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Abstract 2. Topic Modeling and Segmentation

Much of the recent work on topic analysis has been focused on
The recent proliferation of large multimedia collectionash generative topic models. L&t = {w1,ws,...,w,} be the
gathered immense attention from the speech research commu- vocabulary ofn. words. Then ambservationa is an observed
nity, because speech recognition enables the transeriptid set of text or speech expressed through the empirical freye
indexing of such collections. Topicality information camimsed or expected count(, (w;) for eachw; € V. In generative
to improve transcription quality and enable content naiaga topic models, a sequence of word observations is explaigied b
In this paper, we give a novel quality measure for topic segme  a latent sequence of topic labels. As a result, high-dinoeiasi
tation algorithms that improves over previously used messsu text can be described with a low-dimensional mixture of the

Our measure takes into account not only the presence or@bsen  topics learned. A simple generative formulation topic nasle
of topic boundaries but also the content of the text or speech

segments labeled as topic-coherent. Additionally, we demo z = argmax Pr(z|a) = argmax Pr(alz) Pr(z), (1)
strate that topic segmentation quality of spoken languagée _ ) _
improved using speech recognition lattices. Using lastiom- whereaq is the sequence of observed text, arid the topic label

provements over the baseline one-best topic model arewvauser assi_gned. The secon_d equality follows by_Bayes’ rule and the
when measured with the previously existing topic segmimtat realization that the prior over the observatidhs(a) does not
quality measure, as well as the new measure proposed in this change with respect to topic. Under such topic models, text i

paper (9.4% and 7.0% relative error reduction, respegiivel labeled _by decoding a maximmposterior_isequence of topics
Index Terms: Topic segmentation, speech recognition lattices, ~accounting for the text. In these modeisis treated as a “bag
text similarity, speech processing. of words,” meaning the order of the words in the text or speech

stream underlying is generally not considered, merely the oc-
. currence frequency of each word within In practice,a can
1. Introduction be a sentence, a window efwords, an utterance, or a single
word. In Latent Dirichlet Allocation (LDA) [1], the formula
tion of Equation 1 is used, but the distributioRs(w|z) and
Pr(z) are modeled as multinomial distributions with Dirich-
let priors. Hidden Topic Markov Models (HTMMs) [2] use an
HMM structure where each state corresponds to a topied an
underlying topic model (such as LDA argram), as in [3, 4].
Topic labeling algorithms are also topic segmentation al-
gorithms because a topic assignment to a stream of text or
speech also implies a topic-wise segmentation of the stream
Nevertheless, a number of efforts have been made to create
algorithms specifically for the segmentation task. In TéxtT
ing [5], word counts are computed for a sliding window over
the input text. Text similarity is then evaluated betweeirspa
of adjacent windows according to a cosine similarity measur

Natural language streams, such as news broadcasts and tele-
phone conversations, are marked with the presence of under-
lying topics. These topics influence the statistics of thx¢ ¢e
speech produced. Learning to identify the topic underlyang
given segment of speech or text, or to detect topic changes is
beneficial in a number of ways. For example, knowledge of
the topic of a speech recording being transcribed by a speech
recognizer can be used to improve transcription quality &y u
ing a topic-dependent language model. Topicality inforomat
can also be used to improve navigation of audio and video col-
lections such as YouTube, by considering a common topic as a
feature when creating links between items.

In this paper, we focus on topic segmentation, or the au-

tomatic detection of topic changes in text or speech. After a S Oy (w;)Ca (w;) . :
review of previous work, we point out major limitations okth \/Zlgl/ai(wiﬂ ST The segmentation is obtained by
currently accepted topic segmentation quality measur&vkno  thresholding this similarity function. In this approachonats
as CoAP, including the fact that it does not take into accthmt that are naturally more prevalent in the corpus effectively

word content of the segments produced by the algorithms. We ceive a higher weight in the cosine score. One popular way to
then introduce a general measure of text similarity and give  bypass this limitation is by using the term frequency—iseer
topic segmentation quality measure incorporating thislaim document frequencyt{-idf) [6] to weight each word’s contri-

ity score and overcoming many of the limitations of COAP. In  pution to the similarity score.

