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ABSTRACT
The increase in scale and complexity of large compute clus-
ters motivates a need for representative workload bench-
marks to evaluate the performance impact of system changes,
so as to assist in designing better scheduling algorithms and
in carrying out management activities. To achieve this goal,
it is necessary to construct workload characterizations from
which realistic performance benchmarks can be created. In
this paper, we focus on characterizing run-time task resource
usage for CPU, memory and disk. The goal is to find an
accurate characterization that can faithfully reproduce the
performance of historical workload traces in terms of key
performance metrics, such as task wait time and machine
resource utilization. Through experiments using workload
traces from Google production clusters, we find that simply
using the mean of task usage can generate synthetic work-
load traces that accurately reproduce resource utilizations
and task waiting time. This seemingly surprising result can
be justified by the fact that resource usage for CPU, mem-
ory and disk are relatively stable over time for the majority
of the tasks. Our work not only presents a simple tech-
nique for constructing realistic workload benchmarks, but
also provides insights into understanding workload perfor-
mance in production compute clusters.

1. INTRODUCTION
Cloud computing promises to deliver highly scalable, re-

liable and cost-efficient platforms for hosting enterprise ap-
plications and services. However, the rapid increase in scale,
diversity and sophistication of cloud-based applications and
infrastructures in recent years has also brought consider-
able management complexities. Google’s cloud backend con-
sists of hundreds of compute clusters, each of which con-
tains thousands of machines that host hundreds of thou-
sands of tasks, delivering a multitude of services including
web search, web hosting, video streaming, as well as data
intensive applications such as web crawling and data min-
ing. Supporting such a large-scale and diverse workload is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
Large Scale Distributed Systems and Middleware Workshop, LADIS 2011.
Copyright 2011.

Figure 1: A Compute Cluster Benchmark

a challenging goal, as it requires a careful understanding
of application performance requirements and resource con-
sumption characteristics.

Traditionally, Google relies on performance benchmarks of
compute clusters to quantify the effect of system changes,
such as the introduction of new task scheduling algorithms,
capacity upgrading, and change in application source code.
As shown in Figure 1, a performance benchmark consists
of one or more workload generators that generate synthetic
tasks scheduled on serving machines. In all of the aforemen-
tioned scenarios, using historical workload traces can accu-
rately determine the impact of changes to minimize the risk
of performance regressions. However, this approach does not
allow answering what-if questions about scaling workload or
other scenarios that have not been observed previously.

To address this limitation, it is necessary to develop work-
load characterization models. We use the term task usage
shape as a statistical model that describes run-time task re-
source consumption (CPU, memory, disk, etc.). Our goal
is develop an accurate characterization of task usage shapes
that is sufficiently accurate for producing synthetic work-
load benchmarks. The key performance metrics we are in-
terested in are the average task wait time and machine re-
source utilization for CPU, memory and disk in each clus-
ter. Task wait time is important because it is a common
concern of cloud users. As the workload typically contains
many long-running batch tasks that may alternate between
waiting (this also includes the case of rescheduling due to
preemption or machine failure) and running state, the to-
tal wait time experienced by each task is a main objective
to be minimized. Similarly, machine resource utilization is
important as it is a common objective of cloud operators to
maintain high resource utilization.

In this paper, we present a characterization of task usage
shape that accurately reproduces performance characteris-
tics of historical traces, in terms of average task wait time
and machine resource utilization. Through experiments us-
ing real workload traces from Google production clusters, we
find that simply modeling the task mean usage can achieve



Compute CPU (Cores) Memory (GB) Disk (GB)
Cluster Mean Avg. cv Mean Avg. cv Mean Avg. cv

A

Type 1 0.25 0.3985 0.83 0.3576 1.69 0.3915
Type 2 0.02 0.4755 0.06 0.446 0.12 0.4432
Type 3 0.21 0.9143 0.79 0.6825 1.65 0.8225
Type 4 0.16 1.1765 0.1 0.763 0.09 1.1585

B

Type 1 0.09 0.5922 0.55 0.845 1.62 0.5495
Type 2 0.01 1.2285 0.05 1.0133 0.15 0.667
Type 3 0.03 0.89 0.17 0.495 0.09 0.32385
Type 4 0.22 1.076 0.11 1.0265 0.22 0.675

