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ABSTRACT
In a large online advertising system, adversaries may at-
tempt to profit from the creation of low quality or harmful
advertisements. In this paper, we present a large scale data
mining effort that detects and blocks such adversarial adver-
tisements for the benefit and safety of our users. Because
both false positives and false negatives have high cost, our
deployed system uses a tiered strategy combining automated
and semi-automated methods to ensure reliable classifica-
tion. We also employ strategies to address the challenges of
learning from highly skewed data at scale, allocating the ef-
fort of human experts, leveraging domain expert knowledge,
and independently assessing the effectiveness of our system.

Categories and Subject Descriptors
I.5.4 [Computing Methodologies]: Pattern Recognition—
Applications

General Terms
Experimentation

Keywords
online advertisement, data mining, adversarial learning

1. INTRODUCTION
The multi-billion dollar online advertising industry con-

tinues to grow [15]. This growth is fueled by users who find
that online advertisements yield high quality, trustworthy
content, as provided by millions of good-faith advertisers.
However, in this favorable landscape a small number of ad-
versarial advertisers may seek to profit by attempting to
promote low quality or untrustworthy content via online ad-
vertising systems. Our goal is to detect and block these
motivated adversaries, protecting users and ensuring that
online advertisement remains a trustworthy source of com-
mercial information.
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The problem of detecting adversarial advertisements is
complicated by scale. With millions of advertisers and bil-
lions of advertiser landing pages,1 automated detection meth-
ods are clearly needed. However, unlike many data-mining
tasks in which the cost of false positives (FP’s) and false
negatives (FN’s) may be traded off, in this setting both false
positives and false negatives carry extremely high misclassi-
fication cost. Thus, both FP and FN rates must be driven
toward zero, even for difficult edge cases.

The need for extreme reliability at scale necessitates the
use of both automated and semi-automated methods in a
tiered system. Automated detection methods, based on
high-precision, large-scale machine learning methods, are
able to handle the bulk of the detection work. High-recall
models are then used in semi-automated fashion to guide
the effort of expert humans who can resolve hard edge cases.
Together, these approaches form the basis of a system that
quickly and reliably identifies adversarial advertisements and
blocks them from serving.

1.1 Challenges
This paper presents the full anatomy of the multi-tiered

data mining system currently deployed at Google for detect-
ing and blocking adversarial advertisements, and is intended
to serve as a detailed case study. This study is structured
around the following key challenges:

• High cost of both FP’s and FN’s. In our setting,
both FP’s and FN’s have high cost; we cannot trade
off one against the other. Using a combination of au-
tomated and semi-automated effort helps drive both
FP and FN rates towards zero.

• Minority-class and multi-class issues. The vast
majority of ads are from good-faith advertisers; thus
detecting adversarial advertisements presents a diffi-
cult class imbalance issue [6]. This challenge is com-
pounded by the presence of many different classes of
adversarial advertisements, described in Section 2.

• Training many models at scale. At a high level,
our system may be viewed as an ensemble composed
of many large-scale component models. Each of these
models must be frequently trained, evaluated, cali-
brated, and monitored; an efficient paradigm for this
effort is presented in Section 3.

1The ad landing page is the web page to which a user is
directed after clickling on an ad.



Figure 1: System-Level Architecture. Our system
relies both on automated detection using large-scale
learning and semi-automated detection in which
learned models direct the effort of human experts.

• Capturing expert knowledge. To cope with con-
stantly evolving adversarial tactics, our system needs
to be able to capture and leverage expert knowledge
quickly and efficiently. Using experts to label exam-
ples is one such method. Section 5 details additional
approaches including the use of active learning, provid-
ing exploratory tools to experts, and enabling experts
to develop rule-based models for fast response.

• Allocating expert effort for multiple concurrent
goals. Expert effort is required not only for handling
edge-cases, but also for providing training data and
unbiased evaluation metrics. Section 4 presents an
ensemble-aided stratified sampling approach to achieve
these multiple goals simultaneously.

• Independent evaluation. Because we rely on hu-
man experts for ground truth, regular independent
evaluations are critical to ensure that our ground truth
understanding is accurate and comprehensive (see Sec-
tion 6).