experiments over speech and text streams from the Topicbete

tion and Tracking (TDT) corpus, we demonstrate that our dopi i i ; ;
Closeness Measure (TCM) is an effective indicator of segmen 3. Measuri ng TOpIC Segmentatlon Qual ity

tation quality. We additionally explore the topic segmé¢iota In order to evaluate the quality of topic segmentation algo-
task when the input to the segmentation algorithm is theuwtutp  rithms, it is necessary to have a segmentation quality nmeasu
of a speech recognizer. We demonstrate that informatian fro  Various measures have been proposed for measuring topic seg
speech recognition lattices can help improve topic segatient mentation quality. The most popular measure is known as Co-
over the one-best baseline. occurrence Agreement Probability, or CoAP.



3.1. Co-Agreement Occurrence Probability
COoAP [7] is broadly defined as:

Polrethyp) = S D(i,j) (Grer(is ) Bomplis 1)) . ()

1<i<j<n

whereD(i, j) is a distance probability distribution over obser-
vationsi, 7; dret aNddnyp are indicator functions that are one if
observationg andj are in the same topic in the reference and
hypothesis segmentations, respectively; anid the exclusive
NOR operation (“both or neither”). In practice, the choiédb

is almost always the distribution with its mass placed ehtir
on one distancé&. COAP scoring is then reduced to a single
fixed-size sliding window over the observations. This forim o
COAP is often referred to in the literature Bs. Various modi-
fications of COAP have been used in previous studies, inogudi
those assigning different weights to false positive arskfaleg-
ative segment boundaries (e.g., [8]).

In CoAP, every spurious or missing topic boundary is pe-
nalized equally without regard for the topics that it faysetpa-
rates or fails to correctly separate. For example, consiceg-
ment with word distributiorz; - in the reference. Suppose that
for a particular hypothesis segmentation, this referemeamic
overlaps with two chunks with distributions ;, andzs 5. As a
result, a spurious topic boundary would be detected anddvoul
be penalized by CoAP in the same way as any other boundary
error. However, it is entirely possible that distributiong, and
z2,n, are both statistically very similar te, .. Thus, this error
should be penalized less than failing to separate and z3 5,
wherezs 5, is far in linguistic content fronz; .

Additionally, CoAP is dependent on the choice of window
sizek. Various heuristics exist for the choice bf One idea
used in previous work has been to getuch that the score for
degenerate segmentations (e.g.., those that place evssi+ po
ble boundary or none at all) get a score of arodfgh. This
latter heuristic is the one used in the implementation of EoA
in this paper. Finally, by matching sentencdesnd; of Equa-
tion 2 between the reference and hypothesis, CoAP impficitl
requires that the reference and the hypothesis segmerg @
obtained by placing boundaries in the same stream of text, or
at least two streams of text where sentende the reference
corresponds exactly to sentenci the hypothesis. However,
when the hypothesis text is produced by a speech recognizer,
the text may be different due to recognition errors, and migh
be broken differently into utterances and/or sentences &
reference. One way of handling this limitation used in pvegi
work [8] and in this paper is to align the reference text wité t
hypothesis text temporally. This results in a rather sigaift

mismatch between the measure used for the text case and the

speech case.

3.2. New Topic Segmentation Quality Measure

We next describe our new Topic Closeness Measure (TCM),
which overcomes the limitations just mentioned, and as \a# sh
see in the experimental section, correlates with CoAP iniemp
ical trials. To incorporate word content information intaro
topic segmentation quality measure, we need to quantify the
similarity between chunks of text or speech. One rudimgntar
similarity function is the cosine distance between wordfien-
cies. Alternatively, if the word frequencies are viewed as a
probability distribution, a number of probability distanfunc-
tions can be used, including the symmetrized relative egton
KL-divergence. However, these distance measures aravall li
ited in that they are based on evaluating the divergenceein th
frequency or probability of a given word between the two seg-
ments. For example, if the first segment being considered has

many occurrences of “sport”, then a segment making no men-
tion of “sport” but mentioning “baseball” frequently woulze
assigned the same similarity score as a segment not mergioni
anything relevant to sports at all.

