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Abstract

The recent proliferation of large multimedia collections has
gathered immense attention from the speech research commu-
nity, because speech recognition enables the transcription and
indexing of such collections. Topicality information can be used
to improve transcription quality and enable content navigation.
In this paper, we give a novel quality measure for topic segmen-
tation algorithms that improves over previously used measures.
Our measure takes into account not only the presence or absence
of topic boundaries but also the content of the text or speech
segments labeled as topic-coherent. Additionally, we demon-
strate that topic segmentation quality of spoken language can be
improved using speech recognition lattices. Using lattices, im-
provements over the baseline one-best topic model are observed
when measured with the previously existing topic segmentation
quality measure, as well as the new measure proposed in this
paper (9.4% and 7.0% relative error reduction, respectively).
Index Terms: Topic segmentation, speech recognition lattices,
text similarity, speech processing.

1. Introduction
Natural language streams, such as news broadcasts and tele-
phone conversations, are marked with the presence of under-
lying topics. These topics influence the statistics of the text or
speech produced. Learning to identify the topic underlyinga
given segment of speech or text, or to detect topic changes is
beneficial in a number of ways. For example, knowledge of
the topic of a speech recording being transcribed by a speech
recognizer can be used to improve transcription quality by us-
ing a topic-dependent language model. Topicality information
can also be used to improve navigation of audio and video col-
lections such as YouTube, by considering a common topic as a
feature when creating links between items.

In this paper, we focus on topic segmentation, or the au-
tomatic detection of topic changes in text or speech. After a
review of previous work, we point out major limitations of the
currently accepted topic segmentation quality measure known
as CoAP, including the fact that it does not take into accountthe
word content of the segments produced by the algorithms. We
then introduce a general measure of text similarity and givea
topic segmentation quality measure incorporating this similar-
ity score and overcoming many of the limitations of CoAP. In
experiments over speech and text streams from the Topic Detec-
tion and Tracking (TDT) corpus, we demonstrate that our Topic
Closeness Measure (TCM) is an effective indicator of segmen-
tation quality. We additionally explore the topic segmentation
task when the input to the segmentation algorithm is the output
of a speech recognizer. We demonstrate that information from
speech recognition lattices can help improve topic segmentation
over the one-best baseline.

2. Topic Modeling and Segmentation
Much of the recent work on topic analysis has been focused on
generative topic models. LetV = {w1, w2, . . . , wn} be the
vocabulary ofn words. Then anobservationa is an observed
set of text or speech expressed through the empirical frequency,
or expected count,Ca(wi) for eachwi ∈ V . In generative
topic models, a sequence of word observations is explained by
a latent sequence of topic labels. As a result, high-dimensional
text can be described with a low-dimensional mixture of the
topics learned. A simple generative formulation topic model is

z = arg max
z

Pr(z|a) = arg max
z

Pr(a|z)Pr(z), (1)

wherea is the sequence of observed text, andz is the topic label
assigned. The second equality follows by Bayes’ rule and the
realization that the prior over the observationsPr(a) does not
change with respect to topic. Under such topic models, text is
labeled by decoding a maximuma posteriorisequence of topics
accounting for the text. In these models,a is treated as a “bag
of words,” meaning the order of the words in the text or speech
stream underlyinga is generally not considered, merely the oc-
currence frequency of each word withinw. In practice,a can
be a sentence, a window ofn words, an utterance, or a single
word. In Latent Dirichlet Allocation (LDA) [1], the formula-
tion of Equation 1 is used, but the distributionsPr(w|z) and
Pr(z) are modeled as multinomial distributions with Dirich-
let priors. Hidden Topic Markov Models (HTMMs) [2] use an
HMM structure where each state corresponds to a topicz and an
underlying topic model (such as LDA orn-gram), as in [3, 4].

Topic labeling algorithms are also topic segmentation al-
gorithms because a topic assignment to a stream of text or
speech also implies a topic-wise segmentation of the stream.
Nevertheless, a number of efforts have been made to create
algorithms specifically for the segmentation task. In TextTil-
ing [5], word counts are computed for a sliding window over
the input text. Text similarity is then evaluated between pairs
of adjacent windows according to a cosine similarity measure,
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. The segmentation is obtained by

thresholding this similarity function. In this approach, words
that are naturally more prevalent in the corpus effectivelyre-
ceive a higher weight in the cosine score. One popular way to
bypass this limitation is by using the term frequency–inverse
document frequency (tf–idf) [6] to weight each word’s contri-
bution to the similarity score.