1.2 System Architecture
A high-level overview of our system architecture is given in

Figure 1. The main source of data for our system is provided
by a feed of advertisement data, including a crawl of the ad
landing pages themselves. Because the crawl is responsible
for fetching the contents of billions of ad landing pages and
is a massive system in its own right, a detailed description
of the crawl system is outside the scope of this work.

Each ad is evaluated by a large number of deployed mod-
els. The decisions from the models are aggregated; if there
is a high-confidence decision of block or allow, this decision
is put into serving. If the automated models are unable to
provide a high-confidence decision, the ad may be shown to
human experts as part of our ensemble-aided stratified sam-
pling process (see Section 4). Human experts may also de-
velop models using automated assistance, or use exploratory
tools to find adversarial cases and add this data to our sys-
tem. Because ad content may change dynamically over time,
we record a snapshot of all features for an ad at the moment
it is labeled by a human so that our repository of labeled
data is contextually accurate.

2. BACKGROUND:
ADVERSARIAL ADVERTISEMENTS

To our knowledge, adversarial advertisements have not
yet been widely studied in the literature (see Section 7). In
this section, we clarify the problem area by describing some
representative categories of adversarial advertisements that
we have encountered in practice. Note that this section is
a partial listing intended to guide the reader’s intuition for
this paper; official policies are available online via the Google
AdWords Help Center [13].

• Counterfeit goods. Some adversaries attempt to sell
counterfeit or otherwise fraudulent goods while repre-
senting the goods as authentic.

• Misleading or inaccurate claims. This class of ad-
versarial advertisements attempt to make claims that
are unrealistic or scientifically impossible, such as a
weight-loss plan promising extreme weight loss with-
out exercise or dieting.

• User safety issues. Some adversaries attempt to
profit by causing the user some form of harm, such
as with false financial or medical claims.

• Phishing. Adversaries may attempt to obtain sen-
sitive personal information by disguising their site to
look like another site.

• Arbitrage. Advertisements whose sole or primary
purpose is to direct the user to additional advertise-
ments add little or no value to the user experience, in
contrast to ads that provide useful content.

• Unclear or deceptive billing. Advertisements that
list inaccurate or deceptive pricing, or which obscure
the pricing or billing method, can constitute adversar-
ial attempts to profit from false pretenses.

• Malware. Some adversaries attempt to direct users to
landing pages where they might unwittingly download
malware, badware, or other malicious software.

3. LEARNING METHODS
We now turn to the details of our learning-based approaches

to detecting adversarial advertisements, starting with an ex-
amination of the features available for learning. We then
describe the approaches we use to cope with the particular
form of hierarchical multi-class classification required in this
setting, including methods for dealing with highly skewed
class imbalance. We present a simple MapReduce frame-
work for training such models at scale, and conclude this
section with an examination of practical considerations that
must be addressed in a live production setting.

3.1 Features
Feature engineering is a key component of effective data

mining; the following is a listing of the features extracted
from advertisements during training and classification.

• Natural language features are extracted from the
text of advertisement keywords, creatives, and land-
ing pages. These include term-level features, and se-
mantically related terms and topic-level features using
methods similar to [9] and [3].



Figure 2: Class Structure. There is a clear distinc-
tion between adversarial and non-adversarial, but
members of the adversarial classes overlap in places.

• String-based features are intended to avoid the pos-
sibility that adversaries may exploit alternate spellings
or typographical manipulation to avoid detection. We
incorporate features that allow inexact string match-
ing, similar in spirit to [30].

• Structural features are extracted from the struc-
tural layout of the landing page.

• Page-type features are given by sub-classifiers that
determine the general landing page type, such as a blog
posting or a list of shopping results.

• Crawl-based features are extracted from the results
of the http fetch of the landing page.

• Link-based features are based on links and redirects
from the landing page.

• Non-textual content-based features yield infor-
mation about the image, video, or other multimedia
content on the page.

• Advertiser account-level features provide various
information that may help identify suspicious or gam-
ing behavior from adversaries.

• Policy-specific features include a variety of propri-
etary hand-crafted features that help to identify viola-
tions in particular policy areas.