Clearly, a measure of closeness between words is required.
One powerful indicator of word similarity is co-occurrenice
speech or text segments known to be topic-coherent. A mea-
sure that captures this intuition mutual information Let V'
be the vocabulary, and,y € V be two words. IfT is a
large training corpus, then l&t'r(z,y), Cr(z), and Cr(y)
be the empirical probabilities of and y appearing together,
and that ofr andy appearing, ifl", respectively. The point-
wise mutual information (PMI) betweenandy is then defined

asPMI(z,y) = log % The definition of “appear-
ing together” can be interpreted to mean proximity in thedvor
stream [9]. However, since topic segmentation is our tagk, w
assume that our training corpfisis pre-segmented into topic-
coherent chunks, and we say theindy appear together when
they appear in the same chunk.

The logarithm in the PMI is customarily used due to con-
nections with well-understood quantities in informatibedry,
such as entropy. However, since logarithm is a monotone- func
tion, dropping it in the above formula does not change the or-
dering of word pairs and enables the similarity meadkirgm
given below to be a positive definite symmetric kernel. Thus,
our similarity between words (sometimes referred torasr-
es) shall be evaluated as

_ Cr(z,y)
= Cr(@)0r(y)’ @)

Our goal is to design a segmentation quality measure that
penalizes segments spanning multiple topics while rewgrdi
segments that respect topic boundaries. In the following-me
sure, we match segments between the reference and the hypoth
esis segmentation. The intuition is that those segmentsein t
hypothesis that span multiple reference segments williget
a low similarity score when compared to either reference seg
ment, while hypothesis segments respecting referenceesegm
boundaries will receive a high similarity score.

sim(z,y)

We will evaluate the total similarity of a
pair of observations @ and b as K(a,b) =
> ws cawyper Ca(wi) Cp(wz) sim(wi,w2). Let A and

B be the column vectors of empirical word frequencies such
that AZ = Ca(wi) and B, = Cb(wi) for ¢ 1, e,

Let K be the matrix such thaK; ; = sim(w;,w;). The
similarity score can then be written as a matrix operation,
K(a,b) = ATKB. We normalize to ensure that the score is in
the rangd0, 1] and that for any input, the self-similarity is

ATKB
V(ATKA)(BTKB) )

It can be shown that this general measure of text similar-
ity is a positive definite symmetric (PDS) kernel, and thus it
can be used in future discriminative learning for topic segm
tation and labeling algorithms. However, in this paper atx p
mary use for this similarity score is to create our segmantat
guality measure. Let andl be the number of segments in the
reference and hypothesis segmentation, respectivelyitidild
ally, letRq, ..., Ry andH1, ..., H; be the normalized column
count vectors of the segments in the reference and hypsthesi
segmentation, respectively (s, 7) quantifies the overlap be-
tween the two segments;. In this work,Q(%, 7) is the indica-
tor variable that is one when reference segmiaverlaps with
hypothesis segment and zero otherwise. However, various
other functions can be used f6, such as the duration of the
overlap or the number of overlapping sentences or uttesance
Similarly, other similarity scoring functions can be inporated

Knorm(% b) =




in place of Knorm. The TCM score between the reference seg-
mentationR and the hypothesis segmentatifinis defined as
_ Z§:1 22:1 Q(i,j)Knorm (T7«'7 h’J)
S X1 Q)

Like CoAP, TCM is in the rang), 1], and is symmetric in
the sense the if the reference and hypothesis segmentatiens
exchanged the score is the same. Further, since TCM makes use
of the general text content similarity measure of Equatipit 4
considers not only where the topic boundaries lie but algo th
closeness of the content of the segments being separatbd by t
boundaries. Additionally, the use of TCM is not dependent on
the window size parametérused in previous measures. TCM
does consider the placement of topic boundaries, and accord
ingly, accomplishes the goal of COAP — to penalize false pos-
itive and false negative segmentations. For example, gdalin
spurious boundary (i.e., one that separates two segmettie of
same topic) in a hypothesis segmentation would add orie to
and would thus be penalized by the extra contribution to the
normalization terny__, >°'_, Q(i, j). Deleting a boundary
between two different-topic segments is also penalizedure
the similarity scoreXnorm between the combined segment and
the overlapping reference segments would be decreased.