C

Type 1 0.14 0.3415 0.9 1.14 2.66 0.2195
Type 2 0.38 1.4993 0.32 0.1325 2.31 0.6755
Type 3 0.21 0.9325 0.15 0.7177 0.33 0.6015
Type 4 0.1 1.2205 0.07 1.033 0.05 0.4205

D

Type 1 0.23 0.59 1.05 1.025 2.83 0.5475
Type 2 0.04 0.8057 0.32 0.6265 0.11 0.8245
Type 3 0.52 1.107 0.3 0.946 0.34 0.986
Type 4 0.1 1.592 0.09 0.903 0.09 1.6625

E

Type 1 0.13 0.768 1.35 0.742 1 0.207
Type 2 0 3.5888 0.01 0.1557 0 0.211
Type 3 0.16 0.9128 4.58 0.484 0.3 0.5085
Type 4 0.08 1.164 0.05 0.7995 0.03 0.4065

F

Type 1 0.36 0.5828 1.14 0.4005 2.58 0.218
Type 2 0.38 1.0349 1.21 1.1935 0.08 0.258
Type 3 0.22 0.54 0.15 0.595 0.32 0.8295
Type 4 0.07 0.9976 0.18 0.848 0.14 0.4103

Table 1: Data set used in the experiment

high accuracy in terms of reproducing resource utilization
and task wait time in Google’s compute clusters. While this
result may seem surprising at first glance, a closer exami-
nation shows that it is due to both (1) the low variability
of task resource usage in the workload, and (2) the char-
acteristics of evaluation metrics (i.e. task wait time and
machine resource utilization) under different workload con-
ditions. Our work not only presents a simple technique for
generating workload traces that closely resemble real work-
load traces in terms of the key performance metrics, but
also provides helpful insights into understanding workload
performance in production compute clusters.

The rest of the paper is organized as follows: Section 2
describes the historical traces we used during our analysis.
The experimental results are reported in Section 3. Sec-
tion 4 is devoted to the discussion of the evaluation result.
Specifically we analyze the correlation between the theoret-
ical model errors (i.e. variability in task usage) and the
empirical model errors observed in the simulations. Section
5 surveys related work in this area. Finally, section 6 con-
cludes the paper.

2. DATASET DESCRIPTION
The data set we used in our study consists of historical

traces of 6 compute clusters spanning 5 days (June 21 -
25, 2010). Together our analysis uses a total of 30-cluster
days of traces from the production clusters. These histor-
ical traces contain CPU, memory and disk usage of every
task scheduled in each cluster sampled at 5-minute inter-
vals. Generally speaking, the workload running on Google
compute clusters can be divided into 4 task types. Type
1 tasks correspond to production tasks that process end-
user requests, whereas type 4 tasks correspond to low prior-
ity, non-production tasks that do not directly interact with
users. Type 2 and Type 3 represent tasks that have charac-
teristics falling between type 1 and 4. Table 2 summarizes
the size of each cluster as well as the workload composition
in terms of the 4 task types. We purposely select clusters of
sizes ranging over two orders of magnitude. Typically tasks
of type 4 have the highest task population, while tasks of
type 1 have the lowest. There are exceptional cases, such as

cluster F, which has a large percentage of Type 3 tasks.
Table 1 summarizes the mean and average coefficient of

variation (CV) for CPU, memory and disk usage for tasks
in every cluster over the course of 5 days. the task CV of
a particular resource is computed by dividing the standard
deviation of the measured usage values by their mean. From
Table 1, it can be seen that CPU and disk have the highest
and lowest CVs, respectively. Even though in many cases
the average CV can exceed 1, it does not imply high re-
source usage variability since CV is generally sensitive to
small mean value. For example, even though tasks of Type
2 in compute cluster E have the highest CV for CPU (i.e.
3.5888), the average CPU usage is very close to 0, hence the
variability in resource usage is small. Similar results have
also been reported in [9] and [11]. Hence we can conclude
that the run-time variability of task resource usage is low.

The analysis above suggests that simply modeling the
mean values of run-time tasks resource consumption is a
promising way to model task usage shapes. As a starting
point, we call this characterization model the mean usage
model of tasks usage shapes. Specifically, the mean usage
model stores the mean usage of CPU, memory and disk and
running time of each task in the workload. Our hypothesis
is that the mean usage model can perform reasonably well
for reproducing the performance of real workload.