3.2 Multi-Class and Minority-Class Issues
As described in Section 2, this problem area is inherently

multi-class. For policy reasons, it is important to determine
the exact category or categories for a given example, rather
than a binary adversarial or non-adversarial classifica-
tion. This problem is made more challenging by the fact
that the vast majority of ads are non-adversarial, making
each adversarial category an extreme minority class.

Our automated classification methods include a variety
of inherently multi-class classifiers, including nearest neigh-
bor approaches, naive-bayes variants, and semi-supervised
graph-based algorithms. Because these methods are well
known [2], we will not describe them further here.

Interestingly, the most effective methods we have found
are based on sets of binary-class linear classifiers deployed
as per-class classifiers, including linear support vector ma-
chines (SVM’s) [16, 28], linear rank-based SVM’s [17, 26],
and linear models in cascades [33]. These methods will be
the focus of this section.

3.2.1 One-vs-Good Multi-Class Classification
Typical strategies for performing k-class multi-class classi-

fication with binary classifiers include the one-vs-all method
of training k individual models to distinguish each class from
all other classes, and the one-vs-one method of training

`

k

2

´

models to distinguish each class from each other class [14].
The class labels in our setting have a special structure.

There is a single large class of non-adversarial (or “good”)
ads, and then a large number of possibly overlapping adver-

sarial classes (see Figure 2). This setting naturally sug-
gests a multi-class decomposition that we call one-vs-good,
in which for each of k − 1 adversarial classes, a model is
trained to distinguish that class from members of the non-

adversarial class only. This allows overlapping classes to
be detected by examining the output of all models. In situa-
tions where several classes overlap significantly, we found it
useful to train additional models to distinguish all members
of the high-overlap set from the non-adversarial class.

3.2.2 Learning-to-Rank Methods for Classification
Linear SVM’s have been found to be highly effective at

high dimensional classification tasks similar to those encoun-
tered here, such as text classification [17]. Linear SVM’s are
trained by solving the following optimization problem:

min
w

λ

2
||w||2 + L(w, D)

Here, w ∈ R
d is a d-dimensional linear weight vector and λ

is a regularization parameter controlling model complexity.
L(w, D) is the total hinge-loss of w over the labeled training
data D = ((x1, y1), . . . , (xm, ym)) given by

Pm

i=1
max(0, 1−

yi〈w,xi〉). Each labeled example contains a feature vector
x ∈ R

d, and a class label y ∈ {−1, +1}. Linear SVM’s
may be trained efficiently using stochastic gradient descent
variants such as the Pegasos SVM algorithm [28].

However, in cases of extreme class imbalance, linear SVM’s
have been found to give less than ideal results [21]. One ap-
proach is to set per-class weights on the loss function to
emphasize the importance of the minority class [21], but we
have found (in accordance with prior work [18, 26]) that us-
ing a pairwise objective function both improves results and
eliminates the need to tune special per-class weights.

In the binary-class case, we refer to this pairwise method
as the ROC Area SVM, or ROC-SVM. An ROC-SVM is
trained by solving the following optimization problem:

min
w

λ

2
||w||2 + L(w, P )

Here, P is the set of all candidate pairs in the original
data set D. A candidate pair contains one xp member
of the positive class and one xn member of the negative
class, and is used to construct a labeled pairwise exam-
ple ((xp − xn), +1). The ROC-SVM may be trained effi-
ciently (despite the quadratic number of candidate pairs)
using stochastic gradient descent and an indexed sampling
scheme; see [26].2

Results. Using ROC-SVM instead of a standard Pega-
sos SVM improves recall by as much as 15% at our high-
precision threshold for automated blocking of adversarial
advertisements.

2Open source code for (single-machine) ROC-SVM us-
ing SGD is freely available http://code.google.com/p/
sofia-ml.



Figure 3: Visualizing Cascades. The vast majority
of easy, good ads are filtered out by a high-recall
coarse model (left). Finely-grained models then de-
tect specific adversarial classes (right).

3.2.3 Cascade Models
The single model ROC-SVM approach works well for a

number of adversarial classes, but other classes are more
difficult to classify at the high-precision levels needed for
automated blocking. For these cases, we use a more sophis-
ticated methodology based on cascades.