3. Measuring Topic Segmentation Quality
In order to evaluate the quality of topic segmentation algo-
rithms, it is necessary to have a segmentation quality measure.
Various measures have been proposed for measuring topic seg-
mentation quality. The most popular measure is known as Co-
occurrence Agreement Probability, or CoAP.



3.1. Co-Agreement Occurrence Probability

CoAP [7] is broadly defined as:

PD(ref, hyp) =
X

1≤i≤j≤n

D(i, j) (δref(i, j)⊕δhyp(i, j)) , (2)

whereD(i, j) is a distance probability distribution over obser-
vationsi, j; δref andδhyp are indicator functions that are one if
observationsi andj are in the same topic in the reference and
hypothesis segmentations, respectively; and⊕ is the exclusive
NOR operation (“both or neither”). In practice, the choice of D
is almost always the distribution with its mass placed entirely
on one distancek. CoAP scoring is then reduced to a single
fixed-size sliding window over the observations. This form of
CoAP is often referred to in the literature asPk. Various modi-
fications of CoAP have been used in previous studies, including
those assigning different weights to false positive and false neg-
ative segment boundaries (e.g., [8]).

In CoAP, every spurious or missing topic boundary is pe-
nalized equally without regard for the topics that it falsely sepa-
rates or fails to correctly separate. For example, considera seg-
ment with word distributionz1,r in the reference. Suppose that
for a particular hypothesis segmentation, this reference chunk
overlaps with two chunks with distributionsz1,h andz2,h. As a
result, a spurious topic boundary would be detected and would
be penalized by CoAP in the same way as any other boundary
error. However, it is entirely possible that distributionsz1,h and
z2,h are both statistically very similar toz1,r. Thus, this error
should be penalized less than failing to separatez1,h andz3,h,
wherez3,h is far in linguistic content fromz1,r.

Additionally, CoAP is dependent on the choice of window
sizek. Various heuristics exist for the choice ofk. One idea
used in previous work has been to setk such that the score for
degenerate segmentations (e.g.., those that place every possi-
ble boundary or none at all) get a score of around50%. This
latter heuristic is the one used in the implementation of CoAP
in this paper. Finally, by matching sentencesi andj of Equa-
tion 2 between the reference and hypothesis, CoAP implicitly
requires that the reference and the hypothesis segmentations be
obtained by placing boundaries in the same stream of text, or
at least two streams of text where sentencei in the reference
corresponds exactly to sentencei in the hypothesis. However,
when the hypothesis text is produced by a speech recognizer,
the text may be different due to recognition errors, and might
be broken differently into utterances and/or sentences than the
reference. One way of handling this limitation used in previous
work [8] and in this paper is to align the reference text with the
hypothesis text temporally. This results in a rather significant
mismatch between the measure used for the text case and the
speech case.

3.2. New Topic Segmentation Quality Measure

We next describe our new Topic Closeness Measure (TCM),
which overcomes the limitations just mentioned, and as we shall
see in the experimental section, correlates with CoAP in empir-
ical trials. To incorporate word content information into our
topic segmentation quality measure, we need to quantify the
similarity between chunks of text or speech. One rudimentary
similarity function is the cosine distance between word frequen-
cies. Alternatively, if the word frequencies are viewed as a
probability distribution, a number of probability distance func-
tions can be used, including the symmetrized relative entropy or
KL-divergence. However, these distance measures are all lim-
ited in that they are based on evaluating the divergence in the
frequency or probability of a given word between the two seg-
ments. For example, if the first segment being considered has

many occurrences of “sport”, then a segment making no men-
tion of “sport” but mentioning “baseball” frequently wouldbe
assigned the same similarity score as a segment not mentioning
anything relevant to sports at all.