3. EXPERIMENTS
This section presents our experiment results. We first de-

scribe our evaluation methodology. Given a historical work-
load trace from real compute clusters, We modify the trace
by over-writing the actual task resource usage by the model-
predicted usage values. Specifically, to evaluate the mean
usage model, we need to replace measured resource usage
records by their mean value for each task and each resource
type. The other components of the workload, including user-
specified resource requirements, task placement constraints
[10] and request arrival times, are kept intact. We then
run two experiments. The first one runs the benchmark
using the unmodified historical trace. The second one runs
the benchmark using the modified trace after the treatment.
Once finished, we compare the benchmark results of both ex-
periments. As mentioned previously, two performance met-
rics of interests are task wait time and machine resource
utilization.

In addition, during our experiments we realized that it is
necessary to increase the load on individual clusters in order
to make the difference more apparent. For example, when
there is ample free capacity in a cluster, every task can al-
most immediately be scheduled and never have to wait dur-
ing its course of execution. In this case, the task wait time
will be low regardless of the quality of the characterization.
Hence, we developed a stress generator that increases the
load on the cluster by randomly removing a fraction of its
machines. We will discuss the effect of load increase on the
performance metrics in Section 4.

We conducted trace-driven simulation for all 30 cluster-
days. We first report the basic characteristics of our perfor-
mance metrics. Specifically, Figure 2 shows the total task
wait time and resource utilization for cluster A across 5 days.
It can be observed that the day-to-day variability for re-
source utilization is rather small. On the other hand, the
day-to-day variability for task wait time can be quite high,
especially for the tasks of type 4, where total task wait time



Compute
Cluster

No. of
machines

Type 1
(%)

Type 2
(%)

Type 3
(%)

Type 4
(%)

A 10000s 3.12 0.26 3.14 93.47

B 1000s 1.46 0.86 2.52 95.16

C 1000s 4.54 0.34 4.67 90.45

D 1000s 5.86 2.42 31.77 59.95

E 1000s 39.26 1.48 34.27 24.99

F 10s 1.23 0.2 72.93 25.64

Table 2: Cluster Size and Workload Composition
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Figure 2: Day-to-Day variability of Two Metrics for

Cluster A
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Figure 3: Average Machine Resource Utilization over 5 Days after removing 0%, 25%, 50% and 75% of the
machines
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Figure 4: Average Task Wait Time over 5 Days after removing 0%, 25%, 50% and 75% of the machines

 0

 4

 8

 12

 16

 20

 24

 28

0% 25% 50% 75%P
er

ce
nt

 E
rr

or
 o

f R
es

ou
rc

e 
U

til
za

tio
n 

(%
)

Memory
Disk
CPU

(a) Machine Resource utilization

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

0% 25% 50% 75%

P
er

ce
nt

 E
rr

or
 o

f A
ve

ra
ge

 T
as

k 
W

ai
t T

im
e Task Type 1

Task Type 2
Task Type 3
Task Type 4

(b) Task Wait Time

Figure 7: Summary of the Percent Model Error of Per-

formance Metrics for the Mean Usage Model

on June 22 is 2 times larger than the one on June 25. These
observations are consistent across clusters, which suggests
that resource utilization is a more robust metric than total
task wait time. The average machine resource utilization
and task wait time for all 6 clusters under 4 different utiliza-
tion levels are shown in Figure 3 and Figure 4 respectively.
As expected, both the utilization and total task wait time
grow with the utilization level (i.e. the percentage of ma-
chines removed). The task wait time seems to grow rapidly
at high utilization level. More analysis on this observation
will be described in Section 4.

Next we present our evaluation of the mean usage model.
The results for resource utilization and task wait time are
shown in Figure 5 and 6, respectively. It can be observed
that the model error for resource utilization is quite small (≤
10%) under all circumstances. However, for task wait time,

the percent error has very high variability. For example,
Cluster D produces a significant error for tasks of type 4
when number of machines removed is 50%. However, the
large error bar (representing the standard error) indicates
that the error is likely caused by one or 2 samples. This is
also explained by our previous result that task wait time is
a less robust metric compared to resource utilization.