The basic cascade framework uses a series of models, each
of which rejects a portion of the data space, as illustrated in
Figure 3. This approach has been particularly successful in
the field of computer vision for tasks such as face recognition
[33] and email spam filtering [37]. In theory, there is no limit
to the number of stages that may be applied (and boosting
approaches may result in dozens of stages). In practice,
tuning a large number of cascade stages requires significant
manual effort, creating a heavy maintenance burden.

After experimenting with a range of multi-stage configura-
tions, we found a simple strategy that achieves good results
with minimal system complexity. We use a single coarse
model, common to all of our cascade models, trained to
distinguish adversarial from non-adversarial with high
recall. We then train a set of more finely-grained models to
detect each of these more difficult classes with high preci-
sion, using the one-vs-good framework (see Figure 4).

Cascade models are particularly susceptible to problems of
over-fitting. We have found tightly regularizing the coarse-
level model to be effective. (Another approach uses cross-
validation on the training data [37], but it is then non-trivial
to combine the models in stages in a principled way.) The
coarse model is tightly L1-regularized (see Section 3.3.2),
inducing sparsity that keeps the memory footprint of this
coarse model relatively small; this is an important consider-
ation when dealing with billions of features. The sub-models
are each trained on data sets that are much reduced in size
due to the coarse-level filtering, reducing their size signifi-
cantly as well.

Results. Representative results for three difficult per-
class cascade models are given in Figure 5. (Note that
the precision and recall values given in these graphs have
been linearly transformed to obscure sensitive data; the rel-
ative performance trends remain unchanged.) In general,
the cascade models give excellent improvement in recall at
high precision levels (the upper-left corner of each graph),
in comparison with a single ROC-SVM model for the same
class problem. Note that in cases where the precision/recall
curves cross (at lower precision levels, used for prioritizing
human expert effort) we can always use the better of the
two models in the different regions.

example Coarse Model

Label Good

Fine Model A

Fine Model B

Fine Model C

Label A

Label Not A

Label B

Label Not B

Label C

Label Not C

Figure 4: Multi-Class Cascade Framework. The
coarse model filters out examples that are clearly
non-adversarial. The remainder are passed to a set
per-class models for fine-grained classification.

3.3 Large-Scale Training
By some standards, the data sets used to train our mod-

els may be seen as large (measured in terabytes); we need
an efficient methodology for frequent training of dozens or
hundreds of models. By enforcing sparsity during training,
we ensure that the resulting models fit in memory on a sin-
gle machine. This allows us to deploy an efficient stochastic
gradient descent (SGD) training paradigm in a MapReduce3

setting for fast model training.

3.3.1 MapReduce SGD
Solving optimization problems such as those presented

in Section 3.2.2 may be done efficiently using SGD, which
quickly converges to approximate solutions that are highly
satisfactory from a machine learning perspective [4, 28].
SGD is an iterative solver, sequentially examining data points
one at a time in a random order. The basic SGD training
paradigm for linear SVM [38] is given in Algorithm 1.

Algorithm 1 Training Linear SVM using SGD.

1: w0 ← 0
2: for i = 1 to t do
3: (x, y)← RandomExample(D)
4: η ← GetLearningRate(t)
5: if y〈wi−1,x〉 < 1.0 then
6: δ ← 1
7: else
8: δ ← 0
9: end if

10: wi ← (1− ηλ)wi−1 + δηyx
11: end for
12: return wt

In general, each iteration is fast to compute when x is
sparse, and can be completed in O(s) time where s is the
number of non-zero elements in x. The Pegasos SVM vari-
ant includes a step that projects w into an L2-ball of fixed
radius after step 10; this may be done in O(1) time with
appropriate data structures [28]. The number of iterations
t may be large, but is provably independent of the number
of training examples, making the SGD framework ideal for

3MapReduce is a paradigm for “embarrassingly parallel”
tasks, widely used in cluster-based computing [8].
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Figure 5: Cascade Models vs. Single Models. Values from three representative adversarial category identi-
fication tasks show that using cascade methodology significantly improves recall at low false positive rates.
(Note that precision and recall values have been linearly transformed to protect sensitive data.)

large-scale learning [28, 4]. For example, only a few CPU
seconds are required for training on data sets that are consid-
ered large in the academic literature, such as RCV1 [21]. But
because SGD is a sequential online methodology, it is non-
trivial to parallelize SGD training across multiple machines.
Approaches that have been analyzed include message pass-
ing approaches [23], lazy distributed updates [39], training
on multiple independent samples of the data [40], and per-
forming multiple chained MapReduce steps [35]. However,
these methods all add significant complexity to a relatively
simple learning algorithm, and in some cases adversely im-
pact model quality or give only limited incremental benefit
as more machines are added.

