER DETECTION

The success of micro-architecture specific optimizations
depends on a good model of the the target micro-architecture.
Building an accurate model for modern processors is virtually
impossible. The main difficulty lies in the inherent complexity
of these processors that makes any attempt to precisely model

a processor prohibitively expensive. This is compounded by
the fact that processor manuals and other documents released
by the processor manufacturers do not completely specify the
microarchitecture. For instance, consider the branch predictors
in current-generation Intel and AMD processors. While the
manuals describe the broad category under which the predictor
falls (“two level predictor with global history”, for example),
they usually do not contain specific information such as the
size of the history tables, specific bits used to index the tables,
and so on.

The missing details in the processor manuals force
architecture-specific tools to rely on third party documentation
(such as the one published by Agner Fog [2]) or to discover the
parameters by experimentation. This experimentation typically
involves crafting microbenchmarks in assembly language, run-
ning them in isolation on the target architecture, collecting
various performance metrics, and interpreting the results to
infer specific parameters of the system. Multiple microbench-
marks may need to be created and each run several times
to infer a parameter with high confidence. This makes the
process cumbersome, time consuming and less scalable. These
difficulties magnify many fold if the parameters of several
processors need to be inferred.

To overcome these hurdles, MAO contains a framework
to simplify the creation and execution of microbenchmarks.
This framework consists of the following key abstractions
implemented as Python classes:

a) Processor: This class encapsulates information spe-
cific to a target architecture. This primarily consists of the set
of registers and the set of instructions.

b) Instruction: This class represents an assembly instruc-
tion. The implicit and explicit operands of an instruction,
including their types, positions of source and destination
operands, and any other operand constraints are managed by
this class.

c) InstructionSequence: As the name implies, this class
encapsulates an acyclic sequence of instructions. A sequence
is specified by the set of candidate instructions that can appear
in the sequence and the dependencies among the instructions.
The candidate set is described by a set of instruction attributes.
The common attributes include instruction templates (such as
‘add %r, %r’) and the type of instructions (arithmetic,
memory, etc.). This could be easily extended to support
arbitrary attributes. For instance, certain experiments might
require the use of only long latency operations. This can be
specified by having latency as an instruction attribute and
specifying constraints based on that. The dependencies among
the instructions are specified using dependence graph types.
The supported types include CHAIN (each instruction in the
sequence has a RAW dependence on the previous instruction),
CYCLE (a CHAIN where the first instruction depends on the
last), RANDOM (arbitrary dependencies between instructions)
and DISJOINT (each instruction is independent of other).
The InstructionSequence class generates a random sequence
satisfying the specified constraints.

Form a loop with a cycle of instructions,
one dependent on the other. Execute the chain,
collect CPU cycles and obtain the latency
#
def InstructionlLatency (proc, template):
seq = insseq.InstructionSequence (proc)
seq.SetInstructionTemplate (template)
seq.SetDagType (insseq.DagType.CYCLE)
seq.Generate ()
loop_list = loop.LoopList (
[loop.StraightLineLoop ([seq], proc)])
bench = benchmark.Benchmark (loop_list)
results = bench.Execute (proc, [proc.CPU_CYCLES])
insns_in_loop = loop_list.NumDynamicInstructions ()
latency = round(float (results|[proc.CPU_CYCLES])/
insns_in_loop)
return latency

Fig. 6. Program to determine instruction latency

d) Loop: One or more instruction sequences are enclosed
within a loop with a specified trip count. The simplest form of
a loop is a straight line loop which does not have any control-
flow inside the loop. More general loops could be generated
by explicitly specifying the control-flow between the different
instruction sequences.

e) Benchmark: This class is used to construct an assem-
bly program from the specified loops, assemble the program,
execute the program on a target architecture in isolation and
collect any specified PMU counters.

A. Case Study: Instruction Latency

Figure 6 shows a simple example of how the framework can
be used to determine the latency of an instruction. The function
InstructionLatency takes two parameters: a target pro-
cessor and an instruction template. The function generates an
instruction sequence where all the instructions have to match
the template and each instruction depends on the preceding
instruction. This dependence pattern ensures that exactly one
instruction is in the execution unit every cycle. The source
and destination operands are generated by the framework
randomly from a set of valid operands for each instruction.
This instruction sequence is wrapped inside a straight-line loop
with a fixed trip count. This microbenchmark is executed on
a host with the specified target processor in isolation and the
number of CPU cycles taken to execute the microbenchmark
is obtained. Since the instruction executions are completely
serialized, the latency per instruction is obtained by dividing
the CPU cycles by the number of instructions in the loop.