Clearly, a measure of closeness between words is required.
One powerful indicator of word similarity is co-occurrencein
speech or text segments known to be topic-coherent. A mea-
sure that captures this intuition ismutual information. Let V
be the vocabulary, andx, y ∈ V be two words. IfT is a
large training corpus, then letCT (x, y), CT (x), and CT (y)
be the empirical probabilities ofx and y appearing together,
and that ofx andy appearing, inT , respectively. The point-
wise mutual information (PMI) betweenx andy is then defined
asPMI(x, y) = log CT (x,y)

CT (x)CT (y)
. The definition of “appear-

ing together” can be interpreted to mean proximity in the word
stream [9]. However, since topic segmentation is our task, we
assume that our training corpusT is pre-segmented into topic-
coherent chunks, and we say thatx andy appear together when
they appear in the same chunk.

The logarithm in the PMI is customarily used due to con-
nections with well-understood quantities in information theory,
such as entropy. However, since logarithm is a monotone func-
tion, dropping it in the above formula does not change the or-
dering of word pairs and enables the similarity measureKnorm

given below to be a positive definite symmetric kernel. Thus,
our similarity between words (sometimes referred to asinter-
est) shall be evaluated as

sim(x, y) =
CT (x, y)

CT (x)CT (y)
. (3)

Our goal is to design a segmentation quality measure that
penalizes segments spanning multiple topics while rewarding
segments that respect topic boundaries. In the following mea-
sure, we match segments between the reference and the hypoth-
esis segmentation. The intuition is that those segments in the
hypothesis that span multiple reference segments will likely get
a low similarity score when compared to either reference seg-
ment, while hypothesis segments respecting reference segment
boundaries will receive a high similarity score.

We will evaluate the total similarity of a
pair of observations a and b as K(a, b) =
P

w1∈a,w2∈b
Ca(w1) Cb(w2) sim(w1, w2). Let A and

B be the column vectors of empirical word frequencies such
that Ai = Ca(wi) and Bi = Cb(wi) for i = 1, . . . , n.
Let K be the matrix such thatKi,j = sim(wi, wj). The
similarity score can then be written as a matrix operation,
K(a, b) = A⊤

KB. We normalize to ensure that the score is in
the range[0, 1] and that for any input, the self-similarity is1,

Knorm(a, b) =
A⊤

KB
p

(A⊤KA)(B⊤KB)
. (4)

It can be shown that this general measure of text similar-
ity is a positive definite symmetric (PDS) kernel, and thus it
can be used in future discriminative learning for topic segmen-
tation and labeling algorithms. However, in this paper our pri-
mary use for this similarity score is to create our segmentation
quality measure. Letk andl be the number of segments in the
reference and hypothesis segmentation, respectively. Addition-
ally, letR1, . . . , Rk andH1, . . . , Hl be the normalized column
count vectors of the segments in the reference and hypothesis
segmentation, respectively.Q(i, j) quantifies the overlap be-
tween the two segmentsi, j. In this work,Q(i, j) is the indica-
tor variable that is one when reference segmenti overlaps with
hypothesis segmentj, and zero otherwise. However, various
other functions can be used forO, such as the duration of the
overlap or the number of overlapping sentences or utterances.
Similarly, other similarity scoring functions can be incorporated



in place ofKnorm. The TCM score between the reference seg-
mentationR and the hypothesis segmentationH is defined as

TCM(R, H) =

Pk

i=1

Pl

j=1 Q(i, j)Knorm(ri, hj)
Pk

i=1

Pl

j=1 Q(i, j)
. (5)

Like CoAP, TCM is in the range[0, 1], and is symmetric in
the sense the if the reference and hypothesis segmentationsare
exchanged the score is the same. Further, since TCM makes use
of the general text content similarity measure of Equation 4, it
considers not only where the topic boundaries lie but also the
closeness of the content of the segments being separated by the
boundaries. Additionally, the use of TCM is not dependent on
the window size parameterk used in previous measures. TCM
does consider the placement of topic boundaries, and accord-
ingly, accomplishes the goal of CoAP – to penalize false pos-
itive and false negative segmentations. For example, adding a
spurious boundary (i.e., one that separates two segments ofthe
same topic) in a hypothesis segmentation would add one tol
and would thus be penalized by the extra contribution to the
normalization term

Pk

i=1

Pl

j=1 Q(i, j). Deleting a boundary
between two different-topic segments is also penalized because
the similarity scoreKnorm between the combined segment and
the overlapping reference segments would be decreased.