Interestingly, we have observed that the main cost of SGD
training is actually reading and parsing data from disk; this
can be orders of magnitude more expensive than the actual
training. Langford et al. have found it effective to reduce this
cost by using a specialized data format, which significantly
reduces disk-read times [19]. This observation allows us to
parallelize our training effort with a simpler approach than
those described above. As shown in Figure 6 our approach
is summarized as follows:

• Do expensive work in parallel. The expensive
work of parsing, filtering, labeling, transforming, and
encoding data can all be done independently in paral-
lel. We use hundreds of machines in the Map phase.
The output of the Map phase is labeled training data
that is efficiently compressed.

• Do cheap work sequentially. Because our models
are small enough to fit in memory, a single Reduce
machine can perform the SGD training quickly once
the data has been properly prepared and formatted.
This eliminates the need for expensive message passing
or synchronization.

This framework allows us to train models within minutes
on large data sets, and is used for both ROC-SVM training
and for training our cascade models. A similar framework
is used for evaluating models on holdout test data.

3.3.2 Controlling Model Size
The learned models must be small enough to fit in memory

on a single machine; we use two strategies for keeping model
size suitably restricted.

Training Data Mappers

Mapper nMapper 3Mapper 2Mapper 1

Single Reducer

Filter Examples

Assign Label

Transform Features

Encode Data

SGD Learner

Filter Examples

Assign Label

Transform Features

Encode Data

Filter Examples

Assign Label

Transform Features

Encode Data

Filter Examples

Assign Label

Transform Features

Encode Data

Trained Model

 Data Snapshots 

Figure 6: SGD learning via MapReduce. Pre-
processing is parallelized; training is sequential.

The first of these is to use a feature-hashing approach
similar in spirit to that of [36]. If we think of w ∈ R

d as
a set of key-value pairs where many values are exactly 0,
then it is efficient to store the non-zero values in a hash
map. Hashing the keys ensures that the model size will not
grow beyond a certain bound. We have found that ignoring
collisions does not degrade model performance, in line with
results from [36] and keeps model size manageable.

The second strategy is to encourage sparsity in the learned
model, so that many weight values are indeed exactly 0. We
follow a projected-gradient methodology similar to that of
[10], projecting w to an L1-ball of a specified radius after
updates. This is done every k steps, after step 10 in Al-
gorithm 1. The exact L1-projection of [10] was somewhat
slow, so we use a simpler and faster approximate projection
given in Algorithm 2. The method of Duchi et al. uses an
approach similar to randomized median finding to find the
exact value of τ that is used to project a given vector w onto
an L1-ball of radius at most λ. We make do with using a
value of τ that is guaranteed to cause the ||w||1 to converge
to radius at most λ after repeated calls. In practice, we find
this work well, is fast to compute, and is easier to tune than
the truncated gradient approach of [20].



Algorithm 2 Approximate projection to L1-ball of
radius at most λ. Repeated calls to this projection will
converge to radius λ.

1: c← max(λ− ||w||1, 0)
2: d← ||w||0
3: τ ← c

d

4: for each non-zero element i of w do
5: s← sign(wi)
6: wi ← s ∗max(|wi − τ |, 0)
7: end for

3.4 Model Management
It is worth briefly looking at some of the engineering is-

sues involved in maintaining a large-scale data mining sys-
tem with many component models. Our management strate-
gies include performing automated model calibration, estab-
lishing effective automated monitoring of live models, and
bundling useful information into models.

3.4.1 Calibration
As models are re-trained over time, the semantic meaning

of their output scores may drift or vary, resulting in con-
stant adjustment of decision thresholds. To avoid the need
for manual threshold adjustment, we automatically calibrate
each model so that its final output is an actual probability
estimate rather than an arbitrary score.