V. PERFORMANCE ANALYSIS

MAO, at the time of this writing, is not yet tuned for
either compile-time or runtime performance, and we therefore
decided to present performance results in an anecdotal fashion
which allows highlighting the potential of this infrastructure.

A. Compile-Time Performance

MAQO is based on gas, which, during normal operation,
only performs one “pass” over the assembly instructions. MAO
performs multiple passes, e.g., one of for each optimization

pass. As a result, one would expect the compile-time to be
much higher than for gas and indeed, for a typical set of
passes, MAO is about five times slower than gas. We believe
this can be improved significantly. Since assembly time only
represents a very small fraction of overall compile time, we
find that a full integration of MAO in the compiler, including
a final gas invocation, only slows down gcc —02 by 5-10%,
and gcc -00 by 25-30%. We find this acceptable as we only
use MAO for higher levels of optimization.

For all experiments we integrated MAO the following way.
We first configured and built a standard GCC installation. We
find the assembler binary named as in this directory tree,
rename it to as—orig, and add a replacement script called
as, which gets invoked by the compiler driver as if it were
the original assembler. The script parses all command-line
arguments passed to it. If it finds MAO-specific options, it
filters those out and executes MAO first. MAO will generate
a temporary assembly output file. The script then starts the
original assembler as-orig on this output file with the
remaining options and generates the expected binary object
file. The as script is available in the open-source MAO
distribution.

B. Runtime Performance

For runtime performance results, we integrated MAO into
a stock GCC 4.4.1 compiler as described above. For SPEC
2000 int, and various optimization passes, we find that
most performance results stay flat, in particular for the Nop
Killer pass (NOPKILL), which leads to the conclusion that
most alignment directives are not helping. However, for
252.eon, Nopinizer (NOPIN) and Nop Killer result in un-
surprising performance regressions, but removal of redundant
tests (REDTEST) also resulted in a regression. As alignment
directives stay present in the assembly for this pass, this
may point to a problem with small loop alignment, described
earlier.

Benchmark NOPIN NOPKILL REDTEST
C++/252.eon -9.23% -5.34% -5.97%

On an Intel Core-2 platform, aligning small loops (LOOP16)
has benefits for three benchmarks, while degrading 252.eon,
which is counter-intuitive and indicates that further analysis
and tuning of these passes is necessary.

Benchmark LOOP16
C++/252.eon -4.43%
C/175.vpr 1.25%
C/176.gcc 1.41%
C/300.twolf 1.18%

The same transformation on an AMD Opteron platform
appears to be helping a different set of benchmarks, yet still
degrades 252.eon:

Benchmark LOOP16
C++/252.eon -5.86%
C/181.mcf 2.47%
C/186.crafty 2.45%

The picture looks similar for SPEC 2006, where we see a
few low percentage swings both to the upside and downside.

However, on an AMD Opteron platform, FP 454.calculix
improves significantly (over 20%) with either removal of
redundant move instructions (REDMOV) or removal of re-
dundant test instructions (REDTEST). Since both passes only
remove instructions, we suspect that another second order
effect takes hold, such as the loop stream detector. However,
we are not aware of a published LSD-like structure on AMD
platforms, therefore this result points to yet another unknown
micro-architectural effect.

The same effect, but to a lesser extent, can be seen for
447 dealll. Interestingly, simply removing alignment directives
results in an 8.8% degradation for 454.calculix, again indicat-
ing that more careful optimization must be applied.

Benchmark REDMOV ~REDTEST NOPKILL
447 .dealll 2.78% 3.21% -0.12%
454 .calculix 20.12% 20.58% -8.81%

Scheduling (SCHED) helps a few benchmarks as well. The
gains are still modest as this pass does single basic block
scheduling only. We expect the impact to become much higher
once we extend the pass to schedule across basic blocks.