The average performance of machine resource utilization
and task wait time across all 6 clusters are summarized in
Figure 7. The model error for machine resource utilization
seems to be uniformly low under all 4 utilization levels. On
the other hand, despite the large variation in results, the
model errors of task wait time seem to follow decreasing
trends for task type 1 and 2 and increasing trends for task
type 4. As type 4 tasks typically have the largest popula-
tion in the workload, It is reasonable to say that the task
wait time seems to increase with machine resource utiliza-
tion. Overall, these observations suggest that the mean us-
age model performs well for reproducing the performance
of real workload in terms of task wait time and resource
utilization.

4. DISCUSSION
The experiment results described in Section 3 suggest that

the mean usage model performs well in terms of reproducing
the average task wait time and machine resource utilization.
It seems intuitive to explain why machine resource utiliza-
tion performs well, as most of tasks have low resource usage
variability for all 3 resource types. However, it is the fact
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Figure 5: Percent Model Error for Resource Utilization after removing 0%, 25%, 50% and 75% of the
machines
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Figure 6: Percent Model Error for Task Wait Time after removing 0%, 25%, 50% and 75% of the machines
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Figure 8: Percent Model Error of Performance Metrics vs. Machine Resource Utilization

that the mean usage model also accurately reproduce task
wait time makes the result surprising. It should be pointed
out that occasionally we may still see errors≥ 10% for task
wait time. Hence this section is dedicated to analyzing the
model errors for both task wait time and machine resource
utilization.

To start our analysis, note that in addition to modify-
ing the task shapes in the treatment process, we have also
used a stress generator to introduce additional load in order
to make task wait times more apparent. The stress gen-
erator increases the utilization of the cluster by randomly
removing a percentage of machines from the cluster. To un-
derstand the impact of resource usage variability on model
errors for both task wait time and machine resource uti-
lization, we must first determine the impact of utilization
on the model errors. From the discussion in Section 3, we
know that the average task wait time increase with resource
utilization due to the large population of type 4 tasks. For
the model errors of machine cluster utilization, our hypoth-
esis was that it should decrease with the utilization level of
the cluster, as higher utilization implies less room for model
errors. Furthermore, as there are many tasks waiting to be
scheduled, the scheduler in this case will try to ”bin-pack”
tasks on physical machines as much as possible, further re-
ducing the model error. To validate this hypothesis, we plot
the model errors of the performance metrics against utiliza-
tion for all the clusters in Figure 8. However, even though
there seems to be a trend that the model errors for machine
cluster utilization decrease with utilization level, the trend
is not significant enough as the noise in the percent error in

both cases can be of equal magnitude. This is mainly be-
cause the the model errors for machine cluster utilizations
are small (i.e. ≤ 5%).

For task wait time, from queuing theory we know that av-
erage task wait time (E(wi)) grows hyperbolically with re-
spect to resource utilization (util) (i.e. E(wi) ∝

1
1−util

) for

every compute cluster i [7]. Specifically, as util approaches
1, E(wi) grows towards infinity. To see this, we plot E(wi)
against 1

1−util
for every cluster 1 ≤ i ≤ 6 in Figure 9(a).

The diagram clearly indicates this relationship, as the points
for each compute cluster roughly lie on a same line. We
also plotted the average difference in task wait time E(∆w)
against 1

1−util
in Figure 9(b). It turns out that the points

for each compute cluster again roughly lie on the same line
in Figure 9(b). Denote by rwi

and r∆wi
the slope of the

lines for each cluster in Figure 9(a) and 9(b) respectively.
Our hypothesis is that higher task resource variability will
cause higher growth rate difference in task wait time, as dif-
ference in scheduling decisions at higher utilization level will
have higher impact on task wait time. To validate this hy-
pothesis, we plotted ratio of the two slopes for each cluster
(i.e. r∆wi

(i)/rwi
(i)) against the average CV of the bot-

tleneck resource type (i.e. resource type with the highest
utilization as it generally has the largest impact on task
schedulability) in Figure 10(a). The average CV is weighted
by task duration, as long running tasks have higher impact
on the model error than short running tasks. It turned out
there is a direct relationship between these two quantities,
as shown in Figure 10(a). Another way to interpret this re-
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Figure 9: Total and Difference in Task Wait Time
vs 1