Recall that each linear model w scores a given example
x using a scoring function f(x) = 〈w,x〉. We learn a cali-
bration function c(·) using holdout validation data to ensure
that c(f(x)) = Pr[yx = 1]. This ensures that scores from
different model versions may be interpreted along the same
natural scale.

3.4.2 Monitoring
In a live production setting, it is critical to monitor the

quality and output of models. Our first level of monitor-
ing involves a set of precision/recall tests that each model
must pass, based on holdout test data, whenever the model
is re-trained. If the model fails these tests, the new version
is not pushed to production. Second, we monitor the input
features, to make sure that in aggregate the distribution of
values is relatively stable. We need to be alerted if our input
features or signals were to vary significantly, as this would
cause changed behavior from our models. Third, we monitor
model output scores to detect drift in distribution of values.
A sudden drift would be a warning of a change somewhere
in our system. We also monitor the actual decision rates in
addition to the score distributions, to ensure we are aware
of any sudden changes there. Finally, we monitor the over-
all system quality, based on data from our ensemble-aided
stratified sampling pipeline, as described in Section 4.

3.4.3 Bundling Model Data
It is clear that a model needs to know how to classify ex-

amples. But what else should a model know how to do?
Over time, we have found that it is useful to bundle a sur-
prisingly large amount of information together into a model
object. In particular, a model should know how to do the
following:

• Filter out examples that should be ignored, for exam-
ple if they are in the wrong language.

• Transform features as needed, including scaling, dis-
cretizing, etc.

• Label training data as a positive or a negative, and
distinguish test data from training data.

• Report the parameters that were used to train it, so
that the model may be re-trained if needed.

• Score an example using a feature vector w.

• Calibrate its output scores onto a consistent scale.

Together, these requirements define a somewhat broader
view of a “model” than is generally considered in academic
literature, which often only discuss the weight vector w. We
have found bundling this data together reduces system com-
plexity and eases the burden of managing and maintaining
a large number of models in production.

4. ENSEMBLE-AIDED STRATIFIED
SAMPLING

Acquiring hand-labeled data represents a significant cost,
requiring expert judgement to navigate intricate policies and
to recognize a wide variety of clever adversarial attacks.
Our pilot experiments testing low-cost, crowd-sourced rater
pools showed that crowd-sourcing was not a viable option
to achieve labels of the needed quality for production use.
Thus, we rely on more expensive, specially trained expert
raters. It is therefore critical that we make the most effi-
cient use of this limited resource.

In this section, we detail an ensemble-aided approach to
stratified sampling that helps allocate rater effort efficiently
to achieve multiple distinct goals.

4.1 Multiple Needs for Hand-Labeled Data
In machine learning literature, it is common to focus on

gathering hand-labeled data only for the purpose of model
training. But in our real-world setting, there are actually
several important and distinct areas in our system that re-
quire hand-labeled data from expert raters. These are:

• Catching hard adversaries. Human judgement is
needed to provide a final verdict on cases which are too
difficult for automated methods to classify with high
precision.

• Improving learned models. Hand-labeled data is
needed to train models, and to keep the models current
as adversarial methods change over time. Examples
which are most beneficial for improved models (such
as may be selected by various active learning strategies
[32]) may be different from hard adversaries, above.

• Detecting new trends. It is helpful to prioritize the
review of new ads, so that new trends from adversaries
are quickly detected both by our automated systems
and by our human domain experts.

• Maximizing impact. Because expert human-rater
capacity is expensive and limited, it is desirable to
maximize the impact by focusing on advertisements
that have high impression counts.



Figure 7: Ensemble-Aided Stratified Sampling. Ads
in a given language are binned based on probability
estimates from an ensemble. Grey and black circles
represent un-sampled and sampled ads, respectively.

• Providing unbiased metrics. Hand rated data should
be able to provide unbiased estimates for model-level
and system-level precision and recall. The naive ap-
proach to gathering unbiased evaluation data would
be to hand rate a uniform sample of ads. However,
this would waste effort because the vast majority of
ads are not adversarial. Sampling ads to achieve the
other goals above results in biased evaluation data; by
constructing the sample in a careful manner we can
later remove the sample bias when computing metrics.