Benchmark SCHED
410 .bwaves 1.29%
434 .zeusmp 1.20%
483.xalancbmk 1.25%
429 .mcf 1.43%
464 .h264ref 1.75%

The table in figure 7 shows how often some of the basic
optimization passes transformed the code as generated by
a stock GCC 4.4.3 for SPEC 2000 int. It also shows the
aggregate performance results, which were obtained on a Intel
platform. In order to obtain consistent results, we ran the SPEC
benchmarks more often than the three suggested times and
performed statistical valuation, ensuring that the results were
statistically significant. The aggregate numbers are lower than
numbers obtained from applying single optimizations. The
results, again, show the potential for this approach, but more
work needs to be done to consistently exploit the opportunities.
Excluding the degradation for 253 .perlbmk, this set of
transformations would have resulted in an overall performance
gain of 0.6%.

VI. RELATED WORK

There has been considerable past work on low-level and
post-link optimizers. An early assembly to assembly opti-
mizer was described in Sites [20]. ALTO [16], PLTO [18],
FDPR-Pro [24], and Ispike [9] are post-link optimizers for
Alpha, x86, POWER, and Itanium, respectively. In all cases,
the reasons for post-link optimization are fairly consistent:
performing optimizations that are hard at higher levels of ab-
straction (e.g., jump optimizations based on actual instruction
addresses), optimizing code for which source code is unavail-
able, re-targeting code to take advantage of new architectural
or micro-architectural features (e.g., vector instructions [6]),
or incorporating profile-feedback to re-optimize. Some past
approaches even use pattern matching like MAO [12]. While
this list of low-level optimizers and reasons to use them

[Benchmark [[L[NOP [M [T [SCHED | Perf |
164.gzip 1 664 - 5 427 | +0.02%
175.vpr 3 1425 7 4 1778 | +1.06%
176.gcc 62 | 27471 | 35 | 57 8891 | +1.29%
181.mcf - 185 1 - 236 | +0.13%
186.crafty 3 1987 71 18 2648 | +0.43%
197 .parser 13 2134 4 - 1106 | +0.18%
252.eon 1 2373 | 10 6 12215 | +1.01%
253.perlbmk || 21 | 11870 9 | 21 5178 | -2.14%
254.gap 62 9216 | 23 6466 | +0.12%
255.vortex 1 6860 3 5 6905 | +0.44%
256.bzip2 396 3 - 637 | +1.04%
300.twolf 18 3009 | 24 | 43 2800 | +0.97%

Geomean 0.38%
Geomean w/o 253.perlbmk 0.61%
Fig. 7. Number of optimizations performed, and aggregate performance

gains. L: Small loop alignment (LOOP16), NOP: Nopinizer, M: Redun-
dant Mov Removal (REDMOV), T: Redundant Test Removal (REDTEST),
SCHED: Instructions moved during scheduling

is by no means exhaustive, MAO is unique in that it is
an accessible low-level optimizer designed to help software
developers (both compiler experts and non-experts) navigate
the complex landscape of performance cliffs.

MAO is not unique in its goal to try and extract peak
performance from an often opaque micro-architecture. The
literature is replete with work recognizing the difficulty of
achieving optimal performance. For example, Mytkowicz et
al. demonstrate that subtle changes to an experimental setup,
such as changing the link order or the UNIX environment
a program runs in, can dramatically affect application per-
formance [17]. While the authors’ goal was to demonstrate
the significant effect of measurement bias, this work clearly
demonstrates the significance of performance cliffs. In a later
work, the authors propose blind optimization [11] which
does an automatic search of a variant space to find the best
performing program. Significant work exists in this space of
iterative compilation [5], [10], [1], [22], [23]. Unfortunately,
iterative compilation has thus far not taken hold for production
compilation. MAO offers developers an opportunity to benefit
from the micro-architectural optimization potential that these
iterative approaches seek to exploit.

VII. CONCLUSIONS

We presented MAO, an extensible micro-architectural op-
timizer. We discussed the features of the IR and several
classes of optimization passes. We believe that these issues
must be addressed more aggressively in the future, both for
performance results, but also for robustness and quality of
the results. We motivated an automatic approach to hardware
feature detection. We believe the results point to a potentially
rich area of research and we invite participants from academia
and industry to contribute to this open-source project for the
benefit of the community.

VIII. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
numerous suggestions to improve this paper.