TCM(R, H)

(®)

4. Lattice-based Topic Analysis

Now that we have defined a general quality measure that applie
to both speech and text topic segmentation algorithms, we ex
plore the application of topic models to the output of a sheec
recognizer. There is a significant literature on topic asialpf
spoken language (e.g., [3, 4]). However, the majority ofdpe
proaches use only the one-best recognition hypothesigas in
to a topic labeling and/or segmentation algorithm. Singe la
tices carry more information than just the one-best hymithe
we are interested in using them to improve the quality oféhes
algorithms. A recent work [10] demonstrated an improvement
using word and phoneme lattices for topic identificationlaer
beling pre-segmented utterances in isolation. In this waek
focus exclusively on word lattices.

In our topic segmentation and labeling algorithms, we use
two information sources derived from lattices, expecteahts
and confidence scores. Each word found in a lattice is asso-
ciated with a total posterior probability, or expected dp@e-
cumulated over all the paths that contain that word.Vlis
the vocabulary the count of the wosdaccording to a stochas-
tic lattice automatom is C(z) = >, oy« [ul«[A](w), where
|u| is the number of occurrences of wosdin string  and
[A](u) is the probability associated by to stringu. The set
of expected counts for the words found in a lattice can be com-
puted efficiently [11]. We also compute word-level confidenc
scores for the one-best hypothesis using a logistic reigress
classifier. The classifier takes two features as input, teetfe-
ing the word expected counts just mentioned. The second fea-
ture is a likelihood ratio between the standard recognizér w
full context-dependent acoustic models and a simple rézegn
with context-independent models. Since the input to genera
tive topic models is a sequence of bag-of-word observations
be labeled with topics, it is straightforward to incorperdat-
tice counts and confidence scores into the generative medel a
a prior weighting on the input word frequencies.

5. Experiments

We have applied HTMM to learn a topic model over the En-
glish speech portion of the TDT corpus of broadcast news
speech [12]. In total, there werel7 news show recordings

of 30-60 minutes per show, for a total corpus size of around

0.8

0.7 i

0.6

0.4

Window Similarity

0.3

0.1

50 100 150

Sentence #

200 250

Figure 1: The window distanc&nom(ws, wt+a¢) for a rep-
resentative show. The vertical lines are true story bouesar
from the human-labeled corpus. A line at sentehoeans that
sentence + 1 is from a new story.

311 hours. For development and testing, we ugédand 69
shows picked from the Voice of America English News Pro-
gram (VOAENG) and MS-NBC News With Brian Williams
(MNB_NBW), containing957 and 1,674 stories, respectively.
The 337 shows from other sources were used for training. The
training shows containe®l 310 stories, and were annotated with
human story segmentations and transcriptions for each. stor
Certain stories were also annotated by hand with topics asich
“Earthquake in El Salvador,” but these labels were not used i
the model training. The HTMM was trained with 20 topics.

5.1. Text Similarity Evaluation

To evaluate our co-occurrence based similarity score empir
cally, we computed<orm between all pairs of test and devel-
opment stories with human topic labels. Wil stories, there
were 3,166 same-topic story pairs amb,172 different-topic
pairs in our experiment. The average pairwise similarity be
tween between different-topic story pairs wag558 and that
between same-topic story pairs Wa%138, or around.8 times
greater. This indicates that our text similarity measuedsod
indicator of topical similarity between two segments ofttex
speech.

The following experiment explores the correlation between
Knorm and true segmentation boundaries. For our text test set,
we processed each show's transcription by sliding a windbw o
At = 6 sentences along the text, accumulating the word fre-
guencies within each window. This value fart was selected
to yield good performance on the development set of a new
topic segmentation algorithm that is being developed inoeng
ing research. For each sentericdet w; be the window end-
ing at sentenceé. We computed the distance between all pairs
Knorm(we, wera¢) and plotted this distance. Figure 1 displays
this plot for a representative show. As this figure illustsatrue
topic boundaries are extremely well correlated with locai-m
ima in the similarity score. Similar trends are observechwit
other shows in the corpus.