Not surprisingly, these different goals are largely disjoint,
making it non-trivial to determine which ads should be se-
lected for human rating.

4.2 Ensemble-Aided Stratification
We considered various forms of model-aided sampling [25],

using learned models to induce a sampling bias towards more
useful ads for human rating. We first tried to define an ag-
gregate “utility” score based on these different factors, but
it was unclear how to combine (or in some cases even how
to measure) these different quantities. We also considered
framing this problem in a bandit setting; however, McMa-
han and Streeter show that the use of bandit algorithms is
problematic for selecting data for model-training due to the
non-stationarity of the underlying models [24].

Our approach is to stratify the data across several different
dimensions, as shown in Figure 7. First, ads in each language
are considered separately. Within a given language, ads are
divided into three categories, new ads that are less than t
hours old, recently blocked ads that have been caught
and turned off within the last t hours, and all other ads

that have been actively served over the last t hours.
To aggregate the scores from the many different models

in production, we train an ensemble model [2] for the given
language, using the output scores of each of the m models as
features for the ensemble. We use a binary-class (adversar-
ial vs. non-adversarial) linear ROC-Area SVM to train

Algorithm 3 Priority Sampling Ads from a Bin. We
use the following priority-sampling algorithm from [11] to
select ads from a given bin for near-optimally low variance.

1: for each advertisement i with impressions wi do
2: pick pi uniformly at random from (0, 1]
3: let priority qi = wi/pi

4: end for
5: sort all ads by their priority q
6: let τ equal the (k + 1)-th highest priority
7: for each of the k highest priority ads do
8: let effective weight w′

i = max(wi, τ )
9: end for

10: exclude all other ads from the sample for this bin

the ensemble, and calibrate its output scores as described in
Section 3.4.1. The score from the ensemble-model is used
to divide the ads in each category into uniformly spaced
score-bins containing different numbers of ads.

This coarse binning allows us to explicitly decide how
many ads to select from each bin in order to balance the
differing goals listed in Section 4.1. Selecting sites from
mid-probability bins is akin to uncertainty sampling [32],
and provides benefit for model training. Selecting ads from
higher probability bins in the new ads or all other ads

categories gives priority to catching adversaries that have
not yet been detected automatically. Selecting some ads
from every bin ensures coverage of the entire data space.

4.3 Priority Sampling from Bins
Assuming we have decided to select k ads from a given bin,

how should we choose which k to pick from that bin? Ide-
ally, we would like a low-variance estimate of the impression-
weighted total of each class of adversarial advertisement
from the given bin; however, impression counts vary dra-
matically across ads, following a heavy-tail distribution.

In this heavy-tail setting, using uniform sampling to se-
lect ads within a bin is a poor strategy, resulting in high
variance estimates [11]. Using an intuitive sampling propor-
tional to impression-count strategy is better, but far from
optimal [11]. Instead, we use the Priority Sampling strat-
egy of Duffield et al. which has been proven to yield near-
optimally low variance estimates for arbitrary subset sums
[11]. This strategy is reviewed in Algorithm 3.

The variance from an estimate based on k samples selected
with this strategy is provably at least as low as the variance
of k + 1 samples selected with the (computationally infeasi-
ble) optimal strategy [31]. It also has the attractive quality
of tending to prioritize very-high impression ads for review
to maximize impact of human effort while maintaining good
coverage of the long tail.

Results. Using our ensemble-aided stratified sampling
approach instead of the naive approach of separate sam-
plings increased the effective impact of our human experts
by 50%, and reduced the latency required to compute unbi-
ased metrics by an order of magnitude with no added cost.

5. LEVERAGING EXPERT KNOWLEDGE
We have found it critical to leverage the knowledge of

human experts to help detect evolving adversarial adver-
tisements. Here, data mining methods provide automated
guidance, ensuring the most effective use of human effort.



5.1 Active Learning
Experts periodically detect new categories of bad ads, or

particular emerging trends, for which it is useful to develop
a new model. Lacking initial training data, we have found
that margin-based uncertainty sampling (akin to the sim-

ple strategy of Tong and Koller [32]) has been an effective
methodology for rapid development of new models, often
requiring only a few dozen hand-labeled examples.

