

Sundar Dorai-RajSenior Quantitative Analyst
Google

Dan Zigmond
Engineering Manager
Google

Background

- YouTube launched in May 2005
- Grown to the world's most popular online video community
 - 3 billion watches every day
 - 48 hours of video uploaded every minute
 - 2 billion monetized views every week

Problem

- Deriving causation from passive data is challenging
 - Observational studies are subject to selection bias
 - Segmenting groups of users for statistical comparisons is difficult and error prone
- Large scale randomized experiments provide a powerful alternative
 - Run on live traffic
 - Allow for causal inferences
 - Smallest experiments yield about 200K unique cookies per day

Example

- Question: How do ads on YouTube impact usage?
 - Do ads cause viewers to use the site less?
- Naïve approach: Look for correlation between ad viewing and time on site
 - Do users who see lots of ads use YouTube less?

Results using retrospective data

Playbacks as a Function of Ads per User

More ads lead to more playbacks? Or more playbacks lead to more ads?

What went wrong?

- Naïve analysis suffers from length-biased selection
 - Long sessions are more likely to have ads
 - Known issue in statistical sampling since at least 1969
- These issues are very common in practice
 - Thread length in textiles
 - Patient visit duration in hospitals
 - Vegetarians in business meetings

Better Methods

- Using cookies to divide the population of YouTube visitors
 - Expose some of the population to a new treatment (e.g. new ad format, withholding ads, throttling ad coverage)
 - Keep an equal sized sample of the population as a control
- Measure comparisons between the two groups to determine if the the experiment changes user behavior:
 - More watches on YouTube
 - Longer session length
 - Reduced in-stream ad abandonment

Holdback experiments

- YouTube ad formats
 - In-stream video ads
 - Overlay ads
 - Mid-page companion units (MPUs)
- Holdback experiments
 - 6 experiments holding back combinations of the 3 ad formats
 - 1 additional experiment to holdback all ads
 - 1 additional experiment for the status quo (control)
 - Each experiment run on 0.1% of YouTube traffic
- Compare playbacks per visitor among the 8 groups

Watch impact by experiment

Watch impact in the U.S.

Further analysis: Impact of advertising on partners

- Partners control how many in-stream ads are shown on their content
- We can measure the partner-level impact from showing in-stream ads using the in-stream holdback experiment
 - Partners who show an in-stream on at least 1% of their views see a 5% decrease in watches
 - Approximately 1 view is lost for every 3 in-streams shown

Experiments provide necessary metrics partners can use to make decisions

Partner impact of instream ads

Partner Level Impact On Views From Instream Coverage

Conclusions

- Retrospective analysis can be misleading
 - Direction of causation can be difficult to determine
- Randomized experiments can help
 - Provide causal connections rather than correlations
- Online media is uniquely suited to the experimental approach
 - Live traffic can be segmented at random
 - Changes in user behavior can be measured precisely

Next Steps

- Understand advertiser impact
 - Recent experiments focus on user and partner impact
 - New experiments should explore advertiser hypotheses as well
- Broaden our scope
 - Effectiveness of different ad formats
 - Relevant advertising to reduce ad impact

Thank You!

Sundar Dorai-Raj (<u>sdorairaj@google.com</u>)

Dan Zigmond (djz@google.com)