5.2. Topic Segmentation Results

For our text-only experiments we used the human news show
transcriptions.  For the speech experiments, the audio for
each show was first automatically segmented into utterances
while removing most non-speech audio, such as music and
silence[13]. Each utterance was transcribed using the I8oog
large-vocabulary continuous speech recognizer. Thigr@zer

(the baseline system of [13]) used standard PLP cepstral fea



Table 1: Topic segmentation quality as measured with CoAP
and TCM.

Condition CoAP TCM CoAP TCM
(Text Training)  (Speech Training)
Text Random 50.4% 58.4% - -
Text Full 50.4% 51.8% - -
Text None 49.6% 56.2% - -
One-best Random 50.8% 48.8% - -
One-best Full 51.0% 43.0% - -
One-best None 49.1% 52.9% - -
Text 66.9% 72.6% - -
One-best 65.0% 61.5% 67.3% 62.8%
Counts 65.5% 62.4% 69.7% 64.1%
Confidence 68.3% 64.2% 68.8% 64.9%

tures, a vocabulary of about 71K words, GMM-based triphone
HMM acoustic models, and smoothed 4-gram language models
pruned to about 8Mh-grams. Both the acoustic and language
models were trained on standard Broadcast News (BN) carpora
The word error rate of this recognizer on the 1997 BN evalua-
tion set was 17.7%. The vocabulary for the HTMM algorithm
consisted of a subset 8821 words. This was constructed by
starting with the set of words seen in the recognizer tramscr
tion of the training data, applying Porter stemming [14inoy-

ing a stoplist of function and other words not likely to inalie

any topic, and keeping only those words occurring more than
five times. Since our topic model EM training algorithm begin
with random values, we ran 20 trials of model training and- tes
ing and picked the model that had the best performance on the
development data set.

The results of the experiment are given in Table 1. We
trained two separate HTMM topic models, the first using the
reference text as training data (Text Training), and themsgc
using the one-best transcription of the training data (Sipee
Training). We tested on the reference text (Text), as well as
three different varieties of speech transcriptions, tapsons
only (One-best), and speech transcriptions weighted waitice
counts (Counts) and confidence scores (Confidence). The first
six rows give scores for degenerate segmentations witforand
segment boundaries (Random), all possible boundarie$),(Ful
and no boundaries at all (None).

These results show that TCM is an effective measure of
topic segmentation quality. Qualitatively, its output engrally
correlated with that of CoAP. Segmentations produced by the
topic model significantly outperform degenerate segmemtsit
by both measures. Lattice counts yield a 2.3% and 3.5% rel-
ative improvement with text and speech training, respeltiv
in TCM error compared to the one-best baseline, and 1.4% and
7.3% in terms of CoAP. Confidence scores yield even larger
improvements with both measures, 9.4% and 4.6% relative by
CoAP and 7.0% and 5.6% by TCM. One interesting compar-

ison to make is that between the Text case and the One-best

case. Certainly we can expect topic segmentation on the ref-
erence transcriptions to be a much easier task than thateon th
output of a speech recognizer, due to the transcriptiorr®rro
present in the latter. Indeed, error reductions from Orsd-tze

topic segmentation quality that overcomes major limitagiof

past evaluation techniques. Unlike previous quality messu
TCM applies generally to either speech or text sources, does
not depend on a fixed window size, and considers similarity
between segments labeled as topic-coherent, rather than si
ply the presence or absence of a segment boundary in the same
places as in the reference. In empirical trials, TCM is datesl

with the previous measures. Additionally, the general saxt
ilarity measure underlying TCM is empirically correlatedtiw

the ground truth topic boundaries and topic labels. We have
also demonstrated that a topic segmentation and idenitficat
algorithm can be improved by using lattice information.

We are currently working on a topic segmentation algo-
rithm that explicitly attempts to maximize TCM by placing
topic boundaries at points in the observation stream whexte t
similarity is low. We believe that such an algorithm will pet-
form the ones used in the present work.
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