4. Lattice-based Topic Analysis
Now that we have defined a general quality measure that applies
to both speech and text topic segmentation algorithms, we ex-
plore the application of topic models to the output of a speech
recognizer. There is a significant literature on topic analysis of
spoken language (e.g., [3, 4]). However, the majority of theap-
proaches use only the one-best recognition hypothesis as input
to a topic labeling and/or segmentation algorithm. Since lat-
tices carry more information than just the one-best hypothesis,
we are interested in using them to improve the quality of these
algorithms. A recent work [10] demonstrated an improvement
using word and phoneme lattices for topic identification, orla-
beling pre-segmented utterances in isolation. In this workwe
focus exclusively on word lattices.

In our topic segmentation and labeling algorithms, we use
two information sources derived from lattices, expected counts
and confidence scores. Each word found in a lattice is asso-
ciated with a total posterior probability, or expected count, ac-
cumulated over all the paths that contain that word. IfV is
the vocabulary the count of the wordx according to a stochas-
tic lattice automatonA is C(x) =

P

u∈V ∗ |u|x[[A]](u), where
|u|x is the number of occurrences of wordx in string u and
[[A]](u) is the probability associated byA to stringu. The set
of expected counts for the words found in a lattice can be com-
puted efficiently [11]. We also compute word-level confidence
scores for the one-best hypothesis using a logistic regression
classifier. The classifier takes two features as input, the first be-
ing the word expected counts just mentioned. The second fea-
ture is a likelihood ratio between the standard recognizer with
full context-dependent acoustic models and a simple recognizer
with context-independent models. Since the input to genera-
tive topic models is a sequence of bag-of-word observationsto
be labeled with topics, it is straightforward to incorporate lat-
tice counts and confidence scores into the generative model as
a prior weighting on the input word frequencies.

5. Experiments
We have applied HTMM to learn a topic model over the En-
glish speech portion of the TDT corpus of broadcast news
speech [12]. In total, there were447 news show recordings
of 30-60 minutes per show, for a total corpus size of around
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Figure 1: The window distanceKnorm(wt, wt+∆t) for a rep-
resentative show. The vertical lines are true story boundaries
from the human-labeled corpus. A line at sentencet means that
sentencet + 1 is from a new story.

311 hours. For development and testing, we used41 and69
shows picked from the Voice of America English News Pro-
gram (VOA ENG) and MS-NBC News With Brian Williams
(MNB NBW), containing957 and1,674 stories, respectively.
The337 shows from other sources were used for training. The
training shows contained6,310 stories, and were annotated with
human story segmentations and transcriptions for each story.
Certain stories were also annotated by hand with topics suchas
“Earthquake in El Salvador,” but these labels were not used in
the model training. The HTMM was trained with 20 topics.

5.1. Text Similarity Evaluation

To evaluate our co-occurrence based similarity score empiri-
cally, we computedKnorm between all pairs of test and devel-
opment stories with human topic labels. With291 stories, there
were3,166 same-topic story pairs and39,172 different-topic
pairs in our experiment. The average pairwise similarity be-
tween between different-topic story pairs was0.2558 and that
between same-topic story pairs was0.7138, or around2.8 times
greater. This indicates that our text similarity measure isa good
indicator of topical similarity between two segments of text or
speech.

The following experiment explores the correlation between
Knorm and true segmentation boundaries. For our text test set,
we processed each show’s transcription by sliding a window of
∆t = 6 sentences along the text, accumulating the word fre-
quencies within each window. This value for∆t was selected
to yield good performance on the development set of a new
topic segmentation algorithm that is being developed in ongo-
ing research. For each sentencet, let wt be the window end-
ing at sentencet. We computed the distance between all pairs
Knorm(wt, wt+∆t) and plotted this distance. Figure 1 displays
this plot for a representative show. As this figure illustrates, true
topic boundaries are extremely well correlated with local min-
ima in the similarity score. Similar trends are observed with
other shows in the corpus.