5.2 Exploring for Adversaries
Attenberg et al. recently reported that in cases of extreme

class imbalance, traditional active learning strategies may
fail from difficulty in locating any members of the proposed
positive class. They suggested using information retrieval
systems in such cases, allowing expert users to search for
positive examples guided by their intuition.

Independently, we have also found that providing a search-
based interface for expert users provides valuable automated
assistance for finding new examples of adversarial advertise-
ments. Because this search-based tool is used by experts,
it has been practical to augment standard keyword-based
search with a variety of feature-based filters (using many of
the features listed in Section 3.1). This allows experts to
make guided searches in real time, based on their intuition
and a large store of informative data.

5.3 Rule-Based Models
Coming from a machine-learning background, it has sur-

prised us that our experts have proven capable of devel-
oping hand-crafted, rule-based models with extremely high
precision. Enabling such models to be served in produc-
tion provides a rapid response mechanism to new adversar-
ial attacks, and gives an effective means of injecting expert
knowledge directly into our system.

Because such models do not adapt over time, we have de-
veloped automated monitoring of the effectiveness of each
rule-based model; models that cease to be effective are re-
moved. Although rule-based models only account for less
than 4% of the overall system impact, they provide an im-
portant capability to respond to new classes of adversarial
attacks within minutes of discovery.

6. INDEPENDENT EVALUATION
Finally, we examine the data challenge of evaluating the

human components of our system.

6.1 Monitoring Human Rater Quality
Because human ratings are used as our ground truth, it

is critical to measure how reliable these ratings are. To
establish this, we regularly evaluate the precision and recall
of our base-level raters, using higher-level experts to re-rate
a sample of ratings from each lower-level rater. We also
regularly double-check these results using an independent
set of higher-level experts. This allows us both to assess
the performance of the base-level raters and to measure our
confidence in those assessments.

6.2 Monitoring User Experience
The different levels of human experts described above are

all paid and carefully vetted experts, and as such may have
a viewpoint that does not always align with the perception
of common users. To ensure that we get an accurate read-
ing of real user perception, we additionally perform regular

large-scale evaluations using an approach similar to crowd-
sourcing [29]. These evaluations are used to calibrate our
understanding of real user perception and ensure that our
system continues to protect the interests of actual users.
The aggregate results from these independent evaluations
have consistently shown strong agreement with our human
expert opinon.

7. RELATED WORK
To our knowledge, the general problem of detecting ad-

versarial advertisements has not previously been studied. In
the most closely related work, Attenberg et al. detected un-
safe advertisements, such as those containing adult content
or hate speech, and used a search-based methodology over
active-learning for model training [1]. We consider a broader
range of adversarial advertisements, including many that are
often difficult for non-experts to distinguish from good-faith
advertisements without aid.

The field of email spam filtering has a large body of litera-
ture on the use of data mining for blocking adversarial mes-
sages (see [12] for an informative survey). The problem of
adversarial advertisement detection differs in several ways,
including the multi-class nature of the problem, the minor-
ity class difficulties, the presence of dynamically changing
content, and the need for trained expert human raters.

Dalvi et al. attempt to learn classifiers in adversarial situ-
ations by modeling the adversaries [7], but accurately mod-
eling motivated adversaries is problematic in real-world set-
tings. Lowd and Meek point out that in a publicly-facing
system, adversaries may attempt to reverse-engineer the model
via membership queries [22]. Our inclusion of semi-automated
methods involving human effort helps to minimize the effec-
tiveness of such strategies.

Crowd-sourcing efforts like reCAPTCHA [34] attempt to
use the effort of anonymous users to block abuse on the
web. This approach is difficult in the case of advertisements
because it would be problematic to keep motivated adver-
saries from poisoning the signal. Sculley et al. explored the
use of aggregate user-based signals such as bounce-rate for
determining user satisfaction [27], but this approach is un-
suitable for making per-advertisement decisions with high
precision due to signal noise. Various approaches such as
that of Chakrabarti et al. have used click-feedback to de-
termine ad relevance [5], but for adversarial advertisements
relevance is a secondary factor compared to user safety.
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