[1

—

[2]
[3]

[4]
[5]

[6

)

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]
(22]

[23]

[24]

REFERENCES

Bas Aarts, Michel Barreteau, Franois Bodin, Peter Brinkhaus, Zbigniew
Chamski, Henri-Pierre Charles, Christine Eisenbeis, John R. Gurd,
Jan Hoogerbrugge, Ping Hu, William Jalby, Peter M.W. Knijnenburg,
Michael F.P. O’Boyle, Erven Rohou, Rizos Sakellariou, Henk Schepers,
Andre Seznec, Elena A. Stohr, Marco Verhoeven, and Harry A.G. Wi-
jshoff. OCEANS: Optimizing compilers for embedded hpc applications.
In Lecture Notes in Computer Science, August 1997.

Agner Fog. www.agner.org.

Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-wei Liao, Vinodha
Ramasamy, Paul Yuan, Wenguang Chen, and Weimin Zheng. Taming
hardware event samples for FDO compilation. In Proceedings of the 8th
Annual IEEE/ACM International Symposium on Code Generation and
Optimization, pages 42-52, New York, NY, USA, 2010. ACM.

Chris Lattner, Private Communication.

Keith D. Cooper, D. Subramanian, and L. Torczon. Adaptive optimizing
compilers for the 21st century. October 2001.

Anshuman Dasgupta. Vizer: A framework to analyze and vectorize Intel
x86 binaries. Master’s thesis, Rice University, 2003.

GCC, the GNU Compiler Collection. gcc.gnu.org.

Paul Havlak. Nesting of reducible and irreducible loops. ACM Trans.
Program. Lang. Syst., 19(4):557-567, 1997.

Chi keung Luk, Robert Muth, Harish Patil, Robert Cohn, and Geoff
Lowney. Ispike: A post-link optimizer for the Intel Itanium architec-
ture. In Proceedings of the 2004 International Symposium on Code
Generation and Optimization, pages 15-26, 2004.

T. Kisuki, P. M. W. Knijnenburg, M. F. P. O’Boyle, F. Bodin, and
H. A. G. Wijshoff. A feasibility study in iterative compilation. In
Proceedings of the International Symoposium on High Performance
Computing, 1999.

Dan Knights, Todd Mytkowicz, Peter F. Sweeney, Michael C. Mozer,
and Amer Diwan. Blind optimization for exploiting hardware features.
In Proceedings of the 18th International Conference on Compiler
Construction, pages 251-265, Berlin, Heidelberg, 2009. Springer-Verlag.
Rajeev Kumar, Amit Gupta, B. S. Pankaj, Mrinmoy Ghosh, and P. P.
Chakrabarti. Post-compilation optimization for multiple gains with
pattern matching. SIGPLAN Not., 40(12):14-23, 2005.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis and transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization,
March 2004.

John Levon. OProfile Manual. Victoria University of Manchester, 2004.
MAO - An Extensible Micro-Architectural Optimizer.
http://code.google.com/p/mao.

Robert Muth. ALTO: A Platform for Object Code Manipulation. PhD
thesis, University of Arizona, 1999.

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. Producing wrong data without doing anything obviously
wrong! SIGPLAN Not., 44(3):265-276, 2009.

Benjamin William Schwarz. Post link-time optimization on the Intel
TA-32 architecture. Master’s thesis, University of Arizona, 2001.
Tianwei Shen, Neil Vachharajani, Stephane Eranian, Robert Hundt,
Wenguang Chen, and Weimin Zheng. RACEZ: a lightweight and
non-invasive race detection tool for production applications. In ICSE
’11: Proceedings of the 33rd International Conference on Software
Engineering, 2011.

R. L. Sites. Instruction ordering for the cray-1 computer. 27-cs-023.
Technical report, 1978.

The Open64 Compiler Suite. www.open64.net.

Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and
David I. August. Compiler optimization-space exploration. In Pro-
ceedings of the International Symposium on Code Generation and Opti-
mization, pages 204-215, Washington, DC, USA, 2003. IEEE Computer
Society.

Michael E. Wolf, Dror E. Maydan, and Ding-Kai Chen. Combining loop
transformations considering caches and scheduling. In Proceedings of
the 29th Annual ACM/IEEE International Symposium on Microarchi-
tecture, pages 274-286, Washington, DC, USA, 1996. IEEE Computer
Society.

Yaakov Yaari. Post-link optimization for Linux on POWER,
http://www.alphaworks.ibm.com/tech/fdprpro.