5.2. Topic Segmentation Results

For our text-only experiments we used the human news show
transcriptions. For the speech experiments, the audio for
each show was first automatically segmented into utterances,
while removing most non-speech audio, such as music and
silence[13]. Each utterance was transcribed using the Google
large-vocabulary continuous speech recognizer. This recognizer
(the baseline system of [13]) used standard PLP cepstral fea-



Table 1: Topic segmentation quality as measured with CoAP
and TCM.

Condition CoAP TCM CoAP TCM
(Text Training) (Speech Training)

Text Random 50.4% 58.4% - -
Text Full 50.4% 51.8% - -

Text None 49.6% 56.2% - -
One-best Random 50.8% 48.8% - -

One-best Full 51.0% 43.0% - -
One-best None 49.1% 52.9% - -

Text 66.9% 72.6% - -
One-best 65.0% 61.5% 67.3% 62.8%
Counts 65.5% 62.4% 69.7% 64.1%

Confidence 68.3% 64.2% 68.8% 64.9%

tures, a vocabulary of about 71K words, GMM-based triphone
HMM acoustic models, and smoothed 4-gram language models
pruned to about 8Mn-grams. Both the acoustic and language
models were trained on standard Broadcast News (BN) corpora.
The word error rate of this recognizer on the 1997 BN evalua-
tion set was 17.7%. The vocabulary for the HTMM algorithm
consisted of a subset of8,821 words. This was constructed by
starting with the set of words seen in the recognizer transcrip-
tion of the training data, applying Porter stemming [14], remov-
ing a stoplist of function and other words not likely to indicate
any topic, and keeping only those words occurring more than
five times. Since our topic model EM training algorithm begins
with random values, we ran 20 trials of model training and test-
ing and picked the model that had the best performance on the
development data set.

The results of the experiment are given in Table 1. We
trained two separate HTMM topic models, the first using the
reference text as training data (Text Training), and the second
using the one-best transcription of the training data (Speech
Training). We tested on the reference text (Text), as well as
three different varieties of speech transcriptions, transcriptions
only (One-best), and speech transcriptions weighted with lattice
counts (Counts) and confidence scores (Confidence). The first
six rows give scores for degenerate segmentations with random
segment boundaries (Random), all possible boundaries (Full),
and no boundaries at all (None).

These results show that TCM is an effective measure of
topic segmentation quality. Qualitatively, its output is generally
correlated with that of CoAP. Segmentations produced by the
topic model significantly outperform degenerate segmentations
by both measures. Lattice counts yield a 2.3% and 3.5% rel-
ative improvement with text and speech training, respectively,
in TCM error compared to the one-best baseline, and 1.4% and
7.3% in terms of CoAP. Confidence scores yield even larger
improvements with both measures, 9.4% and 4.6% relative by
CoAP and 7.0% and 5.6% by TCM. One interesting compar-
ison to make is that between the Text case and the One-best
case. Certainly we can expect topic segmentation on the ref-
erence transcriptions to be a much easier task than that on the
output of a speech recognizer, due to the transcription errors
present in the latter. Indeed, error reductions from One-best to
Text are achieved, but 5.4% as measured by CoAP, and 28.8%
by TCM. This asymmetry can possibly be attributed to the mis-
match between the CoAP used for text and that used for speech
mentioned in Section 3.1.

6. Conclusion and Future Work
In this paper, we have made several contributions to topic anal-
ysis of spoken language. The first is to give a new measure of

topic segmentation quality that overcomes major limitations of
past evaluation techniques. Unlike previous quality measures,
TCM applies generally to either speech or text sources, does
not depend on a fixed window size, and considers similarity
between segments labeled as topic-coherent, rather than sim-
ply the presence or absence of a segment boundary in the same
places as in the reference. In empirical trials, TCM is correlated
with the previous measures. Additionally, the general textsim-
ilarity measure underlying TCM is empirically correlated with
the ground truth topic boundaries and topic labels. We have
also demonstrated that a topic segmentation and identification
algorithm can be improved by using lattice information.

We are currently working on a topic segmentation algo-
rithm that explicitly attempts to maximize TCM by placing
topic boundaries at points in the observation stream where text
similarity is low. We believe that such an algorithm will outper-
form the ones used in the present work.
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