1−util
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Figure 10: Correlating Model Error in Performance
Metrics with Variability in Task Usage Shapes

lationship is as follows: we can model E(wi) = a1i +
a2i

1−util

and E(∆wi) = b1i +
b2i

1−util
. Thus E(wi) = a1i +

a2i

1−util
and

E(∆wi) = b1i +
b2i

1−util
. The model error hence can be ex-

pressed as Err = E(∆wi)
E(wi)

= (1−util)b1i+b2i

(1−util)a1i+a2i
≈

b2i

a2i
, the ratio

of the two slopes. Intuitively, this result means that the task
usage variability does cause a difference in task wait time,
but the difference is not significant considering the wait time
for most of the tasks also grow at a rapid rate.

For machine resource utilization, unlike the case for task
wait time, the average model error tends to be quite small
(i.e. around 3%), and the impact of utilization on the model
error is also quite small. In this case, we can simply compute
the average model errors under all utilization levels and plot
them against CVs of each cluster. Notice that since the uti-
lization is the sum of resource usage, the CVs we used should
be the CV of the sum of the total usage (i.e. CVsum). To
estimate this value, assuming the resource usage variability
follows a normal distribution, then CVsum can be estimated
by summing up the variance (i.e. (meant · CVt)

2) of each
task t weighted by its duration dt, divided by the simula-
tion interval. Using the fact that the sum of the variances
is the variance of the sum for normal distributions, we can
then compute CVsum accordingly. The results are shown in
Figure 10(b),(c) and (d). There seems to be a correlation
between the resource variability and model error observed in
the experiment for Memory and Disk. On the other hand,

the correlation for CPU seems less accurate. The reason is
that task usage for CPU generally has much higher variabil-
ity than memory and disk, hence the benchmark is more
conservative in computing the resource utilization to ac-
count for potential future variability of CPU usage. This
leads to the inaccuracy observed in Figure 10(b).

Overall, our analysis shows that ignoring task usage vari-
ability at run-time does introduce inaccuracies compared to
real historical traces, the difference seems to be small in all
the cases. Hence, we believe that mean usage model is suf-
ficiently accurate for reproducing the performance of real
workloads.

5. RELATED WORK
There is a long history of research on workload character-

ization. Specifically, There has been work on characterizing
workload in various application domains , such as the Web
[2], multimedia [5], distributed file systems [3], databases
[12] and scientific computing [1]. Furthermore, different as-
pects of workload characterization, including arrival pat-
terns [4], resource requirements [8] and network traffic [6]
have also been studied. However, the focus of existing work
has been on revealing workload characteristics, rather than
evaluating the quality of the workload characterization. In
contrast, our work focuses on studying the quality of char-
acterizations using performance benchmarks.

Our work is directly related to our previous work on task
shape classification [9]. The goal in [9] is to construct a
task classification model that divides workload into distinct
classes using the K-means clustering algorithm. The fea-
tures used by the clustering algorithm are the mean cpu
usage, mean memory usage and task execution time. The
accuracy of the model is evaluated by computing the intra
and inter cluster similarity in terms of standard deviation
from the mean values of the cluster. However, it is un-
clear whether the task classification criteria are sufficient for
generating synthetic workloads that can reproduce the per-
formance characteristics of real workloads. More recently,
Chen et. al. [11] analyzed the publicly available traces from
Google’s clouds and performed K-means on jobs using a va-
riety of features. They also used correlation scores to infer
relationships between job types and job clusters. However
this is different from our work that focus on task shape char-
acterization.

6. CONCLUSIONS
In this paper we studied the problem of deriving charac-

terization models for task usage shapes in Google’s compute
cloud. Our goal is to construct workload models that ac-
curately reproduce the performance characteristics of real
workloads. To our surprise, we find that simply capturing
the mean usage of each task (i.e., the mean usage model)
is sufficient for generating synthetic workload that produces
low model error for both resource utilization and task wait
time. The direct implication of our work is that we can real-
istically estimate the total wait time and resource utilization
for existing or imaginary workloads (e.g. workload scaled up
by ×10) using synthetic workload generated from the distri-
bution of task mean usages. Our future work includes using
compute cluster benchmarks to find effective clustering algo-
rithms that will produce simpler task shape characterization
models with similar performance as the mean usage model